Experimental Philosophers and Public Demonstrators in Augustan England
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes to the Note on the Text and Introduction
Notes Notes to the Note on the Text and Introduction i. Mandeville’s address is repeated at the end of the Preface: “From my House in Manchester-Court, Channel-Row, Westminster.” ii. A Treatise of the Hypochondriack and Hysterick Passions, vulgarly call’d the hypo in men and vapours in women; In which the Symptoms, Causes, and Cure of those Diseases are set forth after a Method intirely new. The whole interspers’d, with Instructive Discourses on the Real art of Physick it self; And Entertaining Remarks on the Modern Practice of Physicians and Apothecaries; Very useful to all, that have the Misfortune to stand in need of either. In three dialogues. By B. de Mandeville, M.D. (London, printed for and to be had of the author, at his house in Manchester-Court, in Channel- Row, Westminster; and D. Leach, in the Little-Old-Baily, and W. Taylor, at the Ship in Pater-Noster-Row, and J. Woodward in Scalding-Alley, near Stocks-Market, 1711). The second 1711 issue bears the following publica- tion details: “London, printed and sold by Dryden Leach, in Elliot’s Court, in the Little-Old-Baily, and W. Taylor, at the Ship in Pater-Noster-Row, 1711”. The 1715 reprint bears the same title with different publication details (London, printed by Dryden Leach, in Elliot’s Court, in the Little Old-Baily, and sold by Charles Rivington, at the Bible and Crown, near the Chapter-House in St. Paul’s Church Yard, 1715). A Treatise of the Hypochondriack and Hysterick Diseases. In three dialogues. -
Newton and Leibniz: the Development of Calculus Isaac Newton (1642-1727)
Newton and Leibniz: The development of calculus Isaac Newton (1642-1727) Isaac Newton was born on Christmas day in 1642, the same year that Galileo died. This coincidence seemed to be symbolic and in many ways, Newton developed both mathematics and physics from where Galileo had left off. A few months before his birth, his father died and his mother had remarried and Isaac was raised by his grandmother. His uncle recognized Newton’s mathematical abilities and suggested he enroll in Trinity College in Cambridge. Newton at Trinity College At Trinity, Newton keenly studied Euclid, Descartes, Kepler, Galileo, Viete and Wallis. He wrote later to Robert Hooke, “If I have seen farther, it is because I have stood on the shoulders of giants.” Shortly after he received his Bachelor’s degree in 1665, Cambridge University was closed due to the bubonic plague and so he went to his grandmother’s house where he dived deep into his mathematics and physics without interruption. During this time, he made four major discoveries: (a) the binomial theorem; (b) calculus ; (c) the law of universal gravitation and (d) the nature of light. The binomial theorem, as we discussed, was of course known to the Chinese, the Indians, and was re-discovered by Blaise Pascal. But Newton’s innovation is to discuss it for fractional powers. The binomial theorem Newton’s notation in many places is a bit clumsy and he would write his version of the binomial theorem as: In modern notation, the left hand side is (P+PQ)m/n and the first term on the right hand side is Pm/n and the other terms are: The binomial theorem as a Taylor series What we see here is the Taylor series expansion of the function (1+Q)m/n. -
Cultural Gap: an International Physicist’S Experience
Bridging the Socio- Cultural Gap: An International Physicist’s Experience J. Pedro Ochoa Berkeley Lab APS March Meeting: Experiences and Issues of Young Physicist’s on the International Arena Dallas, TX – March 2011 1 Wednesday, July 20, 2011 Let’s start with an example… Some quick facts about the academic career of Isaac Newton, arguably the best physicist of all times: Born in Lincolnshire Educated at King’s School, Grantham Attended Trinity College in Cambridge His advisors were Isaac Barrow and Benjamin Pulleyn He was appointed the Lucasian Professor of Mathematics at Cambridge Mentored notable students such as Roger Cotes and William Whiston. Died in Kensington at age 67 2 Wednesday, July 20, 2011 Let’s start with an example… Some quick facts about the academic career of Isaac Newton, arguably the best physicist of all times: England Born in Lincolnshire Educated at King’s School, Grantham Attended Trinity College in Cambridge His advisors were Isaac Barrow and Benjamin Pulleyn He was appointed the Lucasian Professor of Mathematics at Cambridge Mentored notable students such as Roger Cotes and William Whiston. Died in Kensington at age 67 2 Wednesday, July 20, 2011 Let’s start with an example… Some quick facts about the academic career of Isaac Newton, arguably the best physicist of all times: England Born in Lincolnshire England Educated at King’s School, Grantham Attended Trinity College in Cambridge His advisors were Isaac Barrow and Benjamin Pulleyn He was appointed the Lucasian Professor of Mathematics -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Therapeutic Attractions: Early Applications of Electricity to the Art of Healing
