Tuning Functional Properties of Pyrochlore and Related Oxides Via Cation and Anion Substitutions

Total Page:16

File Type:pdf, Size:1020Kb

Tuning Functional Properties of Pyrochlore and Related Oxides Via Cation and Anion Substitutions AN ABSTRACT OF THE DISSERTATION OF Gabriella Giampaoli for the degree of Doctor of Philosophy in Chemistry presented on March 14, 2018 Title: Tuning Functional Properties of Pyrochlore and Related Oxides via Cation and Anion Substitutions Abstract Approved: Mas A. Subramanian Inorganic structures play an important role in materials due to their versatility and diversity. A complete understanding of the structure of a material is vital to enhance the creation of new materials that fill voids in research. The rational design of these compounds is driven by the exploitation of structure-property relationships, resulting in optimized materials and improved devices. This dissertation navigates this interplay for pyrochlore oxides, investigating the effect of substitution on the structure and characterizing the resulting properties. The fundamentals of inorganic chemistry are presented as an introduction to the research of iridium, ruthenium, bismuth and tin containing pyrochlore materials outlined by this dissertation. The 4d and 5d transition metals have received recent attention as potential topological insulators. This property is driven by the spin-orbit interaction that increases with atomic number. This led to the substitution of various cations in the general pyrochlore formula 2+ 2+ 1+ Bi2-xMxIr2O6+y (M = Ca , Co and Cu ), as well as phases with related structures: Ca2Ru2O7 and Bi2-xCaxRu2-xIrxO6+y. These samples were synthesized via solid state and hydrothermal reactions, resulting in materials with similar structures and properties. In the calcium containing iridium pyrochlore Bi2-xCaxIr2O6+y, the limit of substitution was found to be ~x = 1.0, where the calcium was found to shift from the ideal position to occupy the higher multiplicity 96g site, while pairing with an oxygen vacancy. For higher calcium concentration samples calcium occupied both the 16d and 96g sites. The samples were found to be paramagnetic and metallic. In the related sample Ca2Ru2O7, in the absence of the shared A site, the calcium was found to occupy the ideal site. Cobalt substituted samples were found to have a limit of substitution of ~x = 0.5, and magnetic susceptibility was measured. Copper containing samples (Bi2-xCuxIr2O6+y) were found to have a limit of substitution of ~x = 0.5, and a similar structure to the calcium containing samples. In this preliminary neutron refinement, the copper was found to shift to the 96g position from the ideal 16d, occupying both positions at higher copper content. The oxygen sites were practically fully occupied for both the x = 0.2 and 0.4 samples, suggesting the presence of Cu1+ in the system. Further analysis is required to determine the presence and valency of both iridium and copper in the system. As with the calcium analogue, the samples are paramagnetic and metallic. The Bi2-xCaxRu2-xIrxO6+y system showed a limit of substitution of ~x = 1.0. Both the x = 0.5 and 1.0 samples were paramagnetic. Sulfur and Fluorine substituted Sn2Nb2O7 pyrochlore pigments were synthesized to produce brilliant red/orange compounds as an environmentally friendly alternative to other toxic, inorganic, red/orange pigments. Neutron diffraction structure refinements confirmed that the compositions crystallized in the pyrochlore structure, showing deviations from ideal stoichiometries with a large number of vacancies and severe local structure distortions at the A and O' sites. Chemical analysis confirmed the presence of sulfur and fluorine in the pyrochlore structure and 119Sn Mössbauer analysis confirmed the presence of both Sn2+ and Sn4+ in these compounds. Optical characterization was performed through absorbance, reflectance, and color meter measurements. The compounds were found to have ~60-95% reflectance, having added functionality as “cool” pigments. The estimated band gap was determined to be in the range of 2.35 to 2.05 eV, decreasing with increasing sulfur content, consistent with the color change from yellow to orange/red. Sn2TiNbO6F1-xClx phases were made from x = 0-1.0, resulting in increasing lattice parameter and increasing band gap with chlorine substitution. This solid solution can also potentially find application as a “cool” pigment. The solid solution Sn2Ti1-xCrxWO7-xFx was synthesized from x = 0-1.0, resulting in a decreasing lattice parameter upon chromium addition. The samples were paramagnetic, with magnetic moments from 3.108 μB to 3.513 μB for x = 1 to 0.2. Many materials in the general series Bi2-xCaxM2-xM'xO7 (M = Ti, Hf, Sn; M' = Sb, Nb, Ta) were prepared for the first time and were characterized via their structure and dielectric properties resulting in extremely low loss dielectric materials with dielectric constants from 16-98. The materials were both largely temperature and frequency