The Calculation of Physicochemical Descriptors and Their Application in Predicting Properties of Drugs and Other Compounds

Total Page:16

File Type:pdf, Size:1020Kb

The Calculation of Physicochemical Descriptors and Their Application in Predicting Properties of Drugs and Other Compounds The Calculation of Physicochemical Descriptors and their Application in Predicting Properties of Drugs and Other Compounds A Thesis Presented to the University of London for the Degree of Doctor of Philosophy in the Faculty of Science By JOELLE LE Sir Christopher Ingold Laboratories Chemistry Department University College London January 2001 ProQuest Number: 10010399 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10010399 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To my mother Abstract The work presented may be divided into two main sections: The first section focuses on the important aspect of compound descriptor determination. The method by which descriptors are obtained indirectly through compound solubility in organic solvents and direct water-solvent partition measurements is illustrated by example for drug compounds. This approach is extended through the derivation of gas-water and water-solvent partition equations for the n-alcohols which in the future will be available for use in descriptor determination. Importantly, the equation coefficients are also interpreted to deduce various physicochemical properties of the homologous series of alcohols. An alternative method to assign descriptors is probed through reversed-phase HPLC. Measurements are recorded for a series of solutes on several bonded phases and multivariate analysis is used to investigate the interrelationship between columns in an effort to isolate the most suitable phases. The second section is concerned with application of the Abraham General Solvation Equation to examine processes of special interest in drug design; aqueous solubility and intestinal absorption. An algorithm to predict water solubility is obtained containing an additional Eocz^x Ep 2^ cross-term which is found to compensate at least partly for a melting point correction term. The amended equation is shown to be comparable in accuracy to commercially available packages for a test set of 268 structurally diverse compounds. Of further importance in drug delivery is the process of intestinal absorption. An extensive literature search provides evaluated absorption data for a large set of drug compounds and forms a strong basis for subsequent QSAR analysis. Intestinal absorption is found to be comparable in humans and rat, and predominantly dependent on the hydrogen-bonding capability of the drug. The mechanism of absorption is considered through transformation of the percent absorption data to an overall rate constant. Table of Contents Page no. Abstract 1 Table of Contents 2 List of Tables 6 Acknowledgements 10 Chapter 1 Introduction to the Abraham General Solvation Equation 1.1 History of QSAR and LFERs 11 1.2 Physicochemical Descriptors 13 1.3 Linear Solvation Energy Relationships 20 1.4 The Abraham General Solvation Equations 22 1.4.1 The Excess Molar Refraction, R 2 24 1.4.2 Solute Hydrogen-bond acidity, (% 2^ 25 1.4.3 Solute Hydrogen-bond acidity, p 2^ 26 1.4.4 Effective solute scales of S a 2^, Sp 2^, 7t2^ 27 1.4.5 McGowan’s Characteristic Volume, Vx 30 1.4.6 Estimation of Descriptors using Group Contribution Approach 31 1.5 Multiple Linear Regression Analysis (MLRA) 33 1.5.1 Difficulties with MLRA 37 1.6 References 38 Chapter 2 Aims of the Present Work 2.0 Aims of the Present Work 42 Chapter 3 The Determination of Solute Descriptors 3.1 Method for Descriptor Determination 45 3.2 Example : Descriptors for Vinclozin 49 3.3 Descriptors for Diazepam Analogues 51 3.4 Descriptors for P-blockers 65 3.5 Conclusion 71 3.6 References 72 Chapter 4 The Solvation Properties of the Aliphatic Alcohols 4.1 The Solubility of Gases and Vapours in Alkan-l-ols 73 4.2 Water-alcohol