19 Therapeutic Attractions: Early Applications of Electricity to the Art of Healing Paola Bertucci Spectacular Treatments In the past few decades a number of studies dealing with eighteenth-century natural philosophy in It is commonly held that it was the invention of England have pointed out its inextricable links with the Leyden jar, in the mid-1740s, that triggered spectacle and public display. The commodification of wide interest in the new science of electricity cultural products, which was one of the main features (Hackmann, 1978; Heilbron, 1979). However, it is of the Enlightenment, extended to science and scien- difficult to make causal connections among the tific instruments, textbooks, and demonstrations, as events that in the span of a few years made elec- well as to medicine. Pivotal works by Roy Porter have trical science the craze of the century. The Leyden indelibly portrayed the vibrant marketplace in which jar became widely known in 1746, the same year medical practitioners operated. Even when they had a in which most electricians began to investigate formal degree, “regular” healers had to compete both systematically the healing properties of the with “irregulars” and with a widespread culture of electric matter. The possibility that electrical self-treatment (Porter, 1985, 1990, 1995; Porter & machines, generally employed for entertaining Porter, 1989; Schaffer, 1983; Stewart, 1992). In paying crowds with amusing demonstrations, such competitive arena recently invented therapies could also provide new ways of curing long stand- attracted the attention of both patients and practitioners. ing diseases began to be discussed around 1744, From the 1740s onward, “medical electricity” was mostly in Germany. -
Donations to the Library 2000S
DONATIONS TO THE LIDRARY 277 DONATIONS TO THE LIBRARY Michael Andrews (BA 1960) The birth of Europe, 1991; The flight of the condor, 1982; The life that lives on Man, 1977 13 May 1999 - 12 May 2000 Anthony Avis (BA 1949) The Librarian is always delighted to hear from any member of the Gaywood past: some historical notes, 1999; The journey: reflective essays, College considering a gift of books, manuscripts, maps or photographs 1999 to the College Library. Brigadier David Baines Abdus Salam International Centre Documents relating to the army career of Alan Menzies Hiller A. M. Hamende (ed.), Tribute to Abdus Salam (Abdus Salam Memorial (matric. 1913), who was killed in action near Arras in May 1915 meeting, 19-22 Nov. 1997), 1999 D.M. P. Barrere (BA 1966) David Ainscough Georges Bernanos, 'Notes pour ses conferences' (MS), n. d. Chambers' guide to the legal profession 1999-2000, 1999 P. J. Toulet, La jeune fille verte, 1918 Robert Ganzo, Histoire avant Sumer, 1963; L'oeuvre poetique, 1956 Dr Alexander G. A.) Romain Rolland, De Jean Christophe a Colas Breugnon: pages de journal, Automobile Association, Ordnance Survey illustrated atlas of Victorian 1946; La Montespan: drame en trois actes, 1904 and Edwardian Britain, 1991 Ann MacSween and Mick Sharp, Prehistoric Scotland, 1989 Martyn Barrett (BA 1973) Antonio Pardo, The world of ancient Spain, 1976 Martyn Barrett (ed.), The development of language, 1999 Edith Mary Wightrnan, Galla Belgica, 1985 Gerard Nicolini, The ancient Spaniards, 1974 Octavian Basca Herman Ramm, The Parisi, 1978 Ion Purcaru and Octavian Basca, Oameni, idei, fapte din istoria J. -
Hindsight, Tradition, and National Styles in the Prehistory of the Leyden
Manuscript version: Published Version The version presented in WRAP is the published version (Version of Record). Persistent WRAP URL: http://wrap.warwick.ac.uk/115283 How to cite: The repository item page linked to above, will contain details on accessing citation guidance from the publisher. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: Please refer to the repository item page, publisher’s statement section, for further information. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Hindsight, Tradition, and National Styles FOCUS in the Prehistory of the Leyden Jar Michael Bycroft, University of Warwick Abstract: The Leyden jar surprised natural philosophers when it was invented in 1746 because it showed the paradoxical behavior of glass. But similar experiments had been done before, such as those by the Frenchman Charles Dufay. -
1) What Is Another Name for the Enlightenment Period? 2
Name: Period: Enlightenment Video Review All about the Enlightenment: 1) What is another name for the Enlightenment period? 2) What was the time period of the Enlightenment? 3) What does the word Enlightenment mean and what is reason? The Scientific Method: 1) What do many scholars believe about Francis Bacon and Rene Descartes? 2) Where was Francis Bacon from, what did he believe about science and what was his approach to science based on? 3) Where was Rene Descartes from, and what did the book he published proclaim? 4) What new type of mathematics did Rene Descartes invent? 5) What did the discoveries of Bacon and Descartes lead to? The World of Isaac Newton: 1) What era did the Scientific Method helped to bring about? 2) Where was Isaac Newton from, and at which college did Francis Bacon and he study? 3) What branch of mathematics did Isaac Newton create? 4) What laws did Newton understand and mathematically formulate and how did he discover these laws? Even More Enlightenment Science: 1) What invention helped to extend the study of biology? 2) The English Biologist Robert Hooke discovered cells, what is a cell? 3) What did the English scientist William Harvey discover? 4) The Swedish botanist Carolus Linnaeus discovered the terms classifying and taxonomy what do these terms mean? Name: Period: Enlightenment Philosophers: 1) What were people like Isaac Newton and Carolus Linnaeus known as? 2) Where was John Locke from, and what did he believe about the power of a government? 3) What were the three natural rights that John Locke believed -
Experimental Pharmacology and Therapeutic Innovation in the Eighteenth Century
-e: EXPERIMENTAL PHARMACOLOGY AND THERAPEUTIC INNOVATION IN THE EIGHTEENTH CENTURY by ANDREAS-HOLGER MAEHLE A thesis submitted for the degree of Doctor of Philosophy of the University of London University College London 1996 ProQuest Number: 10017185 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10017185 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT In the historiography of pharmacology and therapeutics, the 18th century is regarded as a period of transition from traditional, Galenistic materia medica to the beginnings of modern, experimental drug research. Ackerknecht (1973) characterized the pharmacotherapy of this period as a "chaotic mixture of chemiatric and Galenistic practices", yet acknowledged an "increasing tendency toward empiricism, partly even true experimentalism". This thesis explores this transitional phase for the first time in depth, examining the relations between pharmacological experimentation, theory-building, and therapeutic practice. Furthermore, ethical aspects are highlighted. The general introduction discusses the secondary literature and presents the results of a systematic study of pharmacological articles in relevant 18th-century periodicals. The identified main areas of contemporary interest, the spectrum of methods applied, and the composition of the authorship are described and interpreted. -
The British Journal for the History of Science Mechanical Experiments As Moral Exercise in the Education of George
The British Journal for the History of Science http://journals.cambridge.org/BJH Additional services for The British Journal for the History of Science: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Mechanical experiments as moral exercise in the education of George III FLORENCE GRANT The British Journal for the History of Science / Volume 48 / Issue 02 / June 2015, pp 195 - 212 DOI: 10.1017/S0007087414000582, Published online: 01 August 2014 Link to this article: http://journals.cambridge.org/abstract_S0007087414000582 How to cite this article: FLORENCE GRANT (2015). Mechanical experiments as moral exercise in the education of George III. The British Journal for the History of Science, 48, pp 195-212 doi:10.1017/ S0007087414000582 Request Permissions : Click here Downloaded from http://journals.cambridge.org/BJH, IP address: 130.132.173.207 on 07 Jul 2015 BJHS 48(2): 195–212, June 2015. © British Society for the History of Science 2014 doi:10.1017/S0007087414000582 First published online 1 August 2014 Mechanical experiments as moral exercise in the education of George III FLORENCE GRANT* Abstract. In 1761, George III commissioned a large group of philosophical instruments from the London instrument-maker George Adams. The purchase sprang from a complex plan of moral education devised for Prince George in the late 1750s by the third Earl of Bute. Bute’s plan applied the philosophy of Frances Hutcheson, who placed ‘the culture of the heart’ at the foundation of moral education. To complement this affective development, Bute also acted on seventeenth-century arguments for the value of experimental philosophy and geometry as exercises that habituated the student to recognizing truth, and to pursuing it through long and difficult chains of reasoning. -
Cavendish the Experimental Life
Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory. -
KAREN THOMSON CATALOGUE 103 UNIQUE OR RARE with A
KAREN THOMSON CATALOGUE 103 UNIQUE OR RARE with a Newtonian section & a Jane Austen discovery KAREN THOMSON RARE BOOKS CATALOGUE 103 UNIQUE OR RARE With a Newtonian section (1-8), and a Jane Austen discovery (16) [email protected] NEWTONIANA William Jones’ copy [1] Thomas Rudd Practicall Geometry, in two parts: the first, shewing how to perform the foure species of Arithmeticke (viz: addition, substraction, multiplication, and division) together with reduction, and the rule of proportion in figures. The second, containing a hundred geometricall questions, with their solutions & demonstrations, some of them being performed arithmetically, and others geometrically, yet all without the help of algebra. Imprinted at London by J.G. for Robert Boydell, and are to be sold at his Shop in the Bulwarke neer the Tower, 1650 £1500 Small 4to. pp. [vii]+56+[iv]+139. Removed from a volume of tracts bound in the eighteenth century for the Macclesfield Library with characteristically cropped inscription, running titles, catchwords and page numbers, and shaving three words of the text on H4r. Ink smudge to second title page verso, manuscript algebraic solution on 2Q3 illustrated below, Macclesfield armorial blindstamp, clean and crisp. First edition, one of two issues published in the same year (the other spelling “Practical” in the title). William Jones (1675-1749) was employed by the second Earl of Macclesfield at Shirburn Castle as his mathematics instructor, and at his death left his pupil and patron the most valuable mathematical library in England, which included Newton manuscript material. Jones was an important promoter of Isaac Newton’s work, as well as being a friend: William Stukeley (see item 6), in the first biography of Newton, describes visiting him “sometime with Dr.