IMC2020 Final Progam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Π·¡— Πà È”°Õ„Àà ‡°Â ¥§«“¡ ¡∫‘ √≥Ÿ ¢Õß™Πå ¥¢Õߪ≈“‘ Adaptations in River Fishes Facilitate Species Richness
°“√ª√∫μ— «¢Õߪ≈“„π·¡— πà È”°Õ„Àà ‡°â ¥§«“¡ ¡∫‘ √≥Ÿ ¢Õß™πå ¥¢Õߪ≈“‘ Adaptations in River Fishes Facilitate Species Richness ‡ø¥‡¥Õ√§‘ «≈‡≈‘ ¬¡’ ‡Œπ√ ’ ∫¡’ ™‘ 1* æ™√“— π∏‘ ‚√®π‘ ¿å °¥— 2’ √ß∑ÿà æ¬‘ å ‚æ≈߇»√…∞â 2’ ·≈– ‡æ¬ß„®’ ™ππ∑√¿‘ ¡Ÿ 2‘ 1«∑¬“»“ μ√‘ å ß·«¥≈‘Ë Õ¡â §≥–«∑¬“»“ μ√‘ å ¡À“«∑¬“≈‘ ¬∫— √擟 2‚§√ß°“√∫≥±— μ»‘ °…“÷ “¢“«∑¬“»“ μ√‘ å ß·«¥≈‘Ë Õ¡â §≥–«∑¬“»“ μ√‘ å ¡À“«∑¬“≈‘ ¬∫— √擟 F.William H. Beamish1*, Patchara Nithirojpakdee2, Rungthip Plongsesthee2 and Peangchai Chanintarapoomi2 1Environmental Science Program, Faculty of Science, Burapha University, 2Graduate Program, Environmental Science , Faculty of Science, Burapha University. ∫∑§¥¬— Õà ·π«§«“¡§‘¥¢Õß ‘Ëß·«¥≈âÕ¡ (The cooncept of environmental) °“√ª√—∫μ—«∑“ߥâ“π°“√°‘πÕ“À“√ ‡ªìπ·π«§‘¥∑’Ë¡’ §«“¡ ¡æ— π∏— ‡°å ¬«‡π’Ë Õß°◊Ë π°— ∫≈— °…≥–∑“ßø— ï‚π‰∑ª á À√Õ◊ ®’‚π‰∑ª á ´ß∂÷Ë Õ‡ª◊ π ì ß ”§‘Ë ≠∑— ™’Ë «¬„Àà â ß¡‘Ë ™’ «’ μμ‘ “ßÊà “¡“√∂¥”√ß™«’ μ·≈–‘ √—∫¡◊Õ°—∫≈—°…≥–Õ—π®”‡æ“–¢Õß·μà≈–·À≈àß∑’ËÕ¬ŸàÕ“»—¬‰¥â¥’¢÷Èπ √«¡∑—Èß ‘Ëß¡’™’«‘μÕ◊ËπÊ ¥â«¬ ´÷Ëß®–¡’ª√–‚¬™πå„π«ß°«â“ß ”À√—∫°“√ ∑”§«“¡‡¢â“„®‡°’ˬ«°—∫§«“¡™ÿ°™ÿ¡¢Õß ‘Ëß¡’™’«‘μ°—∫°“√Õ¬Ÿà√à«¡°—π¢Õß ‘Ëß¡’™’«‘μ „π ¿“«–·«¥≈âÕ¡∑’Ë¡’°“√‡ª≈’ˬπ·ª≈߉ª¡“Õ¬Ÿà μ≈Õ¥‡«≈“¢Õß·À≈ßπà È”„πª√–‡∑»‰∑¬ Õπ‡ª— π·À≈ì ß∑à Õ¬’Ë Õ“»Ÿà ¬¢Õߪ≈“— ∑”„Àª≈“μâ Õߪ√â ∫μ— «‡æ— Õ„À◊Ë ‡¢â “°â ∫§— ≥≈ÿ °…≥–∑“߇§¡— °“¬¿“æ’ Õ“®°Õ„Àà ‡°â ¥§«“¡À≈“°À≈“¬¢Õß ‘ ß¡‘Ë ™’ «’ μ¡“°¢‘ π÷È °“√» °…“„π§√÷ ßπ—È ®’È ß¡÷ «’ μ∂— ª√– ß§ÿ ‡æå Õ»◊Ë °…“≈÷ °…≥–∑“߇§¡— °“¬¿“æ„π·À≈’ ßπà È”μ“ßÊà „π¿“§°≈“ߢÕߪ√–‡∑»‰∑¬ ∑¡’Ë º≈μ’ Õª≈“ Õ߫߻à å ´ßÕ“»÷Ë ¬√— «¡°à π„π·À≈— ßπà È”‡¥¬«°’ π— §Õ◊ «ß»ª≈“μ–‡æå ¬π’ (Cyprinidae) ·≈– «ß»å ª≈“®ß®°‘È -
Download Download
:ŽƵƌŶĂůŽĨdŚƌĞĂƚĞŶĞĚdĂdžĂͮǁǁǁ͘ƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͮϮϲDĂLJϮϬϭϰͮϲ;ϱͿ͗ϱϲϴϲʹϱϲϵϵ ®ÝãÙ®çã®ÊÄ͕ã«ÙãÝÄÊÄÝÙòã®ÊÄÝããçÝʥ㫠ÊÃÃçÄ®ã®ÊÄ tùÄD«ÝÙ͕Eʽ®ÝÝÊ«®½çÝóùÄÄÝ®Ý;ù͕ϭϴϳϯͿ /^^E ;d½ÊÝã®͗ùÖٮĮͿ͗ÄÄî½Ù¦Ùʥ㫠KŶůŝŶĞϬϵϳϰʹϳϵϬϳ WƌŝŶƚϬϵϳϰʹϳϴϵϯ tÝãÙÄ'«ãÝ͕/Ä® KWE^^ ŶǀĂƌůŝϭ͕EĞĞůĞƐŚĂŚĂŶƵŬĂƌϮ͕^ŝďLJWŚŝůŝƉϯ͕<͘<ƌŝƐŚŶĂŬƵŵĂƌϰΘZĂũĞĞǀZĂŐŚĂǀĂŶϱ ϭ͕ϯ͕ϰ͕ϱŽŶƐĞƌǀĂƟŽŶZĞƐĞĂƌĐŚ'ƌŽƵƉ;Z'Ϳ͕^ƚ͘ůďĞƌƚ͛ƐŽůůĞŐĞ͕<ŽĐŚŝ͕<ĞƌĂůĂϲϴϮϬϭϴ͕/ŶĚŝĂ Ϯ/ŶĚŝĂŶ/ŶƐƟƚƵƚĞŽĨ^ĐŝĞŶĐĞĚƵĐĂƟŽŶĂŶĚZĞƐĞĂƌĐŚ;//^ZͿ͕ƌ͘,ŽŵŝŚĂďŚĂZŽĂĚ͕WĂƐŚĂŶ͕WƵŶĞ͕ DĂŚĂƌĂƐŚƚƌĂϰϭϭϬϬϴ͕/ŶĚŝĂ Ϯ͕ϱ^LJƐƚĞŵĂƟĐƐ͕ĐŽůŽŐLJΘŽŶƐĞƌǀĂƟŽŶ>ĂďŽƌĂƚŽƌLJ͕ŽŽKƵƚƌĞĂĐŚKƌŐĂŶŝnjĂƟŽŶ;KKͿ͕ϵϲ<ƵŵƵĚŚĂŵEĂŐĂƌ͕ sŝůĂŶŬƵƌŝĐŚŝZŽĂĚ͕ŽŝŵďĂƚŽƌĞ͕dĂŵŝůEĂĚƵϲϰϭϬϯϱ͕/ŶĚŝĂ ϯĞƉĂƌƚŵĞŶƚŽĨŽŽůŽŐLJ͕EŝƌŵĂůĂŐŝƌŝŽůůĞŐĞ͕<ŽŽƚŚƵƉĂƌĂŵďƵ͕<ĂŶŶƵƌ͕<ĞƌĂůĂϲϳϬϳϬϭ͕/ŶĚŝĂ ϱDĂŚƐĞĞƌdƌƵƐƚ͕ĐͬŽdŚĞ&ƌĞƐŚǁĂƚĞƌŝŽůŽŐŝĐĂůƐƐŽĐŝĂƟŽŶ͕ĂƐƚ^ƚŽŬĞZŝǀĞƌ>ĂďŽƌĂƚŽƌLJ͕tĂƌĞŚĂŵ͕ ŽƌƐĞƚ͕,ϮϬϲ͕hŶŝƚĞĚ<ŝŶŐĚŽŵ ϭĂŶǀĂƌĂůŝŝĨΛŐŵĂŝů͘ĐŽŵ͕ϮŶ͘ĚĂŚĂŶƵŬĂƌΛŝŝƐĞƌƉƵŶĞ͘ĂĐ͘ŝŶ͕ϯƉŚŝůŝƉƐŝďLJΛŐŵĂŝů͘ĐŽŵ͕ϰŬŬĂƋƵĂΛŐŵĂŝů͘ĐŽŵ͕ ϱƌĂũĞĞǀƌĂƋΛŚŽƚŵĂŝů͘ĐŽŵ;ĐŽƌƌĞƐƉŽŶĚŝŶŐĂƵƚŚŽƌͿ ďƐƚƌĂĐƚ͗dŚĞtĂLJĂŶĂĚDĂŚƐĞĞƌNeolissochilus wynaadensis ;ĂLJ͕ϭϴϳϯͿŝƐĂŶĞŶĚĞŵŝĐĐLJƉƌŝŶŝĚĮƐŚƚŚĂƚŽĐĐƵƌƐŝŶƚŚĞƵƉůĂŶĚƐƚƌĞĂŵƐ ĂŶĚƌŝǀĞƌƐŽĨƚŚĞƐŽƵƚŚĞƌŶƌĞŐŝŽŶŽĨƚŚĞtĞƐƚĞƌŶ'ŚĂƚƐ͘dŚŝƐƐƉĞĐŝĞƐŚĂƐďĞĞŶůŝƐƚĞĚĂƐ͚ƌŝƟĐĂůůLJŶĚĂŶŐĞƌĞĚ͛ŽŶƚŚĞ/hEZĞĚ>ŝƐƚŽĨ dŚƌĞĂƚĞŶĞĚ^ƉĞĐŝĞƐĚƵĞƚŽŝƚƐƌĞƐƚƌŝĐƚĞĚĚŝƐƚƌŝďƵƟŽŶĂŶĚŚĞĂǀLJĚĞĐůŝŶĞƐŝŶƉŽƉƵůĂƟŽŶƐ͘>ŝŬĞŵĂŶLJůĂƌŐĞĐLJƉƌŝŶŝĚƐŽĨƚŚĞtĞƐƚĞƌŶ'ŚĂƚƐ͕ N. wynaadensis ŝƐƉŽŽƌůLJŬŶŽǁŶĂŶĚĚŽĐƵŵĞŶƚĞĚ͕ǁŝƚŚǀĞƌLJĨĞǁǀĞƌŝĮĞĚƌĞĐŽƌĚƐĂŶĚǀŽƵĐŚĞƌƐƉĞĐŝŵĞŶƐ͘ĂƐĞĚŽŶƐƉĞĐŝŵĞŶƐƌĞĐĞŶƚůLJ ĐŽůůĞĐƚĞĚ ĨƌŽŵ tĂLJĂŶĂĚ͕ <ĞƌĂůĂ͕ ƚŚĞ ƚLJƉĞ ůŽĐĂůŝƚLJ͕ĂƐ ǁĞůů ĂƐ ƚǁŽ ĂĚĚŝƟŽŶĂů ůŽĐĂƟŽŶƐ ŝŶ ƚŚĞ <ŽĚĂŐƵ ŝƐƚƌŝĐƚ ŽĨ <ĂƌŶĂƚĂŬĂ͖ ǁĞ ƉƌŽǀŝĚĞ ŝŶĨŽƌŵĂƟŽŶŽŶƚŚĞĐƵƌƌĞŶƚĚŝƐƚƌŝďƵƟŽŶ͕ƉŚLJůŽŐĞŶĞƟĐƉŽƐŝƟŽŶ͕ƚŚƌĞĂƚƐĂŶĚĐŽŶƐĞƌǀĂƟŽŶ͘ŶƵƉĚĂƚĞĚĐŽŶƐĞƌǀĂƟŽŶĂƐƐĞƐƐŵĞŶƚŽĨƚŚŝƐ -
