FINAL Small Mammal Survey Report in Support of the Proposed Fallon Range Training Complex Expansion, Nevada

Total Page:16

File Type:pdf, Size:1020Kb

FINAL Small Mammal Survey Report in Support of the Proposed Fallon Range Training Complex Expansion, Nevada FINAL Small Mammal Survey Report in Support of the Proposed Fallon Range Training Complex Expansion, Nevada Prepared for: Naval Facilities Engineering Command, Southwest San Diego, CA Prepared by: ManTech International Corporation Environmental, Range and Sustainability Services Lompoc and Solana Beach, CA January 2019 Cover – clockwise from left: Chisel-toothed Kangaroo Rat (Dipodomys microps), Trap Transect, and Desert Woodrat (Neotoma lepida). Small Mammal Survey Report – Proposed FRTC Expansion Final TABLE OF CONTENTS 1. INTRODUCTION AND OVERVIEW ...................................................................................................... 1 1.1. Study and Survey Areas ................................................................................................................... 1 1.2. Vegetation Communities within the Proposed Expansion Areas .................................................... 3 1.3. Small Mammal Species within the Study Area ................................................................................ 3 2. METHODS ........................................................................................................................................ 19 2.1. Field Data Collection ...................................................................................................................... 19 2.2. Data Management ......................................................................................................................... 20 2.3. Data Analysis .................................................................................................................................. 20 2.4. Scientific Permit ............................................................................................................................. 20 3. RESULTS........................................................................................................................................... 20 3.1. Survey Effort .................................................................................................................................. 20 3.2. Small Mammal Species Occurrences ............................................................................................. 27 4. DISCUSSION ..................................................................................................................................... 36 5. REFERENCES .................................................................................................................................... 38 APPENDIX A: Nevada Department of Wildlife Scientific Collection/Possession/Education Permit: Application and Issued Permit (TBP) List of Figures Figure 1-1. Regional Location of the Proposed FRTC Expansion Areas ........................................................ 2 Figure 1-2. Vegetation Alliances within the Proposed B-16 Expansion Area ............................................... 5 Figure 1-3. Vegetation Alliances within the Proposed B-20 Expansion Area ............................................... 6 Figure 1-4. Vegetation Alliances within the Proposed Northern DVTA Expansion Area .............................. 7 Figure 1-5. Vegetation Alliances within the Proposed B-17 and Southern DVTA Expansion Areas ............. 8 Figure 1-6. Occurrences of Small Mammal Species within the Study Area Based on Past DoN, NDOW, and NNHP Surveys and Data ....................................................................................................... 9 Figure 1-7. Merriam’s Shrew (Photo: J. Tapia) ............................................................................................ 12 Figure 1-8. (left) Bushy-tailed Woodrat (Photo: P. Dotson); (right) Desert Woodrat (Photo: P. Dotson) .. 12 Figure 1-9. (left) Canyon Deermouse (Photo: Alyssa M.); (middle) North American Deermouse (Photo: S. Wilson); (right) Piñon Deermouse (Photo: S. Wilson) .............................................. 13 Figure 1-10. (left) Chisel-toothed Kangaroo Rat (Photo: A. Ambos); (right) Desert Kangaroo Rat (Photo: A. Mercieca) ................................................................................................................. 14 Figure 1-11. (left) Merriam’s Kangaroo Rat (Photo: T. McHugh); (right) Ord’s Kangaroo Rat (Photo: J. Zipp) .......................................................................................................................................... 15 Figure 1-12. (left) Pale Kangaroo Mouse (Photo: K. Schaefer); (right) Great Basin Pocket Mouse (Photo: M. Chappell) ................................................................................................................. 16 Figure 1-13. (left) Little Pocket Mouse; (right) Long-tailed Pocket Mouse (Photos: A. Abela) ................... 16 Page i Small Mammal Survey Report – Proposed FRTC Expansion Final Figure 1-14. (left) Long-tailed Vole (Photo: Anonymous); (middle) Montane Vole (Photo: T. McHugh); (right) Sagebrush Vole (Photo: T. McHugh) .............................................................................. 17 Figure 1-15. (left) Northern Grasshopper Mouse (Photo: T. McHugh); (right) Southern Grasshopper Mouse (Photo: G. Lepp) ............................................................................................................ 18 Figure 1-16. Western Harvest Mouse (Photo: A. Abela) ............................................................................. 18 Figure 1-17. (left) Least Chipmunk (Photo: S. Krasemann); (right) White-tailed Antelope Squirrel (Photo: J. Boone) ....................................................................................................................... 19 Figure 3-1. Small Mammal Transects within the Proposed B-16 Expansion Area ...................................... 22 Figure 3-2. Small Mammal Transects within the Proposed B-17 and Southern DVTA Expansion Areas .... 23 Figure 3-3. Small Mammal Transects within the Proposed B-20 Expansion Area ...................................... 24 Figure 3-4. Small Mammal Transects within the Proposed Northern DVTA Expansion Area .................... 25 Figure 3-5. Small Mammal Captures within the Proposed B-16 Expansion Area ....................................... 28 Figure 3-6. Small Mammal Captures within the Proposed B-17 and Southern DVTA Expansion Areas ..... 29 Figure 3-7. Small Mammal Captures within the Proposed B-20 Expansion Area ....................................... 30 Figure 3-8. Small Mammal Captures within the Proposed Western Portion of the Northern DVTA Expansion Area .......................................................................................................................... 31 Figure 3-9. Small Mammal Captures within the Proposed Eastern Portion of the Northern DVTA Expansion Area .......................................................................................................................... 32 List of Tables Table 1-1. Acreage and Elevation Range of Vegetation Alliances Mapped within the Proposed FRTC Expansion Areas (DoN 2018a) ..................................................................................................... 4 Table 1-2. Regulatory Status and Known or Potential Occurrences of Small Mammal Species within the Study Area ................................................................................................................................. 10 Table 3-1. 2018 Small Mammal Survey Dates and Number of Transects, Traps, and Trap Nights ............ 20 Table 3-2. Summary of Number of Transects and Traps Set in Vegetation Alliances within the Proposed FRTC Expansion Areas ............................................................................................... 21 Table 3-3. Summary of Number of Transects, Traps, Trap Nights, Captures, and Trap Success by Proposed FRTC Expansion Area ................................................................................................ 26 Table 3-4. Summary of Number of Transects, Traps, Trap Nights, Captures, and Trap Success by Vegetation Alliance ................................................................................................................... 26 Table 3-5. Species, Number, and Relative Abundance of Small Mammals Captured within Proposed FRTC Expansion Areas ............................................................................................................... 27 Table 3-6. Species and Number of Small Mammal Captures by Vegetation Alliance within the Proposed FRTC Expansion Areas (pg 1/2) ................................................................................. 34 Acronyms and Abbreviations ac acre(s) ha hectare(s) BLM Bureau of Land Management m meter(s) DoN Department of the Navy mm millimeters DVTA Dixie Valley Training Area NAS Naval Air Station FRTC Fallon Range Training Complex NDOW Nevada Department of Wildlife ft foot/feet NNHP Nevada Natural Heritage Program g grams U.S. United States GIS geographic information system WAP Wildlife Action Plan Page ii Small Mammal Survey Report – Proposed FRTC Expansion Final 1. INTRODUCTION AND OVERVIEW Naval Air Station (NAS) Fallon manages the Fallon Range Training Complex (FRTC), which currently encompasses a combination of withdrawn and acquired lands totaling approximately 223,600 acres (ac) (90,490 hectares [ha]) of military training land located near Fallon, Nevada (Figure 1-1). The FRTC is the United States (U.S.) Department of the Navy’s (DoN or Navy) premier integrated strike warfare training complex, supporting air units and special operations forces
