Survey Protocol for the Great Grey Owl Within the Range of the Northwest Forest Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Mammals 61
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful. -
Tc & Forward & Owls-I-IX
USDA Forest Service 1997 General Technical Report NC-190 Biology and Conservation of Owls of the Northern Hemisphere Second International Symposium February 5-9, 1997 Winnipeg, Manitoba, Canada Editors: James R. Duncan, Zoologist, Manitoba Conservation Data Centre Wildlife Branch, Manitoba Department of Natural Resources Box 24, 200 Saulteaux Crescent Winnipeg, MB CANADA R3J 3W3 <[email protected]> David H. Johnson, Wildlife Ecologist Washington Department of Fish and Wildlife 600 Capitol Way North Olympia, WA, USA 98501-1091 <[email protected]> Thomas H. Nicholls, retired formerly Project Leader and Research Plant Pathologist and Wildlife Biologist USDA Forest Service, North Central Forest Experiment Station 1992 Folwell Avenue St. Paul, MN, USA 55108-6148 <[email protected]> I 2nd Owl Symposium SPONSORS: (Listing of all symposium and publication sponsors, e.g., those donating $$) 1987 International Owl Symposium Fund; Jack Israel Schrieber Memorial Trust c/o Zoological Society of Manitoba; Lady Grayl Fund; Manitoba Hydro; Manitoba Natural Resources; Manitoba Naturalists Society; Manitoba Critical Wildlife Habitat Program; Metro Propane Ltd.; Pine Falls Paper Company; Raptor Research Foundation; Raptor Education Group, Inc.; Raptor Research Center of Boise State University, Boise, Idaho; Repap Manitoba; Canadian Wildlife Service, Environment Canada; USDI Bureau of Land Management; USDI Fish and Wildlife Service; USDA Forest Service, including the North Central Forest Experiment Station; Washington Department of Fish and Wildlife; The Wildlife Society - Washington Chapter; Wildlife Habitat Canada; Robert Bateman; Lawrence Blus; Nancy Claflin; Richard Clark; James Duncan; Bob Gehlert; Marge Gibson; Mary Houston; Stuart Houston; Edgar Jones; Katherine McKeever; Robert Nero; Glenn Proudfoot; Catherine Rich; Spencer Sealy; Mark Sobchuk; Tom Sproat; Peter Stacey; and Catherine Thexton. -
About Owls By: AV
All About Owls By: AV 1 Contents 1. Say Hi To Owls_________________________ p. 3 2. Body Parts_____________________________ p. 4-5 3. Getting Hungry__________________________ p.6-7 4. So Many Owls__________________________ p.8-11 5. Where Are They_________________________ p. 12 6. Got To Go, Bye__________________________ p. 13 7. Quiz Zone______________________________ p. 14 8. About The Author________________________ p. 15 9. Glossary_______________________________ p. 16 10. References___________________________ p.17 2 Say Hi To Owls Swoosh! The great grey owl soares overhead seeking for some food. Then swoosh the owl spots a little mouse crawling through the grass and strikes at it. In this book I will teach you all about owls. If you don’t know what an owl is then this book will be good for you. In this book you will learn about their body parts, what they eat, and the types of owls. I hope you enjoy this book. 3 Body Parts Owls have way more body parts than you think. If you look to the right you will see a picture of all their body parts. But some of their most important body parts are their eyes witch help them see in the dark, their huge ears which help them hear very well, and their flexible necks. 4 Great Big Eyes Huge ears Owls have big eyes. For example, if you Owls have huge ears. Teacher fox says, open your mouth into an O shape that is the “if you lift up the feathers you can see the size of an owls eye. Owls can use those eyes back of their eyes through the ear.” That is to see in the dark. -
Dipodomys Ingens)
Species Status Assessment Report for the Giant Kangaroo Rat (Dipodomys ingens) Photo by Elizabeth Bainbridge Version 1.0 August 2020 Prepared by the U.S. Fish and Wildlife Service August 2020 GKR SSA Report – August 2020 EXECUTIVE SUMMARY The U.S. Fish and Wildlife Service listed the giant kangaroo rat (Dipodomys ingens) as endangered under the Endangered Species Act in 1987 due to the threats of habitat loss and widespread rodenticide use (Service 1987, entire). The giant kangaroo rat is the largest species in the genus that contains all kangaroo rats. The giant kangaroo rat is found only in south-central California, on the western slopes of the San Joaquin Valley, the Carrizo and Elkhorn Plains, and the Cuyama Valley. The preferred habitat of the giant kangaroo rat is native, sloping annual grasslands with sparse vegetation (Grinnell, 1932; Williams, 1980). This report summarizes the results of a species status assessment (SSA) that the U. S. Fish and Wildlife Service (Service) completed for the giant kangaroo rat. To assess the species’ viability, we used the three conservation biology principles of resiliency, redundancy, and representation (together, the 3Rs). These principles rely on assessing the species at an individual, population, and species level to determine whether the species can persist into the future and avoid extinction by having multiple resilient populations distributed widely across its range. Giant kangaroo rats remain in fragmented habitat patches throughout their historical range. However, some areas where giant kangaroo rats once existed have not had documented occurrences for 30 years or more. The giant kangaroo rat is found in six geographic areas (units), representing the northern, middle, and southern portions of the range. -
OWLS and COYOTES
AT HOME WITH NATURE: eLearning Resource | Suggested for: general audiences, families OWLS and COYOTES The Eastern Coyote The Eastern coyote, common to the Greater Toronto Area, is a hybrid between the Western coyote and Eastern wolf. Adults typically weigh between 10–22 kg, but thick fur makes them appear bigger. They have grey and reddish-brown fur, lighter underparts, a pointed nose with a red-brown top, a grey patch between the eyes, and a bushy, black-tipped tail. Coyote ears are more triangular than a wolf’s. Coyotes are not pack animals, but a mother will stay with her young until they are about one year old. Coyotes communicate with a range of sounds including yaps, whines, barks, and howls. Habitat Eastern coyotes are very adaptable and can survive in both rural and urban habitats. They often build their dens in old woodchuck holes, which they expand to about 30 cm in diameter and about 3 m in depth. Although less common, coyotes also build dens in hollow trees. Diet What is on the menu for coyotes? Check off each food type. Squirrels Frogs Grasshoppers Dog kibble Berries Rats Humans Food compost Garden vegetables Snakes Small birds Deer If you selected everything, except for humans, you are correct! Coyotes are opportunistic feeders that consume a variety of foods including fallen fruit, seeds, crops, and where they can find it pet food and compost. However, their diet is comprised mainly of insects, reptiles, amphibians, and small mammals. Their natural rodent control is beneficial to city dwellers and farmers alike. Preying on small mammals does mean though that our pets are on the menu, so it is important to keep them on leash close to you. -
Owls.1. Newton, I. 2002. Population Limitation in Holarctic Owls. Pp. 3-29
Owls.1. Newton, I. 2002. Population limitation in Holarctic Owls. Pp. 3-29 in ‘Ecology and conservation of owls’, ed. I. Newton, R. Kavenagh, J. Olsen & I. Taylor. CSIRO Publishing, Collingwood, Australia. POPULATION LIMITATION IN HOLARCTIC OWLS IAN NEWTON Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS, United Kingdom. This paper presents an appraisal of research findings on the population dynamics, reproduction and survival of those Holarctic Owl species that feed on cyclically-fluctuating rodents or lagomorphs. In many regions, voles and lemmings fluctuate on an approximate 3–5 year cycle, but peaks occur in different years in different regions, whereas Snowshoe Hares Lepus americanus fluctuate on an approximate 10-year cycle, but peaks tend to be synchronised across the whole of boreal North America. Owls show two main responses to fluctuations in their prey supply. Resident species stay on their territories continuously, but turn to alternative prey when rodents (or lagomorphs) are scarce. They survive and breed less well in low than high rodent (or lagomorph) years. This produces a lag in response, so that years of high owl densities follow years of high prey densities (examples: Barn Owl Tyto alba, Tawny Owl Strix aluco, Ural Owl S. uralensis). In contrast, preyspecific nomadic species can breed in different areas in different years, wherever prey are plentiful. They thus respond more or less immediately by movement to change in prey-supply, so that their local densities can match the local food-supply at the time, with minimum lag (examples: Short-eared Owl: Asio flammeus, Long-eared Owl A. -
Brief Report Sex-Specific Diet Analysis of the Eurasian Eagle Owl in Finland
Ornis Fennica 91:195–200. 2014 Brief report Sex-specific diet analysis of the Eurasian Eagle Owl in Finland Heimo Mikkola* & Risto Tornberg H. Mikkola, Department of Biology, University of Eastern Finland, P.O.Box 1627, FI- 70211 Kuopio, Finland. * Corresponding author’s e-mail: [email protected] R. Tornberg, Department of Biology, P.O.Box 3000, FI-90014 University of Oulu, Fin- land Received 28 March 2014, accepted 17 June 2014 1. Introduction the smaller male that is mainly responsible for prey deliveries during the breeding season. Based on Birds of prey typically show reversed sexual size specimens found in good condition at the Zoologi- dimorphism (RSD), with females clearly larger cal museum of University of Oulu, Finland, fe- than males, for what purpose has aroused a pleth- male owls from Finland had an average weight of ora of hypothesis to explain it (see Krüger 2005). 2760 g (N = 50), while male weights averaged One of the earliest explanations has been avoid- 2200 g (N = 35). The RSD index of the Eagle Owls ance of competition between the mates (Temeles is 9.8 (calculated as in Amadon (1943) and Earhart 1985). Though avoidance of competition does not & Johnson (1970) by using the cube root of body explain the reversed nature of the sizes of the sexes mass to compare the indices of linear measure- it may be one mechanism to maintain it (Sunde et ments). This is the third highest value of all Euro- al. 2003, Krüger 2005). The Eurasian Eagle Owl pean owls (Mikkola 1982). It seems logical to hy- (Bubo bubo), hereafter termed Eagle Owl, is the pothesize that the heavier females may reduce in- largest owl in the world, a typical top-predator be- traspecific competition for food with males by tak- ing able to kill smaller birds of prey and owls ing larger prey than their smaller mates. -
