The Physical Structure of Magellanic Cloud H II Regions

Total Page:16

File Type:pdf, Size:1020Kb

The Physical Structure of Magellanic Cloud H II Regions The physical structure of Magellanic Cloud H II regions ¢¡ £¢¤ ¥¢¦ On the cover : a false-colour image of the giant Large Magellanic Cloud H ii region 30 Doradus taken by the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope. The main power source of this H ii region is the incredibly rich stellar cluster R 136 seen slightly below the center of the image. Rijksuniversiteit Groningen The physical structure of Magellanic Cloud H II regions Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magni¯cus, dr. F. Zwarts, in het openbaar te verdedigen op maandag 16 september 2002 om 14:15 uur door Ronald Vermeij geboren op 18 augustus 1971 te Velsen Promotor: Prof. dr. J.M. van der Hulst Beoordelingscommissie: Prof. dr. J.-P. Baluteau Prof. dr. R.C. Kennicutt Jr. Prof. dr. A.G.G.M. Tielens Contents Chapter 1 Introduction 7 1.1 The physics of starformation regions . 8 1.2 The diagnostic tools . 11 1.3 Thesis outline . 13 Chapter 2 The physical structure of Magellanic Cloud H ii regions : the data 15 2.1 Introduction . 15 2.2 Sample objects . 17 2.3 Data . 23 2.4 Discussion. 33 2.5 Summary . 38 Chapter 3 The physical structure of Magellanic Cloud H ii regions : elemental abundances 41 3.1 Introduction . 42 3.2 Data . 43 3.3 Analysis . 43 3.4 Discussion. 47 3.5 The R23 and S23(4) abundance indicators . 57 3.6 Nucleosynthetic aspects . 60 3.7 Summary . 62 Chapter 4 The physical structure of Magellanic Cloud H ii regions : the giant LMC H ii region 30 Doradus 67 4.1 Introduction . 68 4.2 Observations and data reduction . 68 4.3 Analysis . 79 4.4 Discussion. 83 4.5 The R23 and S23 abundance indicators . 93 4.6 The global spectrum . 94 4.7 Summary . 95 5 6 Chapter 5 The stellar content, metallicity and ionization structure of H ii regions 99 5.1 Introduction . 99 5.2 The sample . 100 5.3 Variations in the ionization structure . 103 5.4 Influence of the SEDs . 103 5.5 Influence of the metallicity . 108 5.6 The case of starburst galaxies . 110 5.7 Summary and conclusions . 111 Chapter 6 The PAH emission spectra of Large Magellanic Cloud H ii regions 115 6.1 Introduction . 116 6.2 Data . 117 6.3 Correlations . 121 6.4 Discussion. 123 6.5 Summary . 129 Chapter 7 Summary and outlook 133 7.1 Summary . 133 7.2 Future work . 135 List of publications 137 Nederlandse samenvatting 139 Chapter 1 Introduction The sites of the most recent formation of massive stars are quite easily identi¯ed by their prodigious emission in the red H® line. These patches of red light come in all shapes and sizes, ranging from nebulae spanning a signi¯cant fraction of a spiral arm powered by rich OB associations, all the way down to small nebulae containing only a few ionizing stars. Commonly refered to as H ii regions, the large body of ionized gas of which the starformation site is comprised provides us with a wealth of spectral information. The large number of spectral lines emitted by the ionized gas gives us valuable information about the local physical conditions, and it is therefore not surprising that H ii regions have always been a favourite tool with which to study the interstellar medium (ISM). A famous example of an H ii region is shown in Fig. 1.1. The spectrum of an H ii region can in the ¯rst place be used to constrain the physical structure of the nebula itself. This structure includes the variation in electron temperature and density through the nebula, but also its ionization structure. The distribution of the elements over the various ionization stages is directly related to the energy distribution of the local radiation ¯eld, which is a signature of the nature of the main ionizing sources of the nebula. In the case of very young H ii regions, the ionizing stars can not be observed directly, so clues about the stellar content of the nebula can only be obtained by these indirect means. This is often the only way in which some information can be obtained about the high-mass end of the initial-mass function. The most important piece of information provided by the spectra of H ii regions, however, is the chemical composition of the local ISM. Knowledge of the gas-phase abundances is important for constraining the nucleosynthetic and starformation history of the host galaxy; the sequence of generations of stars formed in the past is traced by the gradual build-up of heavy metals such as oxygen, and clues about the rates at which various elements have been synthesized are given by heavy element-to-oxygen ratios such as N/O. Large-scale abundance variations such as the radial abundance gradients often encountered in spiral galaxies reflect the bulk hydrodynamical flow of gas through a galaxy. We refer to Henry & Worthey (1999) for a nice review on the subject. 