independent. The lattice parameters of the quaternary pyrochlores in the series BiCaMM'O7 showed an expected linear relationship with the ionic radii of the substituted elements. The solid solution Bi2- xCaxSn2-xSbxO7-y, was analyzed via neutron diffraction, where the limit of the solid solution was close to ~x = 1.3. Until this value, the compounds crystallize in the pyrochlore phase, forming a mixture of the pyrochlore phase and the Ca2Sb2O7 weberite phase beyond this value. The refined formulas for the nominal calcium content x = 0.5, 1.0, and 1.5 in this solid solution were Bi1.36Ca0.64Sn1.60Sb0.40O6.88, Bi0.82Ca1.18Sn1.10Sb0.90O6.86, and Bi0.76Ca1.24Sn1.06Sb0.94O6.85 respectively. ©Copyright by Gabriella Giampaoli March 14, 2018 All Rights Reserved Tuning Functional Properties of Pyrochlore and Related Oxides via Cation and Anion Substitutions by Gabriella Giampaoli A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented March 14, 2018 Commencement June 2018 Doctor of Philosophy dissertation of Gabriella Giampaoli presented on March 14, 2018. APPROVED: Major Professor, representing Chemistry Chair of the Department of Chemistry Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Gabriella Giampaoli, Author ACKNOWLEDGEMENTS I would first like to express my sincere gratitude and appreciation to my research advisor, Dr. Mas Subramanian, who has made it possible for me to complete this monumental task. He has shown incredible guidance and support throughout my tenure at Oregon State University and has brought countless opportunities for learning and growth in this time. From conferences and publications to outreach opportunities, he has gone above and beyond to increase my research and teaching skills and help me succeed in future endeavors, and I would not be the scientist I am today without his mentorship. I am grateful to all members of Dr. Subramanian’s group that I’ve had the pleasure of working with over the years. I would like to specifically thank Dr. Jun Li, who was an enormous and amazing resource; sharing her expertise through crystallographic refinement lessons and answering my general research questions. Thank you to Dr. Elena Medina, Dr. Joshua Flynn, Dr. Rosa Gajczyk, Dr. Whitney Schmidt, Dr. Sandhya Kumari, and Dr. Geneva Laurita for taking the time to answer questions and share your knowledge. I would also like to thank Sarah Synnestvedt, Maxwell Wallace, Elizabeth Solbavarro, Brett Duell, Stephanie Ramos, and Joseph Tang who provided a fun and informative work environment. I would like to thank the members of my graduate committee, Dr. Michael Lerner, Dr. May Nyman, Dr. David Cann, and Dr. William Warnes, for giving their time, and reviewing this work. Thank you to the collaborators that I have had the privilege to work with; Dr. Arthur Ramirez, Dr. Lev Zakharov, Dr. Arthur Sleight, and Dr. Raphael Hermann. I appreciate those who allowed access to their instrumentation for the completion of my graduate work; Dr. Janet Tate, and Dr. Alex Chang. The OSU instructional faculty has been wonderful to work with and learn from. Thank you to Dr. Michael Burand, Margie Haak, Dr. Marita Barth, and Dr. Richard Nafshun for teaching me how to teach, and making graduate school a more dynamic experience than I ever expected. I would also like to thank Luanne Johnson, Sarah Burton, Paula Christie, Greg Jones, Jenna Moser, Todd Stuhr, and Rusty Root for all the support in teaching and fulfilling requirements. I would not have been able to complete this program without the love and support of my family and friends. I thank Susie and Paul Giampaoli, Domenico and Aubin Giampaoli, Angelica Giampaoli, Nina Giampaoli, my nephews Paolo, Vicenzo, Isaiah, Henry, Miles and Marshall, Steve Bandettini, Teresa Cimino, Chris Cunningham, Bill King, Lauren and Kevin Lemieux, Paul Nord, Traci Russo, Tyler Nord, Rosemary Schumacher, Betty Wikeen, Emil and Eleanor Nord, Peter and Carole Giampaoli, and John and Marli Nord for being an amazing family that taught me perseverance and supported me throughout my journey. I would also like to thank Haley Crawford, Lindsey Sequeira, Dr. Breland Oscar, Nels Oscar, Brittany and Marrisa Robertson, and Freddy Dopfel for being an amazing support system and wonderful friends. Most importantly, I thank my best friend and fiancé, Jonathan King. I would not be where I am today without your love, kindness, and support. You make me a better person and I can’t imagine my life without you. I can’t find the words to express how much I appreciate you, and I can’t wait to share the rest of our lives together. Thank you for helping me achieve my dreams. CONTRIBUTION OF AUTHORS Chapter 3: Dr. Mas Subramanian, Dr. Jun Li, Dr. Arthur Ramirez and Dr. Arthur Sleight contributed to the preparation and review of the publication on which this chapter was based; Giampaoli, G.; Li, J.; Ramirez, A. P.; Sleight, A. W.; Subramanian, M. A. Bi2- xCaxIr2O6+y Pyrochlore Phases: Structure and Properties with Varied Oxidation State from 3.9+ to 4.3+.