Recommended publications
  • Plant Guide for Fourwing Saltbush (Atriplex Canescens)
    Plant Guide saline-sodic soils (Ogle and St. John, 2008). It has FOURWING SALTBUSH excellent drought tolerance and has been planted in highway medians and on road shoulders, slopes, and other Atriplex canescens (Pursh) Nutt. disturbed areas near roadways. Because it is a good Plant Symbol = ATCA2 wildlife browse species, caution is recommended in using fourwing saltbush in plantings along roadways. Its Contributed by: USDA NRCS Idaho Plant Materials extensive root system provides excellent erosion control. Program Reclamation: fourwing saltbush is used extensively for reclamation of disturbed sites (mine lands, drill pads, exploration holes, etc,). It provides excellent species diversity for mine land reclamation projects. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description Fourwing saltbush is a polymorphic species varying from deciduous to evergreen, depending on climate. Its much- branched stems are stout with whitish bark. Mature plants range from 0.3 to 2.4 m (1 to 8 ft) in height, depending on ecotype and the soil and climate. Its leaves are simple, alternate, entire, linear-spatulate to narrowly oblong, Fourwing saltbush. Photo by Steven Perkins @ USDA-NRCS canescent (covered with fine whitish hairs) and ½ to 2 PLANTS Database inches long. Its root system is branched and commonly very deep reaching depths of up to 6 m (20 ft) when soil Alternate Names depth allows (Kearney et al., 1960). Common Alternate Names: Fourwing saltbush is mostly dioecious, with male and Chamise, chamize, chamiso, white greasewood, saltsage, female flowers on separate plants (Welsh et al., 2003); fourwing shadscale, bushy atriplex however, some monoecious plants may be found within a population.
    [Show full text]
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Ecological Distribution of Sagebrush Voles, Lagurus Curtatus, in South-Central Washington Author(S): Thomas P
    American Society of Mammalogists Ecological Distribution of Sagebrush Voles, Lagurus curtatus, in South-Central Washington Author(s): Thomas P. O'Farrell Source: Journal of Mammalogy, Vol. 53, No. 3 (Aug., 1972), pp. 632-636 Published by: American Society of Mammalogists Stable URL: http://www.jstor.org/stable/1379063 . Accessed: 28/08/2013 16:58 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Mammalogists is collaborating with JSTOR to digitize, preserve and extend access to Journal of Mammalogy. http://www.jstor.org This content downloaded from 128.193.8.24 on Wed, 28 Aug 2013 16:58:33 PM All use subject to JSTOR Terms and Conditions 632 JOURNAL OF MAMMALOGY Vol. 53, No. 3 curved needle. After perfusion with penicillin G, the second incision was closed. The base of the plug was slipped into the first incision and sutured to the lumbodorsal fascia with 5-0 Mersilene (Ethicon). After perfusion around the plug with penicillin G, the skin was sutured around the narrow neck of the plug and the incision was dusted with antibiotic powder. The bat could be lifted by the plug with no apparent discomfort and no distortion of the skin or damage to the electrodes.
    [Show full text]
  • Version 2020-04-20 Dark Kangaroo Mouse (Microdipodops
    Version 2020-04-20 Dark Kangaroo Mouse (Microdipodops megacephalus) Species Status Statement. Distribution Dark kangaroo mouse is an inhabitant of the Great Basin Desert. Most of its distribution lies in Nevada and Utah, but it also occurs in small areas of California, Idaho, and Oregon (Auger and Black 2006, Hafner and Upham 2011). Within Utah, individual specimens of this species have been classified in two ways. They have either been attributed to one of two state-endemic subspecies (Microdipodops megacephalus leucotis and M. megacacephalus paululus) (Oliver 2018), or they have been attributed to one of three or four genetically distinct units (Hafner and Upham 2011, Light 2013, Andersen et al. 2013). Table 1. Utah counties currently occupied by this species. Dark Kangaroo Mouse BEAVER IRON JUAB MILLARD TOOELE Abundance and Trends When first described in the 1800’s, dark kangaroo mouse was considered locally common. Research in Utah over the last two