National Report on the Fish Stocks and Habitats of Regional, Global
United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility NATIONAL REPORT on The Fish Stocks and Habitats of Regional, Global, and Transboundary Significance in the South China Sea THAILAND Mr. Pirochana Saikliang Focal Point for Fisheries Chumphon Marine Fisheries Research and Development Center 408 Moo 8, Paknum Sub-District, Muang District, Chumphon 86120, Thailand NATIONAL REPORT ON FISHERIES – THAILAND Table of Contents 1. MARINE FISHERIES DEVELOPMENT........................................................................................2 / 1.1 OVERVIEW OF THE FISHERIES SECTOR ...................................................................................2 1.1.1 Total catch by fishing area, port of landing or province (by species/species group).7 1.1.2 Fishing effort by gear (no. of fishing days, or no. of boats) .......................................7 1.1.2.1 Trawl ...........................................................................................................10 1.1.2.2 Purse seine/ring net....................................................................................10 1.1.2.3 Gill net.........................................................................................................12 1.1.2.4 Other gears.................................................................................................12 1.1.3 Economic value of catch..........................................................................................14 1.1.4 Importance of the fisheries sector -
Biodiversity Assessment of the Mekong River in Northern Lao PDR: a Follow up Study
���� ������������������ ������������������ Biodiversity Assessment of the Mekong River in Northern Lao PDR: A Follow Up Study October, 2004 WANI/REPORT - MWBP.L.W.2.10.05 Follow-Up Survey for Biodiversity Assessment of the Mekong River in Northern Lao PDR Edited by Pierre Dubeau October 2004 The World Conservation Union (IUCN), Water and Nature Initiative and Mekong Wetlands Biodiversity Conservation Programme Report Citation: Author: ed. Dubeau, P. (October 2004) Follow-up Survey for Biodiversity Assessment of the Mekong River in Northern Lao PDR, IUCN Water and Nature Initiative and Mekong Wetlands Biodiversity Conservation and Sustainable Use Programme, Bangkok. i The designation of geographical entities in the book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the Mekong Wetlands Biodiversity Conservation and Sustainable Use Programme (or other participating