8 Chapter 1 : introduction Figure 1.1| The most famous example of an H ii region : the Orion nebula (M42). 1.1 The physics of starformation regions The physical structure of an H ii region mainly depends on three parameters. Possibly the most important of the three is the spectral-energy distribution (SED) of the main ionizing source(s) of the H ii region; the ionization structure throughout the nebula is mostly determined by it. The second parameter, the ionization parameter, is also important for the ionization balance. This parameter ties together the local gas and photon density and is basically the ratio of ionizing photons to gas particles. The third important ingredient shaping the physics of an H ii region is the chemical composition of the ionized gas, i.e. the metallicity. The metallicity regulates the cooling of the gas and hence determines the temperature structure of the nebula. In this Section, a description of the basic physics of an H ii region is given. Also, a sketch of the `layout' of an H ii region will be given that will serve as a template to be used throughout this thesis. For a very thorough discussion on the physics of photoionized astrophysical plasmas one should consult Osterbrock (1989). 1.1.1 Ionization structure The dominant physical mechanism in setting up the ionization structure of an H ii region is photoionization. With increasing distance from the ionizing source the radiation ¯eld steadily degrades, which leads to a more or less strati¯ed ionization structure. We can divide this structure in roughly three parts or ionization zones, each with its own set of dominant ionic species. The general distribution of ions throughout an H ii region is shown in Fig. 1.2. 1.1 The physics of starformation regions 9 +3 + S ++ ++ + N + N Ar He S 0 + S ++ + + + ++ H O Ne Ar Si H0 O ++ + ++ ++ O 0 S O 0 + Ne N He +3 + 0 + S S H Ne S 0 2 + ++ H + 0 +3 H O + 2 Ne + N + N S +3 ++ H C 2 ++ Ar S + S 0 + Ne ++ O H + N + + + H He S 0 ++ H O He + + ++ O C +3 ++ ++ Ar + + 0 Ar N O H Si N Figure 1.2| The ionization structure throughout an H ii region. The rough boundaries of the three principal ionization zones inside an H ii region are shown as dashed lines. The thick line designates the boundary of the H ii region. The dashed area is the photodissociation region. The dominant ionic species in every zone are given. Being the closest to the ionizing source, the core of the H ii region is dominated by highly ionized species such as O++, Ne++ and S+3. These are also the most highly ionized species likely to be encountered in a regular H ii region; not even the hottest main-sequence stars produce enough photons with energies in excess of 40 eV to give a signi¯cant amount of more highly ionized species. To give an idea of the energies involved, the ionization potential of O++ and He+ is » 54 eV. For Ne++ and S+3 this is » 41 eV and » 48 eV, respectively. Moving outwards, the photons with the highest energy become depleted, and a shift in the ionization balance occurs. The most important ions are now S++ and Ar++. Some traces of O+ and Ne+ also appear, but the O++ ion is still dominant. The relevant ionization potentials are now in the order of 35 eV. The most profound changes in the ionization structure occur near the edge of the H ii region where the photon supply is nearly exhausted. Over a relatively small fraction of the total radius of the H ii region, many ions that dominate the inner parts of the nebula recombine, and their dominant role is taken over by e.g. N+ and O+. Helium that has thusfar been singly ionized now also appears in neutral form. When eventually the energy of the remaining photons drops below 13.6 eV, even hydrogen becomes fully neutral, and we have arrived at the outer boundary of the H ii region. This boundary is refered to as the StrÄomgren radius. At the interface of the H ii region and the molecular cloud, we ¯nd the photodissoci- ation region (PDR). Photon energies here are lower than the threshold 13.6 eV, and the photons are only energetic enough to dissociate small molecules and to ionize atomic species such as neutral sulfur.
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Dealing with $\Delta $-Scuti Variables: Transit Light Curve Analysis of Planets Orbiting Rapidly-Rotating, Seismically Active A/F Stars
    Draft version July 31, 2019 Typeset using LATEX twocolumn style in AASTeX62 Dealing With δ-Scuti Variables: Transit Light Curve Analysis of Planets Orbiting Rapidly-Rotating, Seismically Active A/F Stars John P. Ahlers,1, 2 Jason W. Barnes,1 and Samuel A. Myers1 1Physics Department, University of Idaho, Moscow, ID 83844 2Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Abstract We measure the bulk system parameters of the seismically active, rapidly-rotating δ-Scuti KOI- 976 and constrain the orbit geometry of its transiting binary companion using a combined approach of asteroseismology and gravity-darkening light curve analysis. KOI-976 is a 1:62 ± 0:2 M star with a measured v sin(i) of 120 ± 2 km/s and seismically-induced variable signal that varies by ∼ 0.6% of the star's total photometric brightness. We take advantage of the star's oblate shape and seismic activity to perform three measurements of its obliquity angle relative to the plane of the sky. We first apply rotational splitting theory to the star's variable signal observed in short-cadence Kepler photometry to constrain KOI-976's obliquity angle, and then subtract off variability from that dataset using the linear algorithm for significance reduction software LASR. We perform gravity- darkened fits to Kepler variability-subtracted short-cadence photometry and to Kepler's phase-folded long-cadence photometry to obtain two more measurements of the star's obliquity. We find that the binary system transits in a grazing configuration with measured obliquity values of 36◦ ± 17◦, 46◦ ± 16◦, and 43◦ ± 20◦ respectively for the three measurements.
    [Show full text]
  • 19810018458.Pdf
    N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE 5 DISTRIBU."ION OF HOT STARS AND HYDROGEN IN THE LARGE MAGELLANIC CLOUD THORNTON PACE NASA Johnson Space tenter Houston, Texas 77058 ..•' V I ^^^sMMM V 4 .^j J GEORGE R. CARRUTHERS E. 0. Hul,burt Center for Space Research Navin. Research Laboratory JUL1081 Washington, D.C. 20375 RECEIVED NR$A 3TI FACILITY 4 ACCESS DEPT. ABSTRACT Imagery of the Large Magellanic Cloud, in the wavelength ranges 1050- 1600 A and 1250-1600 A, was obtained by the S201 Far Ultraviolet Camera during the Apollo 16 mission in April 1972. These images have been reduced to absolute far-UV intensity distributions over the area of the LMC, wit-h 3-5 arc min angular resolution. Comparison of our far-UV measurements in the LMC with Ha and 21-cm surveys reveals that interstellar hydrogen in the LMC is often concentrated in 100-pc clouds within the 500-pc clouds detected by McGee and Milton. Furthermore, at least 2.5 associations of 0- B stars in the LMC are outside the interstellar hydrogen clouds; four of them appear to be on the far side. Far-UV and . mid-*UV spectra were obtained of stars in 12 of these associations, using the International Ultraviolet Explorer. Equivalent widths of La and six other lines, and relative intensities of the continuum at seven wavelenths from 1300 A to 2900 A, have been measured and are discussed.
    [Show full text]
  • 1995Apjs ... 99. .565S the Astrophysical Journal
    The Astrophysical Journal Supplement Series, 99:565-607,1995 August .565S © 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. 99. ... CHEMISTRY IN DENSE PHOTON-DOMINATED REGIONS 1995ApJS A. Sternberg School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Israel AND A. Dalgarno Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1994 March 17; accepted 1994 August 10 ABSTRACT We present a detailed chemical model of a photon-dominated region produced in a dense molecular cloud exposed to an intense far-ultraviolet radiation field. We use it to illustrate the gas-phase processes that lead to the production of atomic and molecular species in the several distinct zones that occur in the cloud. We identify molecular diagnostics of photon-dominated chemistry in dense molecular clouds. Subject headings: galaxies: ISM — ISM: molecules — molecular processes 1. INTRODUCTION the Infrared Space Observatory {ISO) (Encrenaz & Kessler Photon-dominated regions (PDRs) form in neutral hy- 1992). drogen clouds which are exposed to far-ultraviolet (FUV) ra- Theoretical models of photon-dominated regions have been diation fields (6-13.6 eV) from external sources (de Jong, constructed and developed by several research groups (e.g., Dalgarno, & Boland 1980; Tielens & Hollenbach 1985; Stern- Tielens & Hollenbach 1985; van Dishoeck & Black 1988; berg & Dalgarno 1989 ). PDRs are ubiquitous in the interstellar Sternberg & Dalgarno 1989; Le Bourlot et al. 1993; Köster et medium and are present at the edges of H n regions (Stacey et al. 1994) and have been used successfully to interpret a wide al. 1993; van der Werf et al.
    [Show full text]
  • 12CO and 13CO J= 3-2 Observations Toward N11 in the Large Magellanic
    Astronomy & Astrophysics manuscript no. N11_paperV4 c ESO 2019 May 23, 2019 12CO and 13CO J=3–2 observations toward N11 in the Large Magellanic Cloud M. Celis Peña1, S. Paron1, M. Rubio2, C. N. Herrera3, and M. E. Ortega1 1 CONICET - Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio, CC 67, Suc. 28, 1428 Buenos Aires, Argentina e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, 38406 Saint-Martin-d’Hères, France Received <date>; Accepted <date> ABSTRACT Aims. After 30 Doradus, N11 is the second largest and brightest nebula in the Large Magellanic Cloud (LMC). This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of 12CO (J=1–0 and 2–1), and in some particular regions pointings of the 13CO J=1–0 and 2–1 lines were also performed. Observations of higher CO rotational transitions are needed to map gas with higher critical densities, useful to study in a more accurate way the physical conditions of the gas component and its relation with the UV radiation. Methods. Using the Atacama Submillimeter Telescope Experiment we mapped the whole extension of the N11 nebula in the 12CO J=3–2 line, and three sub-regions in the 13CO J=3–2 line. The regions mapped in the 13CO J=3–2 were selected based on that they may be exposed to the radiation at different ways: a region lying over the nebula related to the OB association LH10 (N11B), another one that it is associated with the southern part of the nebula related to the OB association LH13 (N11D), and finally a farther area at the southwest without any embedded OB association (N11I).
    [Show full text]
  • The Messenger
    Czech Republic joins ESO The Messenger Progress on ALMA CRIRES Science Verification Gender balance among ESO staff No. 128 – JuneNo. 2007 The Organisation The Czech Republic Joins ESO Catherine Cesarsky The XXVIth IAU General Assembly, held This Agreement was formally confirmed (ESO Director General) in Prague in 2006, clearly provided a by the ESO Council at its meeting on boost for the Czech efforts to join ESO, 6 December and a few days thereafter by not the least in securing the necessary the Czech government, enabling a sign- I am delighted to welcome the Czech public and political support. Thus our ing ceremony in Prague on 22 December Republic as our 13th member state. From Czech colleagues used the opportunity (see photograph below). This was impor- its size, the Czech Republic may not be- to publish a fine and very interesting pop- tant because the Agreement foresaw long to the ‘big’ member states, but the ular book about Czech astronomy and accession by 1 January 2007. With the accession nonetheless marks an impor- ESO, which, together with the General signatures in place, the agreement could tant point in ESO’s history and, I believe, Assembly, created considerable media be submitted to the Czech Parliament in the history of Czech astronomy as well. interest. for ratification within an agreed ‘grace pe- The Czech Republic is the first of the riod’. This formal procedure was con- Central and East European countries to On 20 September 2006, at a meeting at cluded on 30 April 2007, when I was noti- join ESO. The membership underlines ESO Headquarters, the negotiating teams fied of the deposition of the instrument of ESO’s continuing evolution as the prime from ESO and the Czech Republic arrived ratification at the French Ministry of European organisation for astronomy, at an agreement in principle, which was Foreign Affairs.
    [Show full text]
  • Uranometría Argentina Bicentenario
    URANOMETRÍA ARGENTINA BICENTENARIO Reedición electrónica ampliada, ilustrada y actualizada de la URANOMETRÍA ARGENTINA Brillantez y posición de las estrellas fijas, hasta la séptima magnitud, comprendidas dentro de cien grados del polo austral. Resultados del Observatorio Nacional Argentino, Volumen I. Publicados por el observatorio 1879. Con Atlas (1877) 1 Observatorio Nacional Argentino Dirección: Benjamin Apthorp Gould Observadores: John M. Thome - William M. Davis - Miles Rock - Clarence L. Hathaway Walter G. Davis - Frank Hagar Bigelow Mapas del Atlas dibujados por: Albert K. Mansfield Tomado de Paolantonio S. y Minniti E. (2001) Uranometría Argentina 2001, Historia del Observatorio Nacional Argentino. SECyT-OA Universidad Nacional de Córdoba, Córdoba. Santiago Paolantonio 2010 La importancia de la Uranometría1 Argentina descansa en las sólidas bases científicas sobre la cual fue realizada. Esta obra, cuidada en los más pequeños detalles, se debe sin dudas a la genialidad del entonces director del Observatorio Nacional Argentino, Dr. Benjamin A. Gould. Pero nada de esto se habría hecho realidad sin la gran habilidad, el esfuerzo y la dedicación brindada por los cuatro primeros ayudantes del Observatorio, John M. Thome, William M. Davis, Miles Rock y Clarence L. Hathaway, así como de Walter G. Davis y Frank Hagar Bigelow que se integraron más tarde a la institución. Entre éstos, J. M. Thome, merece un lugar destacado por la esmerada revisión, control de las posiciones y determinaciones de brillos, tal como el mismo Director lo reconoce en el prólogo de la publicación. Por otro lado, Albert K. Mansfield tuvo un papel clave en la difícil confección de los mapas del Atlas. La Uranometría Argentina sobresale entre los trabajos realizados hasta ese momento, por múltiples razones: Por la profundidad en magnitud, ya que llega por vez primera en este tipo de empresa a la séptima.
    [Show full text]
  • The Impact of Companions on Stellar Evolution
    Publications of the Astronomical Society of Australia (PASA) c Astronomical Society of Australia 2016; published by Cambridge University Press. doi: 10.1017/pas.2016.xxx. The impact of companions on stellar evolution Orsola De Marco1;2 & Robert G. Izzard3 1Department of Physics & Astronomy, Macquarie University, Sydney, NSW 2109, Australia 2Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia 3Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA, United Kingdom. Abstract Stellar astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries, many thanks to systematic time-domain surveys, have underlined the role of binary star interactions in a range of astrophysical events, including some that were previously interpreted as due uniquely to single stellar evolution. Here, we review classical binary phenomena such as type Ia supernovae, and discuss new phenomena such as intermediate luminosity transients, gravitational wave- producing double black holes, or the interaction between stars and their planets. Finally, we examine the reassessment of well-known phenomena in light of interpretations that include both single and binary stars, for example supernovae of type Ib and Ic or luminous blue variables. At the same time we contextualise the new discoveries within the framework and nomenclature of the corpus of knowledge on binary stellar evolution. The last decade has heralded an era of revival in stellar astrophysics as the complexity of stellar observations is increasingly interpreted with an interplay of single and binary scenarios. The next decade, with the advent of massive projects such as the Large Synoptic Survey Telescope, the Square Kilometre Array, the James Webb Space Telescope and increasingly sophisticated computational methods, will see the birth of an expanded framework of stellar evolution that will have repercussions in many other areas of astrophysics such as galactic evolution and nucleosynthesis.
    [Show full text]
  • Annual Report / Rapport Annuel / Jahresbericht 1998
    Annual Report / Rapport annuel / Jahresbericht 1998 EUROPEAN SOUTHERN OBSERVATORY COVER COUVERTURE UMSCHLAG Impressive images were obtained soon after Des images impressionnantes ont été reçues Beeindruckende Aufnahmen wurden ge- the multi-mode VLT Infrared Spectrometer peu de temps après l’installation de l’ins- macht kurz nachdem im November 1998 And Array Camera (ISAAC) instrument trument multi-mode ISAAC (« Infrared das Multimodus-Instrument ISAAC („Infra- was mounted at the first VLT 8.2-m Unit Spectrometer And Array Camera») au pre- red Spektrometer And Array Camera“) am mier télescope VLT de 8,2 mètres (UT1) en Telescope (UT1) in November 1998. This ersten der VLT-Teleskope (UT1) installiert colour composite image of the RCW38 star- novembre 1998. Cette image couleur com- worden war. Diese Farbaufnahme des forming complex combines Z (0.95 µm), H posite du complexe de formation stellaire (1.65 µm) and Ks (2.16 µm) exposures of a RCW38 combine des images prises en Z Sternentstehungsgebiets RCW38 ist zusam- few minutes each. Stars which have recent- (0,95 µm), H (1,65 µm) et Ks (2,16 µm), mengesetzt aus Einzelaufnahmen in Z (0,95 ly formed in clouds of gas and dust in this ayant un temps d’exposition de quelques µm), H (1,65 µm) und Ks (2,16 µm) von je region 5000 light-years away are still heav- minutes chacune. Les étoiles, récemment einigen Minuten Belichtungszeit. Die vor ily obscured and cannot be seen at optical formées dans les nuages de gaz et de pous- kurzem in den Gas- und Staubwolken dieser wavelengths but become visible at infrared sières dans cette région éloignée de 5000 5000 Lichtjahre entfernten Gegend ent- wavelengths where the obscuration is sub- années-lumière, sont extrêmement enfouies standenen Sterne sind immer noch stark stantially lower.
    [Show full text]
  • Annual Report Rapport Annuel Jahresbericht 1997
    Annual Report Rapport annuel Jahresbericht 1997 E U R O P E A N S O U T H E R N O B S E R V A T O R Y COVER COUVERTURE UMSCHLAG In December 1997, the first VLT 8.2-m mir- En décembre 1997, le premier miroir de Im Dezember 1997 erreichte der erste 8,2- ror arrived at the port of Antofagasta. The 8.20 m du VLT arriva au port d’Antofagasta. m-Spiegel für das VLT den Hafen von An- photograph shows the transport box with La photo montre la caisse de transport avec tofagasta. Diese Aufnahme zeigt, wie die the M1 mirror being unloaded from the ship le miroir en train d’être débarqué du bateau Transportkiste mit dem Spiegel vom Schiff M/S Tarpon Santiago. M/S Tarpon Santiago. M/S Tarpon Santiago entladen wird. Annual Report / Rapport annuel / Jahresbericht 1997 presented to the Council by the Director General présenté au Conseil par le Directeur général dem Rat vorgelegt vom Generaldirektor Prof. Dr. R. Giacconi E U R O P E A N S O U T H E R N O B S E R V A T O R Y Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre Table Table Inhalts- of Contents des matières verzeichnis FOREWORD ................................. 5 PRÉFACE ...................................... 5 VORWORT ................................... 5 INTRODUCTION ......................... 7 INTRODUCTION ......................... 7 EINLEITUNG ............................... 7 RESEARCH HIGHLIGHTS ......... 9 POINTS CULMINANTS HÖHEPUNKTE Symposia and Workshops .............. 22 DE RECHERCHE ..................... 9 DER FORSCHUNG .................. 9 Conférences et colloques ..............
    [Show full text]
  • ESO ASTROPHYSICS SYMPOSIA European Southern Observatory ——————————————————— Series Editor: Bruno Leibundgut S
    ESO ASTROPHYSICS SYMPOSIA European Southern Observatory ——————————————————— Series Editor: Bruno Leibundgut S. Hubrig M. Petr-Gotzens A. Tokovinin (Eds.) Multiple Stars Across the H-R Diagram Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005 Volume Editors Swetlana Hubrig Andrei Tokovinin European Southern Observatory Inter-American Observatory 3107 Alonso de Cordova Cerro Tololo (CTIO ) Santiago, Vitacura La Serena Chile Chile Monika Petr-Gotzens European Southern Observatory Karl-Schwar schild-Str. 2 85748 Garching Germany Series Editor Bruno Leibundgut European Southern Observatory Karl-Schwarzschild-Str. 2 85748 Garching Germany Library of Congress Control Number: 2007936287 ISBN 978-3-540-74744-4 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2008 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign, Heidelberg Typesetting: by the authors Production: Integra Software Services Pvt.
    [Show full text]