decades failed to locate any individuals at most historically documented locations (Auger and Black 2006, Haug 2010, Phillips 2018). The Utah findings mirror rangewide concern of small, fragmented, and declining populations (Hafner and Upham 2011, Andersen et al. 2013). Statement of Habitat Needs and Threats to the Species. Habitat Needs Dark kangaroo mouse habitat generally consists of sandy shrubland with sparse vegetative cover. In Utah, most localities are in stabilized dunes along the margins of historical Lake Bonneville. Appropriate habitat is naturally fragmented and isolated. Threats to the Species Version 2020-04-20 Invasive plants, specifically cheatgrass, and the resulting changes in vegetative cover and fire cycle are the greatest threat to dark kangaroo mouse.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Mammals – Columbia
    Mammals – Columbia NWR Family Genus Species Common Name Soricidae vagrans Vagrant shrew Sorex (Shrews) merriami Merriam’s shrew Parastrellus hesperus Canyon bat Corynihinus townsendii Townsend’s big-eared bat Eptesicus fuscus Big brown bat Antrozous pallidus Pallid bat Euderma maculatum Spotted bat Lasionycteris noctivagans Silver-haired bat Vespertilionidae (Vesper bats) californicus California myotis ciliolabrum Western small-footed myotis evotis Long-eared myotis Myotis lucifugus Little brown myotis volans Long-legged myotis yumaensis Yuma myotis thysanodes Fringed myotis Lepus californicus Black-tailed jackrabbit Leporidae (Rabbits & hares) Sylvilagus nuttallii Nuttall’s cottontail Marmota flaviventris Yellow-bellied marmot Sciuridae (Squirrels) Urocitellus washingtoni Washington ground squirrel Castoridae (Beavers) Castor canadensis Beaver Geomidae (Pocket gophers) Thomomys talpoides Northern pocket gopher Perognathus parvus Great Basin pocket mouse Heteromyidae (Heteromyids) Dipodomys ordii Ord’s kangaroo rat Reithrodontomys megalotis Western harvest mouse Peromyscus maniculatus Deer mouse Onychomys leucogaster Northern grasshopper mouse Neotoma cinerea Bushy-tailed woodrat Cricetidae (Cricetids) montanus Montane vole Microtus pennsylvanicus Meadow vole Lemmiscus curtatus Sagebrush vole Ondatra zibethica Muskrat Eutamias minimus Least chipmunk Erethizontidae (New World porcupines) Erethizon dorsatum Porcupine Muridae (Old World mice) Rattus norvegicus Norway rat 1 Mammals – Columbia NWR Family Genus Species Common Name Mus musculus House mouse Canidae (Dogs & wolves) Canis latrans Coyote Procyonidae (Raccoons) Procyon lotor Raccoon frenata Long-tailed weasel Mustela vison Mink Mustelidae (Weasels) Lutra canadensis River otter Taxidea taxus Badger Mephitis mephitis Striped skunk Lynx rufus Bobcat Felidae (Cats) Felis concolor Mountain lion hemionus Mule deer Odocoileus Cervidae (Deer) virginianus White-tailed deer Cervus elaphus Rocky Mountain elk 2.
    [Show full text]
  • Germination and Seedling Establishment of Spiny Hopsage (Grayia Spinosa [Hook.] Moq.)
    AN ABSTRACT OF THE THESIS OF Nancy L. Shaw for the degree of Doctor of Philosophy in Crop and Soil Sciences presented on March 19, 1992 Title: Germination and Seedling Establishment of Spiny Hopsage (Grayia Spinosa [Hook.] Moq.) Abstract approved:_Redactedfor Privacy von r. ULdUe Reestablishment of spiny hopsage(Grayia spinosa [Hook.] Moq.) where depleted or lost on shrub steppe sites can improve forage, plant cover, and soil stabilization. The objectives of this study were to: 1) determine direct-seeding requirements; 2) develop optimum germination pretreatments; and 3) examine dormancy mechanisms in spiny hopsage fruits and seeds. The effects of seed source, planting date,and site preparation method onseed germination and seedling establishment (SE) were examined at Birds of Prey and Reynolds Creek in southwestern Idaho. Three seed sources were planted on rough or compact seedbeds on 4 dates in 1986-87 and 3 dates in 1987-88. Exposure to cool-moist environments improved spring SE from early fall (EF) and late fall (LF) plantings. Few seedlings emerged from early (ESp) or late spring (LSp) plantings. SE was low at: 1 site in 1986-87 and atboth sites in 1987-88, probably due to lack of precipitation. For the successful 1986-87 planting, seedling density was greater on rough compared to compact seedbeds in April andMay, possiblydue to improved microclimate conditions. Growth rate varied among seed sources, but seedlings developed a deep taproot (mean length 266 mm) with few lateral roots the first season. Seeds were planted on 3 dates in 1986-87 and 1987-88, andnylon bags containing seeds were planted on 4 dates each year to study microenvironment effects on germination (G), germination rate (GR), and SE.
    [Show full text]
  • Chisel-Toothed Kangaroo Rat (Dipodomys Microps Alfredi)
    Version 2020-04-20 [A race of the] Chisel-toothed Kangaroo Rat (Dipodomys microps alfredi) Species Status Statement. Distribution This subspecies is endemic to Utah and occurs only on Gunnison Island in the Great Salt Lake. Durrant (1952, p. 274) considered this kangaroo rat to be the most distinctive of the mammal subspecies that are endemic to islands in the Great Salt Lake—so distinctive that he even considered the possibility that it may deserve full species status. Table 1. Utah counties currently occupied by this species. [a Race of the] Chisel-toothed Kangaroo Rat - alfredi BOX ELDER Abundance and Trends Oliver (field notes, 15 July 2014 and 22 October 2014) captured numerous individuals on the north and south sides of Gunnison Island. However, its population trends are unknown. Statement of Habitat Needs and Threats to the Species. Habitat Needs The chisel-toothed kangaroo rat (Dipodomys microps, full species) is a dietary and a habitat specialist, and typically lives in association with either saltbush (Atriplex sp.) or blackbrush (Coleogyne sp.). However in some places it is found in association with greasewood (Sarcobatus sp.), sagebrush (Artemisia sp.), and a few other desert shrubs. Native perennial grasses are thought to be well-tolerated by the species, but introduced annual grasses are considered to impact it negatively (see review of ecology in Hayssen 1991). Threats to the Species The State of Utah owns Gunnison Island, and the Utah Division of Wildlife Resources administers it as a bird nesting colony. Therefore many potential anthropogenic threats are already prevented. The principal threat to the existence of Dipodomys microps alfredi is the dewatering of the Great Salt Lake.
    [Show full text]
  • Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments
    National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR–2009/278 ON THE COVER: Top: Wupatki National Monument; bottom left: bobcat (Lynx rufus); bottom right: Wupatki pocket mouse (Perogna- thus amplus cineris) at Wupatki National Monument. Photos courtesy of U.S. Geological Survey/Charles Drost. Inventory of Mammals at Walnut Canyon, Wupatki, and Sunset Crater National Monuments Natural Resource Technical Report NPS/SCPN/NRTR—2009/278 Author Charles Drost U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Editing and Design Jean Palumbo National Park Service, Southern Colorado Plateau Network Northern Arizona University Flagstaff, Arizona December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Food Habits of Rodents Inhabiting Arid and Semi-Arid Ecosystems of Central New Mexico." (2007)
    University of New Mexico UNM Digital Repository Special Publications Museum of Southwestern Biology 5-10-2007 Food Habits of Rodents Inhabiting Arid and Semi- arid Ecosystems of Central New Mexico Andrew G. Hope Robert R. Parmenter Follow this and additional works at: https://digitalrepository.unm.edu/msb_special_publications Recommended Citation Hope, Andrew G. and Robert R. Parmenter. "Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico." (2007). https://digitalrepository.unm.edu/msb_special_publications/2 This Article is brought to you for free and open access by the Museum of Southwestern Biology at UNM Digital Repository. It has been accepted for inclusion in Special Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. SPECIAL PUBLICATION OF THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 9, pp. 1–75 10 May 2007 Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico ANDREW G. HOPE AND ROBERT R. PARMENTER1 Special Publication of the Museum of Southwestern Biology 1 CONTENTS Abstract................................................................................................................................................ 5 Introduction ......................................................................................................................................... 5 Study Sites ..........................................................................................................................................
    [Show full text]
  • Recovery Plan for the Endangered and Threatened Species of Ash Meadows, Nevada
    RECOVERY PuN FOR THE ENDANGERED AND THREATENED SPECIES OF AsH MEADows, NEVADA Prepared by Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada RECOVERY PLAN FOR THE ENDANGERED AND THREATENED SPECIES OF ASH MEADOWS, NEVADA Prepared By Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada for the U.S. Fish and Wildlife Service Portland, Oregon ~FP2 3 ‘:XN Date This plan covers the following federally listed species in Ash Meadows, Nevada and California: Devil’s Hole pupfish, Warm Springs pupfish, Ash Meadows Arnargosa pupfish, Ash Meadows speckled dace, Ash Meadows naucorid, Ash Meadows blazing star, Ash Meadows ivesia, Ainargosa niterwort, Spring-loving centaury, Ash Meadows sunray, Ash Meadows inilk-vetch, and Ash Meadows guxnplant. THIS IS THE COMPLETED ASH MEADOWS SPECIES RECOVERY PLAN. IT HAS BEEN APPROVED BY THE U.S. FISH AND WILDLIFE SERVICE. IT DOES NOT NECESSARILY REPRESENT OFFICIAL POSITIONS OR APPROVALS OF COOPERATING AGENCIES (AND IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF ALL INDIVIDUALS) WHO PLAYED THE KEY ROLE IN PREPARING THIS PLAN. THIS PLAN IS SUBJECT TO MODIFICATION AS DICTATED BY NEW FINDINGS AND CHANGES IN SPECIES STATUS, AND COMPLETION OF TASKS DESCRIBED IN THE PLAN. GOALS AND OBJECTIVES WILL BE ATTAINED AND FUNDS EXPENDED CONTINGENT UPON APPROPRIATIONS, PRIORITIES, AND OTHER BUDGETARY CONSTRAINTS. LITERATURE CITATION SHOULD READ AS FOLLOWS U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. U.S. Fish and Wildlife Service, Portland, Oregon. 123 pp. Additional copies may be obtained from Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301-492-6403 1-800-582-3421 : ACKNOWLEDGMENTS: This plan results from the efforts of many who spent considerable time and energy to prevent the destruction of Ash Meadows and the extinction of its diverse endemic biota.
    [Show full text]
  • Mammals at Navajo National Monument
    Final Report for 2003 and 2004 Mammal Inventories on Selected National Park Service Southern Colorado Plateau Network Parks: Navajo National Monument January 2005 Prepared by: Shauna Haymond, Holistic Wildlife Services NM, LLC, 112 Hampton Roads Avenue, Hampton, Virginia 23661, and Richard E. Sherwin, Department of Biology, Chemistry and Environmental Science, Christopher Newport University, 1 University Place, Newport News, Virginia 23606-2998 Submitted to: Navajo Nation Department of Fish and Wildlife, P. O. Box 1480, Window Rock, AZ 96515 ABSTRACT Holistic Wildlife Services NM was contracted by the Navajo Nation Department of Fish and Wildlife to conduct biological inventories for mammals at Navajo National Monument (NAVA) as part of the National Park Service Inventory and Monitoring Program. The goals of this study were to document at least 90% of the mammals using verifiable documentation and taxa-specific field surveys, provide distributional information, estimates of species richness, and relative abundance of mammals, and provide baseline information and make recommendations to develop future management and monitoring schemes of zoological resources. There had been no baseline mammal work conducted at NAVA prior to these surveys. A total of 26 mammal species were estimated to inhabit the park based on species-area models; however we estimated 51 species for NAVA based on known specific ranges and available museum records. Field inventories extended from 29 June to 29 September 2003, and 16 May to 5 July 2004. We used a variety of survey methods including live-trapping, mist netting and acoustic surveys for bats, track-scat surveys, and opportunistic observations. We documented a total of 41 species (Chiroptera, 12 species; Lagomorpha, 2 species; Rodentia, 18 species; Carnivora, 8 species; and Artiodactyla, 1 species).
    [Show full text]