Recommended publications
  • Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup
    American Mineralogist, Volume 80, pages 732-743, 1995 Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup GREGORY R. LUMPKIN Advanced Materials Program, Australian Nuclear Science and Technology Organization, Menai 2234, New South Wales, Australia RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Primary alteration of uranpyrochlore from granitic pegmatites is characterized by the substitutions ADYD-+ ACaYO, ANaYF -+ ACaYO, and ANaYOI-I --+ ACaYO. Alteration oc- curred at ""450-650 °C and 2-4 kbar with fluid-phase compositions characterized by relatively low aNa+,high aeaH, and high pH. In contrast, primary alteration of pyrochlore from nepheline syenites and carbonatites follows a different tre:nd represented by the sub- stitutions ANaYF -+ ADYD and ACaYO -+ ADYD. In carbonatites, primary alteration of pyrochlore probably took place during and after replacement of diopside + forsterite + calcite by tremolite + dolomite :t ankerite at ""300-550 °C and 0-2 kbar under conditions of relatively low aHF, low aNa+,low aeaH, low pH, and elevated activities of Fe and Sr. Microscopic observations suggest that some altered pyrochlor1es are transitional between primary and secondary alteration. Alteration paths for these specimens scatter around the trend ANaYF -+ ADYD. Alteration probably occurred at 200-350 °C in the presence of a fluid phase similar in composition to the fluid present during primary alteration but with elevated activities of Ba and REEs. Mineral reactions in the system Na-Ca-Fe-Nb-O-H indicate that replacement of pyrochlore by fersmite and columbite occurred at similar conditions with fluid conpositions having relatively low aNa+,moderate aeaH, and mod- erate to high aFeH.Secondary alteration « 150 °C) is charactlerized by the substitutions ANaYF -+ ADYD,ACaYO -+ ADYD,and ACaXO -+ ADXDtogether with moderate to extreme hydration (10-15 wt% H20 or 2-3 molecules per formula unit).
    [Show full text]
  • Columbium (Niubium) and Tantalum
    COLUMBIUM (NIOBIUM) AND TANTALUM By Larry D. Cunningham Domestic survey data and tables were prepared by Robin C. Kaiser, statistical assistant, and the world production table was prepared by Regina R. Coleman, international data coordinator. Columbium [Niobium (Nb)] is vital as an alloying element in economic penalty in most applications. Neither columbium nor steels and in superalloys for aircraft turbine engines and is in tantalum was mined domestically because U.S. resources are of greatest demand in industrialized countries. It is critical to the low grade. Some resources are mineralogically complex, and United States because of its defense-related uses in the most are not currently (2000) recoverable. The last significant aerospace, energy, and transportation industries. Substitutes are mining of columbium and tantalum in the United States was available for some columbium applications, but, in most cases, during the Korean Conflict, when increased military demand they are less desirable. resulted in columbium and tantalum ore shortages. Tantalum (Ta) is a refractory metal that is ductile, easily Pyrochlore was the principal columbium mineral mined fabricated, highly resistant to corrosion by acids, a good worldwide. Brazil and Canada, which were the dominant conductor of heat and electricity, and has a high melting point. pyrochlore producers, accounted for most of total estimated It is critical to the United States because of its defense-related columbium mine production in 2000. The two countries, applications in aircraft, missiles, and radio communications. however, no longer export pyrochlore—only columbium in Substitution for tantalum is made at either a performance or upgraded valued-added forms produced from pyrochlore.
