Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert Utah State University DigitalCommons@USU U.S. Government Documents (Utah Regional Elusive Documents Depository) 6-30-1960 Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert University of Utah Follow this and additional works at: https://digitalcommons.usu.edu/elusive_docs Recommended Citation University of Utah, "Studies on the Ecology and Epizoology of the Native Fauna of the Great Salt Lake Desert" (1960). Elusive Documents. Paper 117. https://digitalcommons.usu.edu/elusive_docs/117 This Article is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in Elusive Documents by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Studies on the Euology and Epizoology of the Native Fauna of the Great Salt Lake Desert~ REPORT PERIOD January 1 to December 31, 1959 ANNUAL SUMMARY PROGRESS REPORT of the EXECUTIVE DIRECTOR and STAFF Ecology and Epizoology Series N o. 44, June 30, 1960 Ecological and Epizoological Research University of Utah *Supported by U.S. Army Chemical Corps Contr act No. DA·42·007·403·CML-427, with the University of U tah S'IUDIES CN 'IHE ECOLOGY AND EPIZOOLOGY OF THE NA TIVE FAUNA of the GREAT SALT lAKE DESERT* REPORT PERICD January 1 to December 31, 1959 ANNUAL SUMMARY PROGRESS REPORT of the EXECUTIVE DIREC'roR and STAFF Ecology and Epizoology Series .No. 44, June 30, 1960 Ecological and Epizoological Research University of Utah *Supported by U. S . Army Chemical Corps Contract No. DA-42-0Cf/-403-~427, with the Universi ty of Utah l ORGANIZA TIC:tl Ecological and Epizoological Research University of Utah Executi ve Conunittee U. S . Anny Chendcal Corps Don M. Rees , Chairman and Director Project Officers Carl J. Christensen, Coordinator of Research Griffith E. Quinby Louis P. Gebhardt, Consultant Jack S . Palmer Angus M. Woodbury, Consultant Howard D. Johnson, Administrator Scientific Staff E. Dean Vest, Executive Director Sections Arthropod Transmission Ext:>eriJlllantal Infections Dale D. Parker, Head Paul s. Nicholes, Consultant D. Elmer Johnson Nyven J. Marchetta, Head Lionel M. West, II Alan A. Olschewski Ecology Section Epizool ogy Laboratory E . Dean Vest, Head John G. Bachtol d , Consultant John B. Bu§hman David L. Lundgren, Laboratory Head Harold J. Egoscue Robert Sidwell Bert Thorpe Military Personnel" Arthropod Transmission Exeer :iJnental Infections Ecology Bittmann, J. G. i.'-lf Bright, D. E . Jr. lH> Madrid, Timothy A. Colan to, J . D. Collins, H. W. J r . i.Y f Wagstaf f , Paul A. Esko, Robt. D. "'' Donovan, VI. A. Fielding, H. K. ''* Hagen, Don . \"1. ''* Johnson, VI . H. McConnell, T. A. Knox, R. W. Nishimoto, Jiro Lauden, R. W. Tiedeman, IJ.oyd , J r.** Lund , Larry P. ;'* Micone , C. A. Olsen, P. F. iHf '' Military persounel a ssigned f or training Press, A. F. Jr. i Hf purposes, who assisted wi th the wor k and Washington, J . 0. services perforood. Wilson, L. D. **Discharged from service dur i ng year . 3 TABlE OF CON'IEN'IS ORGJ\lliZA TION • • • l TABlll OF CON 'lEN 'IS 3 IN 'I'RODUC TION 5 EX!ERIME NTAL Q FEVER INFECTION 6 In Native Vertebrates : 6 :Susceptibility of six species of rodents 6 .Antibody production in deer mice 8 .Susceptibility of coyote pups • ll .Susceptibility of adult bob cats . 17 Susceptibility of a red-tailed hawk • 18 In Native Fleas: • 18 Techniques employed . 18 :Effect of temperature on flea longevity . 19 Infection of Orchopeas leucopus and Thrassis ~ gladiolis . 20 Organism longevity in fleas • 22 In Native Ticks: • 23 Ixodes kingi . 23 De rmacentor parunapertus • 23 Ornithodoros hermsi • 24 Q.. parkeri --- • 25 ~ lagophilus . • 25 EXPERIMENTAL PLAGUE INFECTION • 26 In Native Animals: • • • • • .26 Susceptibility of rodents • • 26 Characterization of enzootic strains • 26 In Native Fleas : ·29 Orchopeas sexdentatus . • , 29 Monopsyllus .!!