Leibniz, Papin, and the Steam Engine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FUSION ENERGY FOUNDATION December 197^ $2.00/ .25
MAGAZINE OF THE FUSION ENERGY FOUNDATION December 197^ $2.00/ .25 Steam Power How It Was Delayed 100 Years FUSION Features 26 Leibniz, Papin, and the Steam Engine: MAGAZINE Of THE FUSION ENERGY FOUNDATION A Case Study of British Sabotage Vol. 3, No. 3 Philip Valenti December 1979 ISSN 0148-0537 Impact Fusion: A New Look at an Old Idea Dr. John Schoonover 53 The North American Water and Power Alliance Proposal: Creating Water Resources for the Year 2000 Calvin Larson EDITORIAL STAFF News Editor-in-Chief Dr. Morris Levitt SPECIAL REPORT Associate Editor 8 Cambodia: The Destruction of a Civilization Dr. Steven Bardwell INTERNATIONAL Managing Editor 12 Mexican President Urges 'Power of Reason' to Resolve Marjorie Mazel Hecht Energy Crisis Fusion News Editor 13 Neporozhniy Dedicates First MHD Facility Charles B. Stevens 13 Saudi Oil Minister Endorses Fusion 13 New Soviet Plan Puts Science First Energy News Editors William Engdahl 14 Brazil's Energy—Nuclear or Biogas Marsha Freeman 14 FEF Designs Nuclear Plan for India NATIONAL Editorial Assistant Christina Nelson Huth 15 Shutdown of Hanford Facility Threatens Cancer Research 16 TVA Head Says 'No' to Nuclear Art Director Christopher Sloan 16 Meat Processors Urge U.S. to Co Nuclear WASHINGTON Assistant Art Director 17 FEF Postcard Campaign: Put Fusion On Line by 1995 Deborah Asch 17 McCormack Submits Add-On to Fusion Budget Graphics Assistants 18 Rep. Wydler Defuses Nuclear Safety Hysteria Gillian Cowdery 18 Presidential Commission May Call for Nuclear Moratorium Gary Genazzio 19 GAO Pans Fusion as 'Unknown' Advertising Manager FUSION NEWS Norman Pearl 21 Soviets Report Promising Results with Field-Reversed Fusion Subscription and 22 Sandia Shows Progress with Light Ion Beams Circulation Manager 22 Livermore Proposes New Fusion Approach Cynthia Parsons 22 PLT Scientists Report Observation of Thermonuclear Neutrons FUSION is published monthly, 10 times a year except CONFERENCES September and April, by the Fusion Energy Foundation 24 The Beginning of a Determinist Theory of Turbulence (FEF), 888 7th Ave., 24th Floor. -
Hydro Internal Combustion Engine
International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 2, Issue- 7, July-2014 HYDRO INTERNAL COMBUSTION ENGINE SAMEET KESHARI PATI Student, Dept. of Mechanical Engineering, 2nd year, Gandhi Engineering College, Bhubaneswar, Odisha E-mail: [email protected] Abstract- Focus of this study is to give and describe the details of research and workings on hydro IC engine. Hydro IC engine is an engine which would work with water as its fuel. The objective of this work is to decrease the use of non-renewable resources. The world’s population is expected to expand from about 6 billion people to 10 billion people by the year 2050, all striving for a better quality of life. As the Earth’s population grows, so will the demand for energy and the benefits that it brings improved standards of living, better health and longer life expectancy, improved literacy and opportunity, and many others. For the Earth to support its population, we must increase the use of energy supplies that are clean, safe, and cost-effective. This concept of Hydro IC engine works on temperature exchange between two chemical substances which continuously react among themselves and helps us to derive mechanical energy out of it. This concept of engine is based upon a modified version of a normal two stroke engine. This engine consists of piston and cylinder arrangement. The most important thing in this complete work is that this method doesn’t produce any kind of exhaust gases or chemical compounds out of it in the complete cycle. This engine works continuously by using this chemical substance which do not get depleted and could be used again and again. -
Curriculum Revision in the High Schools of Springfield, Massachusetts
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1939 Curriculum revision in the high schools of Springfield, Massachusetts. Ulmont Cleal Cowing University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Cowing, Ulmont Cleal, "Curriculum revision in the high schools of Springfield, Massachusetts." (1939). Masters Theses 1911 - February 2014. 2585. Retrieved from https://scholarworks.umass.edu/theses/2585 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CURRICULUM REVISION IN THE HIGH SCHOOLS OF SPRINGFIELD MASSACHUSETTS COWING-1939 CURRICULUM REVISION IK THE HIGH SCHOOLS OF SPRINGFIELD, MASSACHUSETTS A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree. Massachusetts State College 1939 TABU Of CONTENTS I Introduction * 1 II Organisation of the Committee 4 III Preliminary Work of the Committee 6 IV Criteria Governing Choice of Subject Matter 12 V form of Presentation 15 VI. Content of the Outline 18 VII Preliminary Report 19 VIII Revision of the List of Science Subjects 24 IX Sunanary of the Results of the Oiscuseion of the Science Program 31 X The Second Preliminary Report 34 XI Writing the Outline 43 XII Critical Evaluation 78 XIII Limitations 91 XIV Conclusions 34 XV Aok no vieigement FOREWORD In working out any thesis problem it is pertinent that an evaluation be included. It is ny purpose to evaluate the following ourrioulua study in the light of "Criteria For Evaluating Oouree- Of-Study Materiel®" by Herbert B. -
Steam Engines
Evolving Design Steam Engines Tetsuo Tomiyama ([email protected]) 1 Intelligent Mechanical Systems, Bio-Mechanical Engineering Faculty of Mechanical, Maritime and Materials Engineering Overview • A Small Question • History of Thermodynamics • Steam Engines • Thomas Newcomen • James Watt • After Watt • Improvements • Steam Cars • Steam Locomotives • Steamboats • Exam 2008 Wb3110: Steam Engines 2 ©2011 Tetsuo Tomiyama Which is the Oldest? • MIT 1861 • Second Law of Thermodynamics 1850 Rudolf Julius Emanuel Clausius (1822-1888) • TU Delft 1842 Wb3110: Steam Engines 3 ©2011 Tetsuo Tomiyama Definition of Mechanical Engineering • “To Build and Run a Steam Engine!” • (Unofficial Version@ME MIT) Wb3110: Steam Engines 4 ©2011 Tetsuo Tomiyama History of Thermodynamics • 1660: Robert Boyle Boyle's Law • 1712: Thomas Newcomen • 1741: École Nationale des Ponts et Chaussés • 1765: James Watt (Only the Idea) • 1770: Steam Car • 1776: James Watt (The Engine), Steamboat • 1794: Ecole Polytechnique • 1804: Steam Locomotive • 1824: Sadi Carnot, Carnot Cycle • 1842: TU Delft Wb3110: Steam Engines 5 ©2011 Tetsuo Tomiyama History of Thermodynamics • 1843: James Joule, Mechanical Equivalent of Heat • 1847: Hermann von Helmholtz, Definitive Statement of the First Law of Thermodynamics • 1849: William John Macquorn Rankine, Saturated Vapor Table (Pressure and Temperature) • 1850: Rudolf Clausius, The Second Law of Thermodynamics • 1851: Thomson an Alternative Statement of the Second Law • 1854: Clausius, Found dQ/T, but Did Not Name It • 1854: Rankine, Entropy -
The Mechanical Career of Councillor Orffyreus, Confidence
The mechanical career of Councillor Orffyreus, confidence man Alejandro Jenkins∗ High Energy Physics, Florida State University, Tallahassee, FL 32306-4350, USA and Escuela de F´ısica, Universidad de Costa Rica, 11501-2060 San Jos´e, Costa Rica (Dated: Jan. 2013, last revised Mar. 2013; to appear in Am. J. Phys. 81) In the early 18th century, J. E. E. Bessler, known as Orffyreus, constructed several wheels that he claimed could keep turning forever, powered only by gravity. He never revealed the details of his invention, but he conducted demonstrations (with the machine’s inner workings covered) that persuaded competent observers that he might have discovered the secret of perpetual motion. Among Bessler’s defenders were Gottfried Leibniz, Johann Bernoulli, Professor Willem ’s Gravesande of Leiden University (who wrote to Isaac Newton on the subject), and Prince Karl, ruler of the German state of Hesse-Kassel. We review Bessler’s work, placing it within the context of the intellectual debates of the time about mechanical conservation laws and the (im)possibility of perpetual motion. We also mention Bessler’s long career as a confidence man, the details of which were discussed in popular 19th-century German publications, but have remained unfamiliar to authors in other languages. Keywords: perpetual motion, early modern science, vis viva controversy, scientific fraud PACS: 01.65.+g, 45.20.dg I. INTRODUCTION The perpetual motion devices whose drawings add mystery to the pages of the more effusive encyclopedias do not work either. Nor do the metaphysical and theological theories that customarily declare who we are and what manner of thing the world is. -
Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water. -
Blois Et Denis Papin »
Focus sur enis apin Il y a trois cents ans, un illustre blésois rend son dernier souffle en Angleterre après avoir parcouru l’Europe, et surtout après « En ce qui regarde le seul gouvernement avoir contribué à l’une des inventions majeures du XVIIIe siècle : la machine de l’eau vaporisée, qu’ont fait les successeurs à vapeur. Du haut de l’escalier de Papin sinon d’agencer, de modifier plus éponyme, Denis Papin contemple heureusement ce qu’il a trouvé ? Qui donc aujourd’hui le territoire qui l’a vu est l’inventeur, le vrai, le réel inventeur ? La naître. Une sœur jumelle pour la postérité a répondu : un Français, un Blésois, statue de Blois Denis Papin. » Le dimanche 16 janvier 1887, a lieu dans la cour principale du Conservatoire Sa vie, son œuvre national des arts et métiers, à Paris, Le Service Ville d’art et d’histoire de la Ville de Blois organise Louis de la Saussaye Né en 1647, en région blaisoise, probablement dans la commune l’inauguration de la statue de Denis Papin. Sur toute l’année des visites guidées dont « Blois et Denis Papin ». 1869 de Chitenay, Denis Papin est un savant marqué par la méthode l’initiative du directeur du Conservatoire, monsieur Laussedat, une Pour plus d’informations : Blois Ville d’Art et d’Histoire Château royal de Blois cartésienne. Inventeur ingénieux, il met facilement ses théories en souscription a été ouverte par la Chambre syndicale parisienne des tél : 02 54 90 33 32 mécaniciens, chaudronniers et fondeurs. Il s’agit d’une copie de www.blois.fr rubrique « Découvrir Blois » puis « Histoire » Place du château application. -
The Invention of the Steam Engine
The Invention of the Steam Engine by Rochelle Forrester Copyright © 2019 Rochelle Forrester All Rights Reserved The moral right of the author has been asserted Anyone may reproduce all or any part of this paper without the permission of the author so long as a full acknowledgement of the source of the reproduced material is made. Second Edition Published 30 September 2019 Preface This paper was written in order to examine the order of discovery of significant developments in the history of the steam engine. It is part of my efforts to put the study of social and cultural history and social change on a scientific basis capable of rational analysis and understanding. This has resulted in a hard copy book How Change Happens: A Theory of Philosophy of History, Social Change and Cultural Evolution and a website How Change Happens Rochelle Forrester’s Social Change, Cultural Evolution and Philosophy of History website. There are also philosophy of history papers such as The Course of History, The Scientific Study of History, Guttman Scale Analysis and its use to explain Cultural Evolution and Social Change and the Philosophy of History and papers on Academia.edu, Figshare, Mendeley, Vixra, Phil Papers, Humanities Common and Social Science Research Network websites. This paper is part of a series on the History of Science and Technology. Other papers in the series are The Invention of Stone Tools Fire The Discovery of Agriculture The Invention of Pottery History of Metallurgy The Development of Agriculture -
Aircraft Propulsion C Fayette Taylor
SMITHSONIAN ANNALS OF FLIGHT AIRCRAFT PROPULSION C FAYETTE TAYLOR %L~^» ^ 0 *.». "itfnm^t.P *7 "•SI if' 9 #s$j?M | _•*• *• r " 12 H' .—• K- ZZZT "^ '! « 1 OOKfc —•II • • ~ Ifrfil K. • ««• ••arTT ' ,^IfimmP\ IS T A Review of the Evolution of Aircraft Piston Engines Volume 1, Number 4 (End of Volume) NATIONAL AIR AND SPACE MUSEUM 0/\ SMITHSONIAN INSTITUTION SMITHSONIAN INSTITUTION NATIONAL AIR AND SPACE MUSEUM SMITHSONIAN ANNALS OF FLIGHT VOLUME 1 . NUMBER 4 . (END OF VOLUME) AIRCRAFT PROPULSION A Review of the Evolution 0£ Aircraft Piston Engines C. FAYETTE TAYLOR Professor of Automotive Engineering Emeritus Massachusetts Institute of Technology SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON • 1971 Smithsonian Annals of Flight Numbers 1-4 constitute volume one of Smithsonian Annals of Flight. Subsequent numbers will not bear a volume designation, which has been dropped. The following earlier numbers of Smithsonian Annals of Flight are available from the Superintendent of Documents as indicated below: 1. The First Nonstop Coast-to-Coast Flight and the Historic T-2 Airplane, by Louis S. Casey, 1964. 90 pages, 43 figures, appendix, bibliography. Price 60ff. 2. The First Airplane Diesel Engine: Packard Model DR-980 of 1928, by Robert B. Meyer. 1964. 48 pages, 37 figures, appendix, bibliography. Price 60^. 3. The Liberty Engine 1918-1942, by Philip S. Dickey. 1968. 110 pages, 20 figures, appendix, bibliography. Price 75jf. The following numbers are in press: 5. The Wright Brothers Engines and Their Design, by Leonard S. Hobbs. 6. Langley's Aero Engine of 1903, by Robert B. Meyer. 7. The Curtiss D-12 Aero Engine, by Hugo Byttebier. -
The Steam Engine in England and France