organisations, e.g. the Governments of Cambodia, Lao PDR, Thailand and Viet Nam, United Nations Development Programme (UNDP), The World Conservation Union (IUCN) and Mekong River Commission) concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the Mekong Wetlands Biodiversity Programme (or other participating organisations, e.g. the Governments of Cambodia, Lao PDR, Thailand and Viet Nam, UNDP, The World Conservation Union (IUCN) and Mekong River -
Preliminary Checklist of Freshwater Fishes of Ulu Paip Eco-Park Forest, Kedah, Peninsular Malaysia
Malays. Appl. Biol. (2021) 50(1): 41–54 PRELIMINARY CHECKLIST OF FRESHWATER FISHES OF ULU PAIP ECO-PARK FOREST, KEDAH, PENINSULAR MALAYSIA MOHAMAD AQMAL-NASER1 and AMIRRUDIN B. AHMAD1,2* 1Biodiversity and Ecology Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu 2Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu *E-mail: [email protected] Accepted 11 January 2021, Published online 30 March 2021 ABSTRACT This report is the first on freshwater fishes of Ulu Paip Eco-Park Forest, Kedah, which aims to document the fish species richness in this recreational forest. All species were collected from the main stream, Sungai Karangan, and its unnamed tributaries. In total, 20 species of fishes from 10 families were recorded. Cyprinidae is the most dominant family with six species followed by Danionidae with three species. Other families contribute at least one species each. Most of the species recorded here are commonly found in the northern part of Peninsular Malaysia. Further studies should be expected to record more species and the utilization of various sampling gear such as electro fishing technique would be able to record the true species richness of fishes in this area. Key words: Species richness, Ulu Paip, logging, Gunung Bongsu, recreational forest INTRODUCTION had recorded a diverse number of fish species which were 32 species (Ahmad et al., 2018b) and 37 species Peninsular Malaysia was blessed with countless (Shah et al., 2009), respectively. numbers of small to large streams within its However, the fish species richness in Ulu Paip catchment areas. -
Schistura Aurantiaca , a New Species from the Mae Khlong Basin
169 Ichthyol. Explor. Freshwaters, Vol. 22, No. 2, pp. 169-178, 7 figs., 2 tabs., June 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Schistura aurantiaca, a new species from the Mae Khlong basin, Thailand (Teleostei: Nemacheilidae) Rungthip Plongsesthee*, Lawrence M. Page** and William Beamish* Schistura aurantiaca, new species, is described from the Mae Khlong basin in western Thailand. It is distinguished from all other species of Schistura by a unique color pattern of 3-9 orange bars on the side of the body, with the 1st bar immediately behind the head and the 2nd bar near the dorsal-fin origin and widely separated so that most of the nape and the anterior side of the body are uniformly brown. The species reaches only 41 mm SL and in- habits shallow gravel and rubble