• wagneri . , _ • 29 In Native Ticks : ·3 ~ Ornithodoros ~ • 31 TULAREMIA INFECTION IN TICKS ~ lagophilus .31 Ornithodoros he rmsi • . • • 32 STUDIES ON ECOWGY OF WILDUFB • 33 Food habits of certain rodents • 33 Chemical control of rodent ectoparasites •36 'lodent populations of biotic communities •38 Community d istr ~bution of samples co.Llected for disease studiell , 1.1 Na tive manunals c ollected alive for experimental usr . .45 Popula tion fluctuations of the jack rabbit • • • • • • • , ' 45 4 TABlE OF CON 'lEN 'IS (continued) S'IUDIES ct< THE COLONIZATION OF ECTOPARASI'IES 46 Rearing colonies • • • • • • 46 Artificial feeding of fleas • • • 47 Effects of humidity on fleas 48 EPI:L.OOLCGlCAL SURVEY uF \1ILDLIFE AND .LIVESTOCK 49 Q fever ••• .• . •• . •• 50 Rocky Mountain spotted fever 61 Plague 63 'fularemia 64 Anthrax 66 Brucella 67 5 IN'lliUDUCTION 1his report contair1s the results of studies* on t he ecology and epi­ zoology vf ~-fever, plague , tularemia , brucella, and Ro cky Mountaiil spot t ed fever in the wildlife o!' the southern arm of the Great Salt lake Desert iil northwestern Utah, frOJll January 1 to December 31, 1959 . It a ].so contains results of serological studies of blood from domestic ani­ mals fretjuentiilg this sane area. 1he overall research objective is to determine, as far as possible, the disease potential of the natural biotic coHJnunity populati ons of the study area. Special emphasis is placed on the ecological factors which may play a role in the transmission of the above disease organisms t o do­ mestic animals and man. In order to accomplish this objective, the research program is directed toward the study of these diseases in rela­ tion to: (l) susceptibility, carrier potential, and bacterenua of each species of ani.Jnal ccruprisi ng the populations of the various biotic com­ nn.mities; (2 t.he J)Otential role of certain ectoparasite popula tions as vectors; (3) the influence of the ecology o!' natural coJJ.munity populations on their spread and/or control; (4) their prevalence and i ncidence iil these natural populations ; and (5) the chemical control of wildlife ecto­ parasi tes. Suj.Jplemental research SU!Jporting the major research program includes : (l) colonization and rearing of native animals and ectopara s ites; (2) animal behavior; (3) agent virulence, and (4) maintenance of reference collections of the biota studied. * Studies by Ec ology and E pizoology Research, University of Utah. 'Jhis project was supported by U, S . Army Chemical Corps Contract No . DA- 42- 007- 403- CML- 427. 6 EXPERII>E NTAL Q FEVER INFECTION l - IN NATIVE VER 'IE BRA 'IES Susceptibil ity of Six Species of Wi ld Rodents Six species of wild rodents, deer mice, Peromyscus n~niculatus; pinyon mice, .f. truei; meadow mice , Microtus mon tanus, desert wood ratr, Neotoma lepida; Great Basin pocket Hlice, Perognathus pa rvus; and western ha rvest Juice, lleithrodoutornys megalotic, were found to be highly s usceptible to subcutaneous infection with Coxiell a burneti, strain AD . However, in all cases the infection was non-fatal and the animals recovered. The diagnosis of infection and the dete rmination of an ID50 for each species was based on the presence in t he serum of com­ plement fixing antibody titer of l/64 or greater, 28 days after subcu­ tareous inoculation of f. burneti. The data are shown in Table 1, with the ID50s and 95% confidence limits calculated by the method of probit analysis (Finney, 1950). The ID50s are in terms of a previously deter­ mined 50% infective dose of the frozen f.. burneti e gg yolk sac slurry in guinea pigs. TABLE L Fever Cornn1eLl<'lnt Fixin Antibod<~s i.