Nocturnal Rodents
Nocturnal Rodents Peter Holm Objectives (Chaetodipus spp. and Perognathus spp.) and The monitoring protocol handbook (Petryszyn kangaroo rats (Dipodomys spp.) belong to the 1995) states: “to document general trends in family Heteromyidae (heteromyids), while the nocturnal rodent population size on an annual white-throated woodrats (Neotoma albigula), basis across a representative sample of habitat Arizona cotton rat (Sigmodon arizonae), cactus types present in the monument”. mouse (Peromyscus eremicus), and grasshopper mouse (Onychomys torridus), belong to the family Introduction Muridae. Sigmodon arizonae, a native riparian Nocturnal rodents constitute the prey base for species relatively new to OPCNM, has been many snakes, owls, and carnivorous mammals. recorded at the Dos Lomitas and Salsola EMP All nocturnal rodents, except for the grasshopper sites, adjacent to Mexican agricultural fields. mouse, are primary consumers. Whereas Botta’s pocket gopher (Thomomys bottae) is the heteromyids constitute an important guild lone representative of the family Geomyidae. See of granivores, murids feed primarily on fruit Petryszyn and Russ (1996), Hoffmeister (1986), and foliage. Rodents are also responsible for Petterson (1999), Rosen (2000), and references considerable excavation and mixing of soil layers therein, for a thorough review. (bioturbation), “predation” on plants and seeds, as well as the dispersal and caching of plant seeds. As part of the Sensitive Ecosystems Project, Petryszyn and Russ (1996) conducted a baseline Rodents are common in all monument habitats, study originally titled, Special Status Mammals are easily captured and identified, have small of Organ Pipe Cactus National Monument. They home ranges, have high fecundity, and respond surveyed for nocturnal rodents and other quickly to changes in primary productivity and mammals in various habitats throughout the disturbance (Petryszyn 1995, Petryszyn and Russ monument and found that murids dominated 1996, Petterson 1999). -
Advances in the Study of Irruptive Migration
Advances in the study of irruptive migration Ian Newton1 Newton I. 2006. Advances in the study of irruptive migration. Ardea 94(3): 433–460. This paper discusses the movement patterns of two groups of birds which are generally regarded as irruptive migrants, namely (a) boreal finches and others that depend on fluctuating tree-fruit crops, and (b) owls and others that depend on cyclically fluctuating rodent popula- tions. Both groups specialise on food supplies which, in particular regions, fluctuate more than 100-fold from year to year. However, seed- crops in widely separated regions may fluctuate independently of one another, as may rodent populations, so that poor food supplies in one region may coincide with good supplies in another. If individuals are to have access to rich food supplies every year, they must often move hun- dreds or thousands of kilometres from one breeding area to another. In years of widespread food shortage (or high numbers relative to food supplies) extending over many thousands or millions of square kilome- tres, large numbers of individuals migrate to lower latitudes, as an ‘irruptive migration’. For these reasons, the distribution of the popula- tion, in both summer and winter, varies greatly from year to year. In irruptive migrants, in contrast to regular migrants, site fidelity is poor, and few individuals return to the same breeding areas in succes- sive years (apart from owls in the increase phase of the cycle). Moreover, ring recoveries and radio-tracking confirm that the same indi- viduals can breed in different years in areas separated by hundreds or thousands of kilometres. -
Kangaroo Rat and Pocket Mouse
Shrew Family Order Rodentia (Soricoidae) masked shrew vagrant shrew water shrew Sorex cinereus Sorex vagrans Sorex palustris grassland streambank streambank Mouse, Vole, Rats, and Muskrat (Cricetidae) meadow vole long-tailed vole heather vole Microtus pennsylvanicu Microtus longicaudus Phenacomys intermedius grassland streambank streambank/grassland/mountain Gapper’s red-backed vole deer mouse Western harvest mouse Clethrionomys gapperi Peromycus maniculatus Reithrodontomys megalotis mountain mountain/streambank grassland bushy-tailed woodrat Neotoma cinerea mountain rock mouse Northern grasshopper mouse Peromyscus difficilis Onychomys leucogaster mountain grassland Jumping Mouse Kangaroo Rat and Family Pocket Mouse silky pocket mouse (Zapodidae) (Heteromyidae) Perognathus flavus desert Western jumping mouse Ord’s kangaroo rat Apache pocket mouse Zapus princeps Dipodomys ordii Perognathus apache streambank desert mountain 1:1 0 1 2 3 4 5 6 inches 1 - Rodents Tracks are actual size. Pocket Gopher Porcupine Family Order Rodentia Family (Erethizonidae) (Geomyidae) Beaver Family (Castoridae) porcupine Erethizon dorsatum mountains/grasslands scale 1:3 beaver Castor canadensis streams/lakes/wetlands Northern pocket gopher scale 1:3 Thomomys talpoides grasslands scale 1:1 1:3 0 1 2 3 4 5 6 inches Squirrel Family (Sciuridae) least chipmunk Colorado chipmunk chicaree Eutamias minimus Eutamias quadrivittatus Tamiasciurus douglassi mountain/grassland mountain forest Abert’s squirrel Sciurus aberti kaibabensis mountain/forest rock ground squirrel golden-mantled ground Spermophilus variegatus squirrel mountain Spermophilus lateralis streambank yellow-bellied marmot Gunnison’s prairie dog thirteen-lined ground squirrel Marmota flaviventris Cynomys gunnisoni Spermophilus tridecemlineatus mountain/rockslide grassland grassland 1:1 0 1 2 3 4 5 6 inches 2 - Rodents Rodentia tracks vary in size. Sciuridae tracks are actual size. -
Endangered Species Research: Texas Kangaroo Rat Dipodomys Elator Final Report (31 December 2019) John D. Stuhler, Michaela K. H
Endangered Species Research: Texas Kangaroo Rat Dipodomys elator Final Report (31 December 2019) John D. Stuhler, Michaela K. Halsey, Carlos Portillo-Quintero, David A. Ray, Robert D. Bradley and Richard D. Stevens Texas Tech University Lubbock, Texas 1 Executive Summary The Texas kangaroo rat is a rare and potentially threatened species that today only occurs in the state of Texas. Because of its small endemic geographic distribution this species is currently being considered for listing under the Endangered Species Act (ESA). Before an informed decision of whether to list D. elator under the ESA can be made, comprehensive assessment of the ecology, distribution, abundance, and genetic diversity of this species should be conducted. Although qualitative anecdotal accounts of habitat affinities are available in the literature, little is known about actual habitat characteristics that are important to this species. Moreover, important quantitative habitat characteristics can be determined and used to predict presence/absence or abundance of Texas kangaroo rats as well as to inform conservation and restoration efforts. Complicating this, however, are numerous observations of Texas kangaroo rats no longer occurring at sites where they were previously observed as well as novel records of occurrence. This research enhances our understanding of the biology of D. elator in the state of Texas and helps to inform the U.S. Fish and Wildlife Service regarding the decision to list this species under the ESA. Here, we report results of research to -
FEATURED PHOTO Great Gray Owls Nesting in Fresno County, California David E
FEATURED PHOTO Great GRAY OWLS NESTING IN FRESNO COUNTY, CALIFORNIA DAVID E. QUADY, 39 The Crescent, Berkeley, California 94708; [email protected] At two meetings in June 1772 of the Royal Society in London, Johann Reinhold Forster described the specimens of birds, fishes, and mammals that Hudson’s Bay Company naturalists had collected and sent to England on their summer 1771 trade ships (Houston et al. 2003). Among them were five birds new to science. Andrew Graham, the factor at Severn River, provided most of these, including a specimen and accompanying notes that enabled Forster (1772) to describe a “fine non-descript [i.e., undescribed] owl,” which he named the Grey Owl, Strix nebulosa. The other four were the birds we now know as the Eskimo Curlew (Numenius borealis), Boreal Chickadee (Poecile hudsonicus), Blackpoll Warbler (Dendroica striata), and White- crowned Sparrow (Zonotrichia leucophrys). Status and Distribution Two subspecies of the holarctic Great Gray Owl have long been recognized. Strix n. lapponica breeds across Eurasia from northern Scandinavia east through northern Siberia and south to central European Russia, northern Mongolia, northern Manchu- ria, Amurland, and Sakhalin (Holt et al. 1999). In comparison to nebulosa it is slightly smaller in body mass and wing length, slightly paler, and more prominently streaked below (Bull and Duncan 1993). Nominate nebulosa breeds in North America from central Alaska east through the boreal forest of Canada and south locally in the interior to the mountains of north- central Washington, south-central Oregon, California to the southern Sierra Nevada, northern Idaho, western Montana, western Wyoming, southwestern and central Alberta, central Saskatchewan, southern Manitoba, northern Minnesota, northern Wisconsin, northern Michigan (casually), and south-central Ontario (AOU 1998).