riffles in small streams. Introduction information on their distribution and ecology. Subsequently, three species have been described Schistura is an exceptionally diverse genus con- from Thailand (Kottelat, 1990b; Vidthayanon, taining about 180 species. Oddly, the genus is 2003; Bohlen & Šlechtová, 2009), 50 species from present in Borneo (Roberts, 1989; reported as Laos (Kottelat, 1998, 2000; Vidthayanon & Jarutha- Nemacheilus maculiceps), but absent in Sumatra, nin, 2002), and 16 species from Vietnam (Freyhof Java and the southern Malay Peninsula (Bohlen & Serov, 2001; Kottelat, 2004; Nguyen, 2005; & Šlechtová, 2009). As phylogenetic information Nguyen & Nguyen, 2007). Recent collections from and more complete distributional data accumu- the Mae Khlong basin in western Thailand include late, the exceptional diversity and endemism of another new species of Schistura that is described Schistura will provide excellent material for the herein. -
Vol. 44 (3) Aug. 2021 44 (3) Vol
P e r t a n i k a J Pertanika T A Contents S Journal of Tropical Agricultural Science Tropical Journal of Pertanika V o l Journal of Tropical Agricultural Science Tropical Journal of . 44 (1) Feb. 2021 Pertanika VOL. 44 (3) AUG. 2021 Journal of Tropical Agricultural Science Tropical Journal of Lorem ipsum PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE About the Journal Overview Pertanika Journal of Tropical Agricultural Science is an official journal of Universiti Putra Malaysia. It is an open-access online scientific journal. It publishes the scientific outputs. It neither accepts nor commissions third party content. Recognised internationally as the leading peer-reviewed interdisciplinary journal devoted to the publication of original papers, it serves as a forum for practical approaches to improving quality in issues Journal of Tropical Agricultural Science Tropical Journal of pertaining to tropical agriculture and its related fields. Pertanika Journal of Tropical Agricultural Science is a quarterly (February, May, August, and November) periodical that considers for publication original articles as per its scope. The journal publishes in Pertanika English and it is open for submission by authors from all over the world. The journal is available world-wide. Aims and scope Pertanika Journal of Tropical Agricultural Science aims to provide a forum for high quality research related to tropical agricultural research. Areas relevant to the scope of the journal include agricultural biotechnology, biochemistry, biology, ecology, fisheries, forestry, food sciences, genetics, microbiology, pathology and management, physiology, plant and animal sciences, production of plants and animals of economic importance, and veterinary medicine. History Pertanika was founded in 1978. -
Deep Metazoan Phylogeny 2011 New Data, New Challenges
1 Zitteliana An International Journal of Palaeontology and Geobiology Series B /Reihe B Abhandlung der Bayerischen Staatssammlung für Paläontologie und Geologie 30 Deep Metazoan Phylogeny 2011 New data, new challenges D M P München 11. – 14. October2011 2011 DeepProgramme Metazoan and Phylogeny Abstracts 2011 New data, new challenges Munich 11–14 October 2011 SPP 1174Munich "Deep Metazoan 2011 Phylogeny" www.palmuc.de/dmp2011 Paläontologie Bayerische GeoBio- & Geobiologie Staatssammlung Center LMU München für Paläontologie und Geologie LMU München 2 Editors-in-Chief: Gert Wörheide, Michael Krings Production and Layout: Martine Focke Bayerische Staatssammlung für Paläontologie und Geologie Editorial Board A. Altenbach, Munich, Germany B.J. Axsmith, Mobile, AL, USA F.T. Fürsich, Erlangen, Germany K. Heißig, Munich, Germany H. Kerp, Münster, Germany J. Kriwet, Vienna, Austria J.H. Lipps, Berkeley, CA, USA T. Litt, Bonn, Germany A. Nützel, Munich, Germany O.W.M. Rauhut, Munich, Germany B. Reichenbacher, Munich, Germany J.W. Schopf, Los Angeles, CA, USA G. Schweigert, Stuttgart, Germany F. Steininger, Eggenburg, Austria Bayerische Staatssammlung für Paläontologie und Geologie Richard-Wagner-Str. 10, D-80333 München, Deutschland http://www.palmuc.de email: [email protected] Authors are solely responsible for the contents of their articles. Copyright © 2011 Bayerische Staassammlung für Paläontologie und Geologie, München Articles published in Zitteliana are protected by copyright. Reprint and duplications via photochemical, electronical and other ways and production of translations or usage of the presentations for radio television broadcasting or internet remain – even in extracts – subject to the Bayerische Staatssammlung für Paläontologie und Geologie, Munich. A permission in written form is required in advance. -
Fishes of the Xe Kong Drainage in Laos, Especially from the Xe Kaman
1 Co-Management of freshwater biodiversity in the Sekong Basin Fishes of the Xe Kong drainage in Laos, especially from the Xe Kaman October 2011 Maurice Kottelat Route de la Baroche 12 2952 Cornol Switzerland [email protected] 2 Summary The fishes of the Xe Kaman drainage in Laos have been surveyed between 15 and 24 May 2011. Fourty-five fish species were observed, bringing to 175 the number of species recorded from the Xe Kong drainage in Laos, 9 of them new records for the drainage. Twenty-five species (14 %) have been observed from no other drainage and are potentially endemic to the Xe Kong drainage. Five species observed during the survey are new to science (unnamed); they belong to the genera Scaphiodonichthys, Annamia, Sewellia and Schistura (2 species). Three of them have been discovered during the survey, the others although still unnamed were already known for some time, under an erroneous name. In the Xekong drainage, a total of 19 (11 %) fish species are still unnamed or their identity is not yet cleared and they are potentially also new to science. The survey focused on Dakchung district. Eleven species were collected on Dakchung plateau and 3 are apparently new to science (and thus 27 % of the fish fauna of the plateau is endemic there). Most of the endemic species (and all the new species discovered by the survey) are from rapids and other high gradient habitats. This reflects the limited distribution range of rheophilic species, but may also partly result from a sampling bias. Acknowledgements The author wishes to thank the WWF – Co-management of Freshwater Biodiversity in the Sekong Basin Project funded by the Critical Ecosystem Partnership FUND (CEPF) for supporting and organising this survey, especially Dr Victor Cowling who originally developed the survey activity and Mr. -
Cyprinid Fishes of the Genus Neolissochilus in Peninsular Malaysia
Zootaxa 3962 (1): 139–157 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3962.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:774A52BB-DD78-467E-ADA0-785B75E48558 Cyprinid fishes of the genus Neolissochilus in Peninsular Malaysia M. Z. KHAIRONIZAM1, M. ZAKARIA-ISMAIL & JONATHAN W. ARMBRUSTER2 1School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. E-mail: [email protected] 2Department of Biological Sciences, 101 Life Sciences Building, Auburn University, Auburn, AL 36849, USA. E-mail: [email protected]. Email of Corresponding Author: [email protected] Abstract Meristic, morphometric and distributional patterns of cyprinid fishes of the genus Neolissochilus found in Peninsular Ma- laysia are presented. Based on the current concept of Neolissochilus, only two species are present: N. soroides and N. hen- dersoni. Neolissochilus hendersoni differs from N. soroides by having lower scale and gill raker counts. Neolissochilus soroides has three mouth types (normal with a rounded snout, snout with a truncate edge, and lobe with a comparatively thick lower lip). A PCA of log-transformed measurements did not reveal significant differences between N. hendersoni and N. soroides, or between any of the morphotypes of N. soroides; however, a CVA of log-transformed measurements successfully classified 87.1% of all specimens. Removing body size by running a CVA on all of the principal components except PC1 (which was correlated with length) only slightly decreased the successful classification rate to 86.1%. Differ- ences in morphometrics were as great between the three morphotypes of N. -
TROPICAL AGRICULTURAL SCIENCE Habitat Use and Movement
Pertanika J. Trop. Agric. Sci. 44 (3): 503 - 526 (2021) TROPICAL AGRICULTURAL SCIENCE Journal homepage: http://www.pertanika.upm.edu.my/ Habitat Use and Movement Activity of Neolissochilus soroides and Channa lucius during Post Inundation of Tembat Reservoir, Hulu Terengganu Shazana Sharir1,2, Nurfatin Zulkipli2,6, Azhari Mohamad2, Farah Ayuni Farinordin3, Shafiq Zakeyuddin4, Abdullah Samat2, Amir Shah Ruddin Md Sah5 and Shukor Md Nor2* 1Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21300, Kuala Nerus, Terengganu, Malaysia 2Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 3Faculty of Applied Sciences, Universiti Teknologi MARA (Jengka Campus), 26400 Jengka, Pahang, Malaysia 4Tenaga Nasional Berhad Research, Jalan Ayer Itam, 43600 Bangi, Selangor, Malaysia 5School of Biological Science, Universiti Sains Malaysia, 11800, Georgetown Pulau Pinang, Malaysia 6University of Debrecen, Department of HydrobiologyDebrecen, Hajdú-Bihar, 4032, Hungary ABSTRACT The drastic changes in hydroelectric reservoir development created a completely new ecosystem that affects the river, particularly in the inundated area. In this study, five Neolissochilus soroides and Channa lucius were surgically implanted with a unique coded acoustic transmitter to observe the habitat utilisation and movement activity in Tembat Reservoir after the inundation process. All of the individuals were released into the transition zone of the reservoir and observed using passive and active acoustic tracking devices ARTICLE INFO from April to December 2018. Kruskal- Article history: Walis test showed no significant difference Received: 27 August 2020 between the average size of core area for Accepted: 10 June 2021 Published: 20 August 2021 N. soroides and C. lucius, x2(1) = 1.320, DOI: https://doi.org/10.47836/pjtas.44.3.01 p = 0.251. -
Checklist of Fishes from Hulu Terengganu Hydroelectric Project: a Future Perspective
Journal of Widlife and Parks, 35: 117-127 (2020) CHECKLIST OF FISHES FROM HULU TERENGGANU HYDROELECTRIC PROJECT: A FUTURE PERSPECTIVE *Amir Shah Ruddin Md Sah1, Shahril Mod Husin2, Farah Ayuni Farinordin3, Zarul Hazrin Hashim1,Abdullah Samat3, Ahmad Abas Kutty3 & Shukor Md Nor3 1School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia. 2TNB Research Sdn. Bhd., No 1 Lorong Air Itam, Kawasan Institusi Penyelidikan, 43000 Kajang, Selangor, Malaysia. 3School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. *Corresponding autho r’s email: [email protected] ABSTRACT Hulu Terengganu Hydroelectric Project (HTHP) involved the construction of two new dams which led to the creation of Puah Reservoir with 60 km2 surface areas and Tembat Reservoir (1.3 km2). As a result, there are changes of the existing physicochemical water quality properties from the lotic condition to lentic, which indirectly impact the presence of aquatic organisms, especially fishes at the proposed project areas. The purpose of this paper is to provide the existing fish checklist and conservation status related to future perspective on fisheries management via public stocking. Multiple fishing gears such as long line, different mesh size of gillnets, cast net, and electro-shocker were used in this study covering prior construction, during construction and operation phase of development. No protected fish species under Terengganu Fish Act was sampled during the study. A total of 29 fish species were recorded with cyprinids as the dominant fish family caught in HTHP. The presence of Tilapia (Oreochromis spp.) an introduced fish species especially at Puah Reservoir is alarming as it showed the changes in the existing fish biodiversity.