-: :tvdc::ts o Ratio of the nwnber of animals possessing 28-day complement fixing antibody t iters of 1 64 or greater to the total number usedo Guinea Pig IDsos of Co burneti ,injected Controls ID50 Species 1olO 108 106 lo4 103 102 101 1 - Ant* Saline 95% C L Paragnathus parvus 209 Great Basin pocket 1nouse 8/8 7/7 8/8 6/8 l/7 0/8 l/7 0/10 166- 263 Reithrodonto~s megalotis 500 Western harvest mouse 6/6 6/6 5/5 5/5 0/5 0/6 l - 1000 Peromyscus man iculatus 676 Deer mouse 16/16 15/16 13/16 15/ 16 12/16 -- 4/16 0/14 0/16 2/57 0/32 123-3715 Peromyscus truei 48 Pinyon mouse 8/8 7/7 4/8 2/9 0/8 0/19 0/14 16-148 NeotC¥na lepida 380 Desert wood rat 8/9 9/9 4/9 l/8 0/9 0/20 0/15 60-2399 . Microtus montanus 107 Montane meadow mouse 7/7 8/8 8/8 7/ 8 7/7 3/6 0/8 1/8 0/17 0/18 13-871 - * Each animal received Oo2 ml of formalized Qo ~ antigen ....., 8 Complement Fixing Antibody Production in Deer Mice The production of complellJ3nt fixing (CF) antibody was studied in deer mice after subcutaneous and intraperitoneal inoculation of high (107) and low (lo3) guinea vig LD50 doses of standard frozen yolk sac slurry of .Q.o burnetio Serum S1l.lllples were collected at regular interv-als for periods up to 10 weeks and titered for CF antibody. An equal nwnbe r of uninoculated control deer mice maintained in close contact with the in­ fected mice \..ere bled and their sera tested for CF antibody, Figures 1 and 2 show the developuent of CF antibody in intraperi­ toneally and subcutaneously infected deer mice respectively. The effect of dose s,ize on CF antibody production in deer mice was essentially the same whether the mice were inoculated subcutaneoulsy or intraperitoneally. Animals inocula ted with the high dose in general produced antibody to higher titer than did mice inoculated with the lower dose .
Recommended publications
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Version 2020-04-20 Dark Kangaroo Mouse (Microdipodops
    Version 2020-04-20 Dark Kangaroo Mouse (Microdipodops megacephalus) Species Status Statement. Distribution Dark kangaroo mouse is an inhabitant of the Great Basin Desert. Most of its distribution lies in Nevada and Utah, but it also occurs in small areas of California, Idaho, and Oregon (Auger and Black 2006, Hafner and Upham 2011). Within Utah, individual specimens of this species have been classified in two ways. They have either been attributed to one of two state-endemic subspecies (Microdipodops megacephalus leucotis and M. megacacephalus paululus) (Oliver 2018), or they have been attributed to one of three or four genetically distinct units (Hafner and Upham 2011, Light 2013, Andersen et al. 2013). Table 1. Utah counties currently occupied by this species. Dark Kangaroo Mouse BEAVER IRON JUAB MILLARD TOOELE Abundance and Trends When first described in the 1800’s, dark kangaroo mouse was considered locally common. Research in Utah over the last two decades failed to locate any individuals at most historically documented locations (Auger and Black 2006, Haug 2010, Phillips 2018). The Utah findings mirror rangewide concern of small, fragmented, and declining populations (Hafner and Upham 2011, Andersen et al. 2013). Statement of Habitat Needs and Threats to the Species. Habitat Needs Dark kangaroo mouse habitat generally consists of sandy shrubland with sparse vegetative cover. In Utah, most localities are in stabilized dunes along the margins of historical Lake Bonneville. Appropriate habitat is naturally fragmented and isolated. Threats to the Species Version 2020-04-20 Invasive plants, specifically cheatgrass, and the resulting changes in vegetative cover and fire cycle are the greatest threat to dark kangaroo mouse.
    [Show full text]
  • Coping with Chaos: Unpredictable Food Supplies Intensify Torpor Use in an Arid-Zone Marsupial, the Fat-Tailed Dunnart (Sminthopsis Crassicaudata)
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata) Adam J. Munn University of Sydney, [email protected] Pippa Kern University of Sydney Bronwyn M. McAllan University of Sydney Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Munn, Adam J.; Kern, Pippa; and McAllan, Bronwyn M.: Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata) 2010. https://ro.uow.edu.au/scipapers/5074 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Coping with chaos: unpredictable food supplies intensify torpor use in an arid- zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata) Abstract The severity, duration and amplitude of extreme weather events are forecast to intensify with current climate trends, over both long (e.g. seasonal) and short (e.g. daily) time-scales. As such, the predictability of food supplies for many small endotherms is likely to become increasingly important. Numerous small mammals and birds combat food shortages using torpor, a controlled reduction in metabolic rate and body temperature that helps lower their daily energy requirements. As such, torpor often has been cited as a key feature allowing some small endotherms to survive highly unpredictable climates, such as tropics or dry deserts, but mensurative demonstrations of this are lacking.
    [Show full text]
  • New Mexico Meadow Jumping Mouse; Final Rule, 81 Fed
    Case 1:18-cv-01138-JB-JFR Document 43 Filed 10/13/20 Page 1 of 241 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF NEW MEXICO NORTHERN NEW MEXICO STOCKMAN’S ASSOCIATION and OTERO COUNTY CATTLEMAN’S ASSOCIATION, Plaintiffs, vs. No. CIV 18-1138 JB\JFR UNITED STATES FISH & WILDLIFE SERVICE and GREG SHEEHAN, Principal Deputy Director & Acting Director of the United States Fish & Wildlife Service, in his official capacity, Defendants, and CENTER FOR BIOLOGICAL DIVERSITY and WILDEARTH GUARDIANS, Intervenors. MEMORANDUM OPINION AND ORDER THIS MATTER comes before the Court on: (i) the Plaintiffs’ Opening Brief in Support of Petition for Review, filed August 8, 2019 (Doc. 26)(“Petition”); (ii) Petitioners’ Brief on Remedy, filed December 6, 2019 (Doc. 40)(“P. Remedy Brief”); (iii) Federal Respondents’ Brief on Remedy, filed December 6, 2019 (Doc. 41)(“D. Remedy Brief”); and (iv) Respondent- Intervenors’ Brief on Remedy, filed December 6, 2019 (Doc. 42)(“I. Remedy Brief”). The Court held a hearing on October 31, 2019. The primary issues are: (i) whether Plaintiffs Northern NM Stockman’s Association (“Northern NM Stockman’s Association”) and Otero Cattleman’s Association (“Otero Cattleman’s Association”)(collectively, “the Stockman’s Associations”) suffer economic injury to establish associational standing under Article III of the Constitution of the United States of America to challenge the decision made by Defendants United States Fish & Wildlife Service and its Principal Deputy director and acting director, Greg Sheehan (collectively, “Fish & Wildlife”), to designate land on which members of the Stockman’s Associations graze cattle as critical habitat designation1 (“the designation”) for the New Mexico Meadow Jumping Mouse (“Jumping Mouse”); (ii) whether Fish & Wildlife’s use of the “incremental effects” 1The Endangered Species Act requires Fish & Wildlife to designate “critical habitat” for all species that Fish & Wildlife lists as threatened or endangered.
    [Show full text]
  • SW Great Basin Mini-Trip Report Vladimir Dinets in Late May 2015 I Took Steve Linsley on a Mini-Tour of the SW Part of the Great Basin
    SW Great Basin mini-trip report Vladimir Dinets In late May 2015 I took Steve Linsley on a mini-tour of the SW part of the Great Basin. Steve is an experienced mammal watcher, so he was looking for uncommon species rather than a high species count. The trip proved to be a pleasant, relaxing experience: we would set traps in the evening, spotlight until after midnight, get up at dawn, pick up the traps, sleep until the hotel checkout time, then drive to another location and get another nap in the afternoon. We ended up seeing only about 30 species, but got a few that are generally difficult to see in the area. The moon was near full, but it didn’t seem to have much effect. If you’d like me to take you on a similar trip, the cost is $950-1200 pp, depending on the number of participants (4 max). A few days earlier I did a scouting trip to Mono Lake and Tonopah area, and found that, unlike in lowland California, the rodent numbers were generally high. Three hours of night driving between Coaldale and Mono Lake produced a dispersing juvenile Botta’s pocket gopher, Ord’s kangaroo rat, long-tailed pocket mouse, a few deer mice, and a possible Merriam’s shrew. Twenty traps set in sagebrush desert S of Mono Lake for half a night got three deer mice, two little pocket mice, two Great Basin pocket mice, and one Panamint kangaroo rat. I also noted some snowshoe hare tracks along the road to Saddlebag Lake near Tioga Pass.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Dark Kangaroo Mouse Microdipodops Megacephalus
    Dark Kangaroo Mouse Microdipodops megacephalus Mammalia — Rodentia — Heteromyidae CONSERVATION STATUS / CLASSIFICATION Rangewide: Secure (G5) Statewide: Critically imperiled (S1) ESA: No status USFS: Region 1: No status; Region 4: No status BLM: Peripheral (Type 4) IDFG: Unprotected wildlife BASIS FOR INCLUSION Lack of essential information pertaining to Idaho; habitat threats. TAXONOMY The subspecies M. megacephalus atrirelictus occurs in Idaho and is endemic to the state. DISTRIBUTION AND ABUNDANCE This species occurs in Nevada, Utah, California, and Idaho. In Idaho the species occurs only in extreme southwest Owyhee County (Hafner 1985). POPULATION TREND No trend data are available for Idaho. HABITAT AND ECOLOGY This species is associated with gravelly or fine textured soils (Hafner 1985), frequently in vegetated dunes. Throughout the range, habitat consists of sparsely vegetated sites; characteristic vegetation includes sagebrush, black greasewood, shadscale, horsebrush, and rabbitbrush. This species eats primarily seeds, but insects are also frequently consumed. Individuals hibernate for approximately 5 months in burrows. ISSUES The distribution and current status of populations in Idaho are incompletely understood. Habitat loss is the primary threat to this species. Invasive weeds and changes in plant composition and vegetative structure as a result of livestock or recreational use have the potential to negatively affect populations. RECOMMENDED ACTIONS Surveys are needed to determine the current status of the population in southwest Owyhee County. Prospective surveys are also needed in suitable habitat across southern Idaho, particularly in southern Twin Falls County, to determine if the species occurs elsewhere. Habitat protection at occupied sites may be necessary. Dark Kangaroo Mouse Microdipodops megacephalus Ecological Section Predicted Distribution Point Locations Map created on September 21, 2005 and prepared by Idaho Conservation Data Center.
    [Show full text]
  • Kangaroo Rats
    Adaptations for the hot and dry… In low latitude deserts, daily air temperature may reach 40 – 50 oC, and surface temperatures may reach 60 – 70 oC! Mammals now faced with reverse heat gradient. More difficult to maintain Tb below Ta than to regulate heat loss when Tb above Ta. Primary mechanism used by mammals to dump heat is evaporative cooling. When Ta > Tb, must evaporate water to dissipate heat to environment, no passive flow possible. (580 kcal per liter water) Some mammals sweat (primates, some ungulates), but fairly limited or absent in most. Carnivores and some ungulates pant. Evap. water loss from respiratory passages. Some mammals resort to saliva spreading. Problem if water limited! Most mammals die if lose >10-20% of body water. Deserts are an especially challenging environment both because of heat and low availability of water. High Ta often associated Dehydration causes blood with scarcity of water. to thicken, no longer effectively circulates Dry air doesn’t contain through capillaries, can’t enough humidity to form transport heat effectively, clouds or hold in heat at causes Tb to shoot up. night, Ta fluctuates more than in humid environments. Tb above 43oC can induce brain damage. (109oF) Low moisture often means low productivity = low food. Death comes quicker by hyperthermia than by hypothermia. small mammals in hot deserts: kangaroo rats as an example 1) nocturnal activity (may be more cold- stressed than heat!) 2) uses burrows, relatively stable thermal environment plus blocks entrances during day to keep in humidity 3) relies on pre-formed water in food, and metabolically produced water; cached seeds absorb some water from humidity in burrow A 50-g kangaroo rat out in the mid-day sun in a hot desert would 4) super efficient kidneys (urine 5X need to evaporate water more concentrated than that of equivalent to 13% of its body humans, crystalizes on contact with mass each hour to maintain air!) normal Tb.
    [Show full text]
  • Life History Account for Dark Kangaroo Mouse
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group DARK KANGAROO MOUSE Microdipodops megacephalus Family: HETEROMYIDAE Order: RODENTIA Class: MAMMALIA M097 Written by: P. Brylski Reviewed by: H. Shellhammer Edited by: R. Duke DISTRIBUTION, ABUNDANCE, AND SEASONALITY In California, found in a narrow corridor in northeastern California from eastern Modoc Co. south to eastern Sierra Co., and in central to east-central Mono Co. Abundant in sagebrush and alkali desert scrub habitats; common to uncommon in bitterbrush and low sage habitats. SPECIFIC HABITAT REQUIREMENTS Feeding: Mainly granivorous, but also eats some insects and carrion (Hall 1946). Eats seeds and green vegetation of desert plants, including blazing star, wild buckwheat, lupine, and desert plantain (Ingles 1947). Laboratory animals maintain large caches in their burrows. Cover: Burrows usually are constructed in fine, gravelly soils, but sometimes in sand dunes as well (O'Farrell and Blaustein 1974). Ingles (1965) indicated it preferred sandy soils among sagebrush. Reproduction: Young are born in nest chambers in underground burrows. Nests are built of dry plant parts. Tunnels tend to be from 1.2-1.8 m (4-6 ft) long, unbranched, and approximately 0.3 m (1 ft) from the surface. They usually are closed during the day, making them difficult to locate (Ingles 1965). Water: Does not drink water, but captive individuals eat leafy vegetation. Pattern: Prefers sandy to gravelly soils with some shrub cover. SPECIES LIFE HISTORY Activity Patterns: Nocturnal. Most activity has been recorded in first 2 hr after sunset, and is sporadic for the rest of the night.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • FINAL Small Mammal Survey Report in Support of the Proposed Fallon Range Training Complex Expansion, Nevada
    FINAL Small Mammal Survey Report in Support of the Proposed Fallon Range Training Complex Expansion, Nevada Prepared for: Naval Facilities Engineering Command, Southwest San Diego, CA Prepared by: ManTech International Corporation Environmental, Range and Sustainability Services Lompoc and Solana Beach, CA January 2019 Cover – clockwise from left: Chisel-toothed Kangaroo Rat (Dipodomys microps), Trap Transect, and Desert Woodrat (Neotoma lepida). Small Mammal Survey Report – Proposed FRTC Expansion Final TABLE OF CONTENTS 1. INTRODUCTION AND OVERVIEW ...................................................................................................... 1 1.1. Study and Survey Areas ................................................................................................................... 1 1.2. Vegetation Communities within the Proposed Expansion Areas .................................................... 3 1.3. Small Mammal Species within the Study Area ................................................................................ 3 2. METHODS ........................................................................................................................................ 19 2.1. Field Data Collection ...................................................................................................................... 19 2.2. Data Management ......................................................................................................................... 20 2.3. Data Analysis .................................................................................................................................
    [Show full text]
  • Composition of the Community of Small Mammals in the Great Basin Desert Samantha Elizabeth Phillips Brigham Young University
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2018-08-01 Composition of the Community of Small Mammals in the Great Basin Desert Samantha Elizabeth Phillips Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Plant Sciences Commons BYU ScholarsArchive Citation Phillips, Samantha Elizabeth, "Composition of the Community of Small Mammals in the Great Basin Desert" (2018). All Theses and Dissertations. 6961. https://scholarsarchive.byu.edu/etd/6961 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Composition of the Community of Small Mammals in the Great Basin Desert Samantha Elizabeth Phillips A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Brock R. McMillan, Chair Randy T. Larsen Steve L. Petersen Department of Plant and Wildlife Sciences Brigham Young University Copyright © 2018 Samantha Elizabeth Phillips All Rights Reserved ABSTRACT Community Composition of Small Mammals in the Great Basin Desert Samantha Elizabeth Phillips Department of Plant and Wildlife Sciences, BYU Master of Science Small mammals are a keystone guild in arid ecosystems; often exhibiting top-down control of the diversity and structure of plant communities. However, changing climate, shifting fire regimes, and the invasion of exotic plants are modifying the structure of arid systems. Environmental changes in these arid systems are likely altering small mammal communities, and therefore, their ecological role.
    [Show full text]