    [Show full text]
  • Perovskite and Pyrochlore Tantalum Oxide Nitrides: Synthesis and Characterization
    Perovskite and Pyrochlore Tantalum Oxide Nitrides: Synthesis and Characterization Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University by Spencer Hampton Porter, B.S. Graduate Program in Chemistry Ohio State University 2012 Thesis Committee Dr. Patrick Woodward, Advisor Dr. Joshua Goldberger Copyright Spencer Porter 2012 Abstract Oxide nitrides are an emerging class of compounds. Perovskite RETaN2O [RE = La (Imma), Ce (Pnma), Pr (Pnma)] as well as ATaO2N[A = Ca (Pnma), Sr (I 4/mcm), Ba (Pm3¯m)] and pyrochlore RE 2Ta2N2O5 where RE = Ce, Pr (both: Fd3¯m) have been synthesized by solid state and solution-based methods. Crystal structures solved by powder XRD and NPD for all the rare earth analogs (La, Ce, Pr) are reported for the first time. Studies on the preparation techniques of oxide nitrides in both, bulk powder and film format, has shown that solution based precipitation tech- niques decrease crystallite size, increase reactivity, and enable isomorphic films by sedimentation processes. Computational studies on anion ordering generated a library of ordering models herein and finds that, like O2N com- pounds, an ordered cis orientation and out-of-center tantalum displacement provide the most stable model for perovskites with an -N2O anion stoi- chiometry. UV-Vis diffuse reflectance reveals band gaps for CeTaN2O (2.0 eV), PrTaN2O (2.0 eV), Ce2Ta2N2O5 (3.0 eV) and Pr2Ta2N2O5 (3.3 eV). Structure-property relations from calculations elucidate that valence band maximum positions within the compound series is affected by bond lengths and f-orbital contributions.
    [Show full text]
  • Investigations Into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite
    Investigations into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite. A thesis submitted for the fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) Scott Alan McMaster B.Sc (App Chem) B.Sc (App Sci) (Hons) School of Applied Sciences College of Science, Engineering and Health RMIT University February 2016 II I Document of authenticity I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is a result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged. Scott A. McMaster February 2016 II Acknowledgements The research conducted in this thesis would not have been possible without the help of a number of people, and I would like to take this opportunity to personally thank them. Firstly, I’d like to thank my primary supervisor Dr. James Tardio; you have provided me with endless support and help throughout my 3rd year undergraduate research, honours and PhD candidature. Your enthusiasm, ideas, and patience have been essential in producing a thesis I can say I’m truly proud of. To Prof. Suresh Bhargava, I cannot thank you for your guidance and the opportunities that you have given me enough. You have taught me so much about being a good scientific communicator which I believe is one of the most valuable qualities I have gained throughout my candidature, for that I am extremely grateful.
    [Show full text]
  • Journal of Materials Chemistry a Accepted Manuscript
    Journal of Materials Chemistry A Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/materialsA Page 1 of 7 CREATED USING THE RSC ARTICLEJournal TEMPLATE of Materials (VER. 3.1) - SEE Chemistry WWW.RSC.ORG/ELECTRONICFILES A FOR DETAILS PAPER www.rsc.org/xxxxxx | XXXXXXXX Facile hydrothermal synthesis of crystalline Ta 2O5 nanorods, MTaO 3 (M=H, Na, K, Rb) nanoparticles, and their photocatalytic behaviour. Dorothea Gömpel, Muhammad Nawaz Tahir, Martin Panthöfer, Enrico Mugnaioli, Robert Brand- scheid, Ute Kolb, Wolfgang Tremel* 5 Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 20XX First published on the web Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x Alkali metal tantalates are of interest for applications in photocatalysis as well as in high temperature resistance or capacitor dielectric materials.
    [Show full text]
  • Eparating the Columbium and Tantalum Salts Or Oxides from Each Other
    TANTALUM, COLUMBIUM, AND FERROCOLUMBIUM A. Commodity Summary Tantalum is used in the electronics industry, as well as in aerospace and transportation applications. Columbium (the commonly used synonym for the element niobium) is used as an alloying element in steels and in superalloys. Tantalum and columbium are often found together in pyrochlore and baripyrochlore, the main columbium containing minerals, as well as in columbite. These minerals contain relatively small amounts of tantalum, pyrochlore, and baripyrochlore, having a columbium pentoxide-to-tantalum pentoxide ratio of 200 to 1 or greater.1 Columbite contains slightly larger amounts (up to eight percent) of tantalum.2 Tantalite is the primary source of tantalum pentoxide, and contains small amounts of columbium pentoxide. Microlite is another source of tantalum pentoxide. Tantalum is also recovered from tin slags.3 There has been no significant mining of tantalum or columbium ores in the United States since 1959. Producers of columbium metal and ferrocolumbium use imported concentrates, columbium pentoxide, and ferrocolumbium. Tantalum products are made from imported concentrates and metal, and foreign/domestic scrap.4 Ferrocolