Morphological Structure and Function in the Desert Heteromyid Rodents

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Structure and Function in the Desert Heteromyid Rodents Great Basin Naturalist Memoirs Volume 7 Biology of Desert Rodents Article 4 8-1-1983 Morphological structure and function in the desert heteromyid rodents Joyce C. Nikolai Department of Biology, University of Utah, Salt Lake City 84112 Dennis M. Bramble Department of Biology, University of Utah, Salt Lake City 84112 Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm Recommended Citation Nikolai, Joyce C. and Bramble, Dennis M. (1983) "Morphological structure and function in the desert heteromyid rodents," Great Basin Naturalist Memoirs: Vol. 7 , Article 4. Available at: https://scholarsarchive.byu.edu/gbnm/vol7/iss1/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MORPHOLOGICAL STRUCTURE AND FUNCTION IN DESERT HETEROMYID RODENTS' Joyce C. Nikolai- and Dennis M. Bramhle- .\bstract.— The functional morphology of desert heteromyid rodents (Perognathus, Dipodomys, Microdipodops) is reviewed with considerable new information provided. Specific attention is given to the interaction of anatomical structure and the behavioral and ecological patterns of these rodents. Inflation of the auditory bullae, although apparently related to improved hearing, is also shown to directly impact the structure and function of the feeding apparatus in desert heteromyids. The mechanics of high speed seed pouch- ing behavior in Dipodomys deserti as well as the rates of digging activities of various heteromyids are described using data from slow motion films. The biomechanical consequences of cheek pouch loading for body size and locomotor behavior yield theoretical predictive models concerning interspecific differences in foraging behavior, dietary prefer- ence, and microhabitat selection. Stnictura! modifications of the forelimb associated with use of external cheek pouches reduce the mechanical competence of these limbs for shock absorption during fast quadrupedal running. The relative size of various front and hind limb segments are correlated with quadrupedal, tripodal, and bipedal gaits in heteromyid rodents. The in- terdependence of body balance, gait, and speed are examined in Dipodomys merriami. Factors possibly contributing to the origin of bipedalism in rodents are reviewed and discussed. The heteromyid rodents of North America (1932) comparative study of vertebral archi- offer, potentially, a superb opportunity to ex- tecture in saltatorial rodents, and Wood's amine the importance of morphological de- (1935) important survey of the fossil and Re- sign as a determinant of behavioral and eco- cent Heteromyidae. Herman's (1979) recent logical patterns under natural conditions. multivariate statistical analysis of hind limb This follows from the considerable range of bone and muscle morphology in bipedal ro- morphologies found within this circum- dents constitutes a very significant extension scribed group as well as the impressive beyond the older comparative anatomical breadth of habitats that its living representa- works. tives presently occupy. Perhaps more signifi- Recent functional morphologic studies cant is the fact that heteromyids have recent- have been more analytical and experimental, ly become the focus of numerous but also of more limited scope. Thus, Pink- investigations aimed at gaining a better un- ham (1976) has investigated the gaits and me- derstanding of their biology on multiple lev- chanics of quadrupedal and bipedal running els (e.g., physiology, behavior, ecology, com- in Liomys and Dipodomys by combining high mimity level interactions). Such studies have speed cinematography with force platform begun to offer the kinds of information recordings. Using similar techniques, but also against which carefully framed hypotheses of including cineradiography, Biewener et al. a hmctional-morphologic nature might be (1981) have studied the mechanical behavior critically appraised. of the major hindlimb tendons in kangaroo Earlier morphologic studies on hetero- rats. Additional information on the ankle me- myids are primarily descriptive but also con- chanics of Dipodomys and the physiological tain comments on form-function relationships properties of its associated mu.sculature has that are, of necessity, relatively superficial been presented by Williamson and Frederick and speculative. Excellent works of this type (1977). Kaup (1975) has also commented on are Howell's (1932) monograph on the myol- the biomechanical and evolutionary signifi- ogy and osteology of Dipodotnys, Hatt's cance of hind limb anatomy in heteromyids. 'From the .symposium "Biology of Desert Rodent-s," presented at the annual meeting of the .\nierican Society of Mammalogists, hosted by Brigham Young University, 20-24 June 1982, at Snowbird, Utah. 'Department of Biology, University of Utah, Salt Lake City. Utah 84112. 44 1983 Biology of Desert Rodents 45 Of special note are the investigations of the Websters (see below) on the auditory appa- ratus of heteromyids. Not only have their studies provided a large body of comparative morphologic data, but they also offer one of the few examples wherein specific hypoth- eses concerning the adaptive value of a major morphological complex have been tested. In the present paper we briefly review the existing data on the functional morphology of heteromyid rodents and point out significant gaps in our knowledge. Considerable atten- tion is given the forelimbs and cheek pouches, two structures that have received httle attention in the past but whose struc- tural organization may place important con- straints on the behavior of these animals. Here and elsewhere we have tried to show how functional morphologic analyses can lead to predictive, testable models con- cerning the natural behavior and ecology of heteromyid rodents. Limitations of both time and materials have forced us to restrict the present dis- cussion to "desert heteromyids" of the genera Perognathiis, Dipodoniys, and Microdipodops. This is done with full knowledge that a better understanding of the fimctional anatomy and behavior of the modern heteromyines (Liomys, Heteromys) would imdoubtedly broaden our appreciation of form-fimction and evolutionary patterns within pe- rognathine and dipodomyine heteromyids and might well alter some of our conclusions. Skull and Neck Morphology Fig. 1. Influence of auditory specialization on the feeding apparatus of desert heteromyids. A generahzed desert rodent, Neotoma lepida (A) is compared to Pe- (B), Dipodomys merriami (C), and Skull rognathtts forinosus Microdipodops megacephalus (D). Inflation of the audi- tory bufla (stippled) reduces the area of origin of the The most striking cranial feature of desert temporalis musculature (hatched) and also restricts gape heteromyids and that which has received the by crowding the mandible from behind. The specialized most attention is the enlarged middle ear everted angle (ea) of the mandible reduces the impact of chambers or auditory bullae. The auditory bullar inflation in heteromyids. Maximum gape between cheek teeth (but not incisors) in Perognathiis (35°) is bullae are moderately inflated in Pe- the about equal to that in Neotoma (36°), but extreme rognathiis, but grossly so in both Dipodoniys middle ear hypertrophy has severely reduced gape in and Microdipodops (Fig. 1). Relative to over- Dipodomys and Microdipodops. All skulls drawn to same all head size, the middle ear chambers length. achieve their greatest volume in the latter genus (Webster 1961). Detailed comparative The innovative studies of the Websters and morphologic data on the auditory region of their collaborators have gradually revealed heteromyids have been provided by Webster the functional and probable adaptive signifi- and Webster (1975, 1977, 1980). cance of the modified ears of desert hetero- 46 Great Basin Naturalist Memoirs No. 7 myids. Auditory specializations in these ro- presumed that mortality was due chiefly to dents, and in certain Old World desert spe- higher rates of predation upon kangaroo rats cies (Lay 1972), improve the detection of rel- whose ability to detect low frequency sound atively low frequency sound, especially in the had been reduced. Laboratory recordings in- 1-3 KHz range. Selective sensitivity to these dicate that the predatory strikes of both owls frequencies has been established on the basis and rattlesnakes produce significant sound in of physiological (Ruppert and Moushegian the 1-3 KHz range (Webster 1962). In sum, 1970, Vernon et al. 1971, Webster and Stro- the available data strongly imply that the ther 1972, Webster and Webster 1972) and specialized auditory apparatus of desert het- experiments (Webster and Web- behavioral eromyids is indeed adaptive, and that it may suite of structural features ap- ster 1972). A confer its greatest advantage on individuals pear to be responsible for increased sensi- foraging under conditions of dim tivity to low frequency sound by lowering illumination. impedance and, hence, increasing the trans- There has been little functional analysis of mission of such sound from the external to in- the feeding mechanism of heteromyid ro- ner ear. Among these features are: a rela- (1) dents. Most studies have been concerned with tively large, compliant tympanic membrane; dental morphology as it relates to systematics a small, low-mass,
Recommended publications
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
    www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • Version 2020-04-20 Dark Kangaroo Mouse (Microdipodops
    Version 2020-04-20 Dark Kangaroo Mouse (Microdipodops megacephalus) Species Status Statement. Distribution Dark kangaroo mouse is an inhabitant of the Great Basin Desert. Most of its distribution lies in Nevada and Utah, but it also occurs in small areas of California, Idaho, and Oregon (Auger and Black 2006, Hafner and Upham 2011). Within Utah, individual specimens of this species have been classified in two ways. They have either been attributed to one of two state-endemic subspecies (Microdipodops megacephalus leucotis and M. megacacephalus paululus) (Oliver 2018), or they have been attributed to one of three or four genetically distinct units (Hafner and Upham 2011, Light 2013, Andersen et al. 2013). Table 1. Utah counties currently occupied by this species. Dark Kangaroo Mouse BEAVER IRON JUAB MILLARD TOOELE Abundance and Trends When first described in the 1800’s, dark kangaroo mouse was considered locally common. Research in Utah over the last two decades failed to locate any individuals at most historically documented locations (Auger and Black 2006, Haug 2010, Phillips 2018). The Utah findings mirror rangewide concern of small, fragmented, and declining populations (Hafner and Upham 2011, Andersen et al. 2013). Statement of Habitat Needs and Threats to the Species. Habitat Needs Dark kangaroo mouse habitat generally consists of sandy shrubland with sparse vegetative cover. In Utah, most localities are in stabilized dunes along the margins of historical Lake Bonneville. Appropriate habitat is naturally fragmented and isolated. Threats to the Species Version 2020-04-20 Invasive plants, specifically cheatgrass, and the resulting changes in vegetative cover and fire cycle are the greatest threat to dark kangaroo mouse.
    [Show full text]
  • Dipodomys Ingens)
    Species Status Assessment Report for the Giant Kangaroo Rat (Dipodomys ingens) Photo by Elizabeth Bainbridge Version 1.0 August 2020 Prepared by the U.S. Fish and Wildlife Service August 2020 GKR SSA Report – August 2020 EXECUTIVE SUMMARY The U.S. Fish and Wildlife Service listed the giant kangaroo rat (Dipodomys ingens) as endangered under the Endangered Species Act in 1987 due to the threats of habitat loss and widespread rodenticide use (Service 1987, entire). The giant kangaroo rat is the largest species in the genus that contains all kangaroo rats. The giant kangaroo rat is found only in south-central California, on the western slopes of the San Joaquin Valley, the Carrizo and Elkhorn Plains, and the Cuyama Valley. The preferred habitat of the giant kangaroo rat is native, sloping annual grasslands with sparse vegetation (Grinnell, 1932; Williams, 1980). This report summarizes the results of a species status assessment (SSA) that the U. S. Fish and Wildlife Service (Service) completed for the giant kangaroo rat. To assess the species’ viability, we used the three conservation biology principles of resiliency, redundancy, and representation (together, the 3Rs). These principles rely on assessing the species at an individual, population, and species level to determine whether the species can persist into the future and avoid extinction by having multiple resilient populations distributed widely across its range. Giant kangaroo rats remain in fragmented habitat patches throughout their historical range. However, some areas where giant kangaroo rats once existed have not had documented occurrences for 30 years or more. The giant kangaroo rat is found in six geographic areas (units), representing the northern, middle, and southern portions of the range.
    [Show full text]
  • Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert
    Utah State University DigitalCommons@USU U.S. Government Documents (Utah Regional Elusive Documents Depository) 6-30-1960 Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert University of Utah Follow this and additional works at: https://digitalcommons.usu.edu/elusive_docs Recommended Citation University of Utah, "Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert" (1960). Elusive Documents. Paper 117. https://digitalcommons.usu.edu/elusive_docs/117 This Article is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in Elusive Documents by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Studies on the Euology and Epizoology of the Native Fauna of the Great Salt Lake Desert~ REPORT PERIOD January 1 to December 31, 1959 ANNUAL SUMMARY PROGRESS REPORT of the EXECUTIVE DIRECTOR and STAFF Ecology and Epizoology Series N o. 44, June 30, 1960 Ecological and Epizoological Research University of Utah *Supported by U.S. Army Chemical Corps Contr act No. DA·42·007·403·CML-427, with the University of U tah S'IUDIES CN 'IHE ECOLOGY AND EPIZOOLOGY OF THE NA TIVE FAUNA of the GREAT SALT lAKE DESERT* REPORT PERICD January 1 to December 31, 1959 ANNUAL SUMMARY PROGRESS REPORT of the EXECUTIVE DIREC'roR and STAFF Ecology and Epizoology Series .No. 44, June 30, 1960 Ecological and Epizoological Research University of Utah *Supported by U. S . Army Chemical Corps Contract No.
    [Show full text]
  • Hopping and Running on Two Legs Or Four from R
    Nature Vol. 287 18 September 1980 187 Hopping and running on two legs or four from R. McNeil/ Alexander MOST mammals run on all fours but some run on just two legs (like men) or hop (like kangaroos). Some birds run, some hop and some do both. What are the relative merits of the different gaits? Do they differ in energy cost? Energy costs of running and hopping can be inferred from measurements of oxygen consumption. Some of the difficulties of physiological experimentation on moving animals can be avoided by training the Dipodomys deserti hopping on a moving belt to assess energy consumption. Experimental details animal to run on a moving belt as are given by Thompson et al. on p.223 of this issue of Nature. shown. Data has been collected for mammals ranging from mice to horses and different for animals of different sizes. running because it involves larger fluc­ lions, and for many birds (summarized by Until recently the data seemed to indicate tuations of potential energy (Alexander & 0 6 Fedak & Seeherman Nature 282, 713; that k was proportional to (body mass) · Goldspink Mechanics and energetics of 1979). Nearly all of it conforms to a simple for quadrupeds but to (body mass)0·8 for animal locomotion, 1977). rule: the power Prequired for level running bipeds. Consequently bipedalism was more Similar calculations grossly under­ at speed u is given by economical than quadrupedalism for small estimate the power requirements of small animals, but less economical for large ones. runners and hoppers, such as mice and P(.u)=P(O)+ku (1) Why, then, are there small quadrupeds quail: indeed they predict that k should be (such as mice) and large bipeds (such as proportional to (body mass)1.
    [Show full text]
  • Coping with Chaos: Unpredictable Food Supplies Intensify Torpor Use in an Arid-Zone Marsupial, the Fat-Tailed Dunnart (Sminthopsis Crassicaudata)
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata) Adam J. Munn University of Sydney, [email protected] Pippa Kern University of Sydney Bronwyn M. McAllan University of Sydney Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Munn, Adam J.; Kern, Pippa; and McAllan, Bronwyn M.: Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata) 2010. https://ro.uow.edu.au/scipapers/5074 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Coping with chaos: unpredictable food supplies intensify torpor use in an arid- zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata) Abstract The severity, duration and amplitude of extreme weather events are forecast to intensify with current climate trends, over both long (e.g. seasonal) and short (e.g. daily) time-scales. As such, the predictability of food supplies for many small endotherms is likely to become increasingly important. Numerous small mammals and birds combat food shortages using torpor, a controlled reduction in metabolic rate and body temperature that helps lower their daily energy requirements. As such, torpor often has been cited as a key feature allowing some small endotherms to survive highly unpredictable climates, such as tropics or dry deserts, but mensurative demonstrations of this are lacking.
    [Show full text]
  • Small Mammal Population Dynamics and Range Shifts with Climate
    RESOURCES, DATA RESOLUTION AND SMALL MAMMAL RANGE DYNAMICS Nerissa Haby B. Env. Sci. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy April 2012 Ecology and Evolutionary Biology University of Adelaide, Australia Table of contents Table of contents i Abstract ii Acknowledgements iii Declaration iv How well do existing evaluations of climate change impacts on range Introduction 1 dynamics represent Australian small mammals? Improving performance and transferability of small-mammal species Chapter 1. 8 distribution models Chapter 2. Specialist resources are key to improving small mammal distribution models 22 Scale dependency of metapopulation models used to predict climate change Chapter 3. 35 impacts on small mammals Lessons from the arid zone: using climate variables to predict small mammal Chapter 4. 52 occurrence in hot, dry environments Ecosystem dynamics, evolution and dependency of higher trophic organisms Chapter 5. 69 on resource gradients Conclusion 79 References 89 Appendix 106 Publications associated with this thesis 153 i Abstract Extensive range shift and mass extinctions resulting from climate change are predicted to impact all biodiversity on the basis of species distribution models of wide-spread and data-rich taxa (i.e. vascular plants, terrestrial invertebrates, birds). Cases that both support and contradict these predictions have been observed in empirical and modelling investigations that continue to under-represent small mammal species (Introduction). Given small mammals are primary or higher order consumers and often dispersal limited, incorporating resource gradients that define the fundamental niche may be vital for generating accurate estimates of range shift. This idea was investigated through the influence of coarse to fine resolution, landscape- and quadrat-scale data on the range dynamics of four temperate- and five arid-zone small mammals.
    [Show full text]
  • Multiple Molecular Evidences for a Living Mammalian Fossil
    Multiple molecular evidences for a living mammalian fossil Dorothe´ e Huchon†‡, Pascale Chevret§¶, Ursula Jordanʈ, C. William Kilpatrick††, Vincent Ranwez§, Paulina D. Jenkins‡‡, Ju¨ rgen Brosiusʈ, and Ju¨ rgen Schmitz‡ʈ †Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; §Department of Paleontology, Phylogeny, and Paleobiology, Institut des Sciences de l’Evolution, cc064, Universite´Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France; ʈInstitute of Experimental Pathology, University of Mu¨nster, D-48149 Mu¨nster, Germany; ††Department of Biology, University of Vermont, Burlington, VT 05405-0086; and ‡‡Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved March 18, 2007 (received for review February 11, 2007) Laonastes aenigmamus is an enigmatic rodent first described in their classification as a diatomyid suggests that Laonastes is a 2005. Molecular and morphological data suggested that it is the living fossil and a ‘‘Lazarus taxon.’’ sole representative of a new mammalian family, the Laonastidae, The two research teams also disagreed on the taxonomic and a member of the Hystricognathi. However, the validity of this position of Laonastes. According to Jenkins et al. (2), Laonastes family is controversial because fossil-based phylogenetic analyses is either the most basal group of the hystricognaths (Fig. 2A)or suggest that Laonastes is a surviving member of the Diatomyidae, nested within the hystricognaths (Fig. 2B). According to Dawson a family considered to have been extinct for 11 million years. et al. (3), Laonastes and the other Diatomyidae are the sister According to these data, Laonastes and Diatomyidae are the sister clade of the family Ctenodactylidae (i.e., gundies), a family that clade of extant Ctenodactylidae (i.e., gundies) and do not belong does not belong to the Hystricognathi, but to which it is to the Hystricognathi.
    [Show full text]
  • New Mexico Meadow Jumping Mouse; Final Rule, 81 Fed
    Case 1:18-cv-01138-JB-JFR Document 43 Filed 10/13/20 Page 1 of 241 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF NEW MEXICO NORTHERN NEW MEXICO STOCKMAN’S ASSOCIATION and OTERO COUNTY CATTLEMAN’S ASSOCIATION, Plaintiffs, vs. No. CIV 18-1138 JB\JFR UNITED STATES FISH & WILDLIFE SERVICE and GREG SHEEHAN, Principal Deputy Director & Acting Director of the United States Fish & Wildlife Service, in his official capacity, Defendants, and CENTER FOR BIOLOGICAL DIVERSITY and WILDEARTH GUARDIANS, Intervenors. MEMORANDUM OPINION AND ORDER THIS MATTER comes before the Court on: (i) the Plaintiffs’ Opening Brief in Support of Petition for Review, filed August 8, 2019 (Doc. 26)(“Petition”); (ii) Petitioners’ Brief on Remedy, filed December 6, 2019 (Doc. 40)(“P. Remedy Brief”); (iii) Federal Respondents’ Brief on Remedy, filed December 6, 2019 (Doc. 41)(“D. Remedy Brief”); and (iv) Respondent- Intervenors’ Brief on Remedy, filed December 6, 2019 (Doc. 42)(“I. Remedy Brief”). The Court held a hearing on October 31, 2019. The primary issues are: (i) whether Plaintiffs Northern NM Stockman’s Association (“Northern NM Stockman’s Association”) and Otero Cattleman’s Association (“Otero Cattleman’s Association”)(collectively, “the Stockman’s Associations”) suffer economic injury to establish associational standing under Article III of the Constitution of the United States of America to challenge the decision made by Defendants United States Fish & Wildlife Service and its Principal Deputy director and acting director, Greg Sheehan (collectively, “Fish & Wildlife”), to designate land on which members of the Stockman’s Associations graze cattle as critical habitat designation1 (“the designation”) for the New Mexico Meadow Jumping Mouse (“Jumping Mouse”); (ii) whether Fish & Wildlife’s use of the “incremental effects” 1The Endangered Species Act requires Fish & Wildlife to designate “critical habitat” for all species that Fish & Wildlife lists as threatened or endangered.
    [Show full text]