Master’s Thesis 2016 30 ECTS School of Economics and Business The spark that ignited the Industrial Revolution An examination of the institutions surrounding the development of the steam engine in England and France Joshua Bragg Development and Natural Resource Economics Contents Preface and Acknowledgements ............................................................................................................. 1 Introduction ............................................................................................................................................. 3 Research Questions ............................................................................................................................. 5 Why did England dominate steam engine development and not France? ..................................... 6 Journey into Great Economic Mysteries ............................................................................................. 6 Background .............................................................................................................................................. 8 Energy Canyons ................................................................................................................................... 8 The Sources of Economic Growth ....................................................................................................... 8 The Mystery of Economic Growth ..................................................................................................... 10 Endogenous Growth -
Hydro Internal Combustion Engine
HYDRO INTERNAL COMBUSTION ENGINE SAMEET KESHARI PATI Student, Dept. of Mechanical Engineering, 2nd year, Gandhi Engineering College, Bhubaneswar, Odisha Abstract- Focus of this study is to give and describe the details of research and workings on hydro IC engine. Hydro IC engine is an engine which would work with water as its fuel. The objective of this work is to decrease the use of non-renewable resources. The world’s population is expected to expand from about 6 billion people to 10 billion people by the year 2050, all striving for a better quality of life. As the Earth’s population grows, so will the demand for energy and the benefits that it brings improved standards of living, better health and longer life expectancy, improved literacy and opportunity, and many others. For the Earth to support its population, we must increase the use of energy supplies that are clean, safe, and cost-effective. This concept of Hydro IC engine works on temperature exchange between two chemical substances which continuously react among themselves and helps us to derive mechanical energy out of it. This concept of engine is based upon a modified version of a normal two stroke engine. This engine consists of piston and cylinder arrangement. The most important thing in this complete work is that this method doesn’t produce any kind of exhaust gases or chemical compounds out of it in the complete cycle. This engine works continuously by using this chemical substance which do not get depleted and could be used again and again. Index Terms- Chemical compounds, Depleted, Exhaust gases, Modified version of a normal two stroke engine, Temperature exchange. -
Experimental Philosophers and Public Demonstrators in Augustan England
13 J B)HS, 1995, 28, 131-56 Who did the work? Experimental philosophers and public demonstrators in Augustan England STEPHEN PUMFREY* The growth of modern science has been accompanied by the growth of professionalization. We can unquestionably speak of professional science since the nineteenth century, although historians dispute about where, when and how much. It is much more problematic and anachronistic to do so of the late seventeenth century, despite the familiar view that the period saw the origin of modern experimental science. This paper explores the broad implications of that problem. One area of scientific activity, public science lecturing and demonstrating, certainly produced its first professionals in the period 1660-1730. This was a period which Geoffrey Holmes called 'Augustan England', and which he found to be marked by the expansion of many of the professions.1 Swollen lower ranks of physicians, civil servants and teachers crowded onto the ladder up to gentility, and even solicitors achieved respectability. Alongside these established types the professional scientist, such as the public lecturer, was a novelty. Later, in the high Georgian era, a small army of men like Stephen Demainbray and Benjamin Martin made recognized if precarious livings from public experimentation, but the first generation pioneers were entering new and risky territory. As Larry Stewart has shown, 'the rise of public science' was a successful social and economic transformation of the highest significance in the history of science which was part of what has been called England's commercial revolution.2 We are accustomed to think of early, pioneering professionals like Robert Hooke, Francis Hauksbee or Denis Papin as 'notable scientists'.