Partitions 86 4.3 References 92 4.4 Data tables 100 Chapter 5 Characterization of HPLC phases and use of HPLC in descriptor determination 5.1 Introduction to HPLC 117 5.2 Concepts of HPLC 118 5.2.1 Fundamental Relationships of Chromatography 120 123 5.2.2 Retention Mechanisms 126 5.2.3 Stationary Phases 129 5.2.4 Solvents 5.2.5 Instrumental Aspects 130 5.3 Experimental Section 132 5.4 Comparison of Stationary Phases 140 5.5 Use of Water-solvent Partition Measurements (WSPM) to obtain 147 Abraham Descriptors and Comparison with HPLC Systems 5.5.1 WSPM in Descriptor Determination 147 5.5.2 Characterization of HPLC Systems 149 5.5.2a Vector Analysis 151 5.5.2b Principal Component Analysis (PCA) 153 5.5.3 Comparison of HPLC and Water-solvent Partition Systems 154 5.5.4 Application of HPLC in Descriptor Determination 156 5.5.5 Conclusion 163 5.6 References 167 Chapter 6 The Solubility of Compounds in Water 6.1 Introduction 169 6.2 Prediction Methods 170 6.2.1 Comparison of Literature Models 175 6.3 Application of the Abraham General Solvation Equation in Prediction 178 6.3.1 Test set results : Comparison with Other Prediction Methods 184 6.3.2 Final Equations (for total dataset) 187 6.3.3 Influence of Very High and Very Low Soluble Compounds 189 6.3.4 The Factors that Influence Aqueous Solubility 191 6.4 The Solubility of Bronsted Acids and Bases 193 6.5 References 198 6.6 Data tables 202 Chapter 7 Gastrointestinal (GI) Absorption of Drug Compounds 7.1 Introduction 225 7.1.1 General Mechanisms for Transport of Substances Across 226 Biological Membranes 7.1.2 Factors Influencing Intestinal Absorption 229 7.1.2a Physicochemical Properties 230 7.1.2b Physiological Properties 235 7.1.3 Hepatic Drug Metabolism 238 7.1.4 The Prediction of Human GI Absorption 240 7.2 Human GI Absorption 244 7.2.1 Evaluation of Human Absorption Data 244 7.2.2 Relationship Between Human GI Absorption and Abraham 269 Descriptors 7.3 Rat GI Absorption 283 7.3.1 Evaluation of Rat GI Absorption Data 284 7.3.2 Relationship Between Rat GI absorption and Abraham 290 Descriptors 7.4 Comparison Between Human and Rat GI absorption 299 7.5 The Mechanism of Human GI Absorption 302 7.5.1 Bronsted Acids and Bases 309 7.5.2 Characterization of the Absorption System 313 7.5.3 Conclusion 317 7.6 Partitioning of Drug Compounds onto a C]g Disk 319 7.6.1 Experimental 319 7.6.2 Calculations 320 7.6.3 Results 321 7.7 References 328 Chapter 8 Visualisation of the Abraham General Solvation Equation 8.0 Visualisation of the Abraham General Solvation Equation 354 Chapter 9 Conclusions and Suggestions for Future Work 9.0 Conclusions and Suggestions for Future Work 357 List of Tables Chapter 1 Introduction to the Abraham General Solvation Equation Page no. Table 1.1 Multivariate statistical techniques 20 Table 1.2 Comparison of effective solute descriptors and those based on 28 1:1 equilibrium constants Table 1.3 Characteristic atomic volumes, Vx in cm^ mol'^ 31 Table 1.4 Results of regression using 81 modified parameters to estimate 32 Abraham descriptors Table 1.5 Results of training and test set regressions using Group 32 Contribution approach Chapter 3 The Determination of Solute Descriptors Table 3.1 Eqn coefficients for partition between water and solvents 47 Table 3.2 Eqn coefficients for partition between the gas phase and 48 solvents Table 3.3 Solvent solubilities of vinclozolin (S in mol dm'^), and derived 49 partition coefficients Table 3.4 Observed and calculated values of log P and log for 50 vinclozolin Table 3.5 Descriptors for Diazepam analogues and (3-blockers 71 Chapter 4 The Solvation Properties of the Aliphatic Alcohols Table 4.01 Calculation of log L in dry octan-l-ol at 298K 75 Table 4.02 Descriptor space for the octan-l-ol regression (eqn 14) 79 Table 4.03 Coefficients in the log L equations for gas-solvent partitions at 80 298K Table 4.04 Some properties of bulk solvents 82 Table 4.05 A term-by-term analysis of solvation of gaseous solutes at 84 298K Table 4.06 Values of the Kamlet-Taft solvatochromie parameters for 85 water and some alcohol solvents Table 4.07 Coefficients in the log? equation for water-solvent partitions 88 6 Table 4.08 Solute Abraham descriptors and log values used in alkan-1- 100 ol regressions PrOH Table 4.09 Values of log L"^"calc, log L'^, log and log 104 cale for solutes at 298K Table 4.10 Values of log log L'^, log and log 106 calc for solutes at 298K Table 4.11 Values of log log L'^, log and log 108 calc for solutes at 298K Table 4.12 Values of log log L'^, log P " " ° " ^ and log 110 calc for solutes at 298K Table 4.13 Values of log log L’^, log and log 111 pHeptOHAv 298K Table 4.14 Values of log log L", log p°'='°H™' and log P°"°"™ 112 calc for solutes at 298K Table 4.15 Values of log log L*, log pD“ °H^ and log pD“=°H™' 115 calc for solutes at 298K Chapter 5 Characterization of HPLC phases and use of HPLC in Descrijptor Determination Table 5.01 Solvent properties 130 Table 5.02 Abraham descriptors for training set solutes 134 Table 5.03 HPLC columns used 136 Table 5.04 Log k’ values for compounds obtained from each stationary ^37 phase and mobile phase composition (MeCN/H 2 0 ) Table 5.05 LFERs obtained for each of the HPLC systems 139 Table 5.06 Coefficients of 60/40 (MeCN/HzO) mobile phase composition for the different stationary phases Table 5.07 Ratios of LEER coefficients
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2020 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Studies in the Synthesis of Bibenzyl the M.P
    Indian Journal of Chemistry Vol. 44B, August 2005, pp. 1713-1716 Note Studies in the synthesis of bibenzyl The m.p. of the synthesized stilbene was 110°C and that of bibenzyl was 52°C. In the IR spectrum, the S S Mahajan* & V A Kamath C-H stretching of the trans CH = CH unit in stilbene, C. U. Shah College of Pharmacy, S. N. D. T. Women’s was recorded at 3050 cm-1. The IR spectrum of University, Sir Vithaldas Vidyavihar, Santacruz (West), bibenzyl showed C-H stretching at 2954 cm–1. The Mumbai 400 049, India. NMR spectrum of stilbene showed peaks at δ 7.45 (s, E-mail: [email protected] 10H, Ar) and at δ 3.35 (d, J = 18, 2H, 2 × CH). The Received 24 June 2004; accepted (revised) 15 February 2005 NMR spectrum of bibenzyl showed peaks at δ 2.7 (s, 4H, 2 × CH2) and δ 6.9 (s, 10H, Ar). Synthesis of bibenzyl has been attempted using Friedel-Crafts The comparative overall percent yields of bibenzyl, reaction, Wurtz reaction, Wolff Kishner reduction using hydrazine calculated based on the starting material used, the hydrate and reductions involving Zn-NiCl2.6H2O and sodium bis- (2-methoxyethoxy)-aluminium hydride (a Vitride reagent). The reaction time and the number of steps involved in four yields of bibenzyl obtained by the four different routes have been different synthetic routes are tabulated in Table I. compared. A single-step reduction of stilbene using Zn- Scheme I shows a two-step reaction and bibenzyl NiCl2.6H2O results in the highest yield.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • H1-Antihistamines for Chronic Spontaneous Urticaria: an Abridged Cochrane Systematic Review
    H1-antihistamines for chronic spontaneous urticaria: An abridged Cochrane Systematic Review Sharma, Maulina , Bennett, C. , Carter, Ben and Cohen, Stuart N. Author post-print (accepted) deposited by Coventry University’s Repository Original citation & hyperlink: Sharma, Maulina , Bennett, C. , Carter, Ben and Cohen, Stuart N. (2015) H1-antihistamines for chronic spontaneous urticaria: An abridged Cochrane Systematic Review . Journal of the American Academy of Dermatology, volume 73 (4): 710-716 http://dx.doi.org/10.1016/j.jaad.2015.06.048 DOI 10.1016/j.jaad.2015.06.048 ISSN 0190-9622 ESSN 1097-6787 Publisher: Elsevier NOTICE: this is the author’s version of a work that was accepted for publication in Journal of the American Academy of Dermatology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of the American Academy of Dermatology, [VOL 73, ISSUE 4, (2015)] DOI: 10.1016/j.jaad.2015.06.048 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen Et Al
    USOO8603526B2 (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen et al. (45) Date of Patent: Dec. 10, 2013 (54) PHARMACEUTICAL COMPOSITIONS 2008. O152595 A1 6/2008 Emigh et al. RESISTANT TO ABUSE 2008. O166407 A1 7/2008 Shalaby et al. 2008/0299.199 A1 12/2008 Bar-Shalom et al. 2008/0311205 A1 12/2008 Habib et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 2009/0022790 A1 1/2009 Flath et al. Jan Martin Oevergaard, Frederikssund 2010/0203129 A1 8/2010 Andersen et al. (DK); Karsten Lindhardt, Haslev (DK); 2010/0204259 A1 8/2010 Tygesen et al. Louise Inoka Lyhne-versen, Gentofte 2010/0239667 A1 9/2010 Hemmingsen et al. (DK); Martin Rex Olsen, Holbaek 2010, O291205 A1 11/2010 Downie et al. (DK); Anne-Mette Haahr, Birkeroed 2011 O159100 A1 6/2011 Andersen et al. (DK); Jacob Aas Hoellund-Jensen, FOREIGN PATENT DOCUMENTS Frederikssund (DK); Pemille Kristine Hoeyrup Hemmingsen, Bagsvaerd DE 20 2006 014131 1, 2007 (DK) EP O435,726 8, 1991 EP O493513 7, 1992 EP O406315 11, 1992 (73) Assignee: Egalet Ltd., London (GB) EP 1213014 6, 2002 WO WO 89,09066 10, 1989 (*) Notice: Subject to any disclaimer, the term of this WO WO91,040 15 4f1991 patent is extended or adjusted under 35 WO WO95/22962 8, 1995 U.S.C. 154(b) by 489 days. WO WO99,51208 10, 1999 WO WOOOf 41704 T 2000 WO WO 03/024426 3, 2003 (21) Appl. No.: 12/701,429 WO WOO3,O24429 3, 2003 WO WOO3,O24430 3, 2003 (22) Filed: Feb.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/107 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A 61 47/10 (2006.0V) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US2012/034361 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 20 April 2012 (20.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/480,259 28 April 201 1 (28.04.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): BOARD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, OF REGENTS, THE UNIVERSITY OF TEXAS SYS¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TEM [US/US]; 201 West 7th St., Austin, TX 78701 (US).
    [Show full text]
  • DRUGS and DRIVING: January 1978 a SELECTED BIBLIOGRAPHY 6
    Technical Report Pocumtotim Pago 1. Rmrr He I. krrmmt Acce#r~mMe. (<izi19 ----- -- J. Ropott Oete DRUGS AND DRIVING: January 1978 A SELECTED BIBLIOGRAPHY 6. Pr~orn~ng~~gan~gotion code ----- . 8. Pmrfomrng Organctat~onUrnport NO. Alan C. Donelson UM-HSRI-78-3 10 Woh Un~tNo (TRAIS) I I. Conttect or Grant No. DOT-HS-7-01530 13. Type of Repoft and Petlod Covmrd ---------- '1 dministration , July 1975 - November 1976 14. Sponsoring Agency Codr This report presents a first supplement to Drugs and Driving: A Selected Bibliography (HS - 802 188), a bibliography of literature dealing with the relationship between drug use (other than alcohol alone) and highway safety. This supplement both updates the parent volume and expands coverage in certafn research areas related to the field of drugs and highway safety. In particular, 1i terature pertaining to drug usage patterns and drug analytical methodology has been included. A detailed description of the 1i terature scope and document selection process is provided. I I The bi bliography consists of four appendices, including a Topical Index, an Author Index, a Title Index, and Abstracts of nearly 400 i articles. A revised topical index was developed to improve user access to document abstracts. Within the topical index are cross-referenced lists of drugs by name and by usage. - ----&* 17. KO? Words 18. Dimhhtion Stotrmmnt Drugs, Drug Impaired Driving, Drug Avai labil ity is unlimited. Document Effect\, Drug Analytical Method01 ogy, may be re1eased to PIational Technical Drug Concentration-Effect Relation- 1 Information Service, Springfield, VA ships, Countermeasures 22161 for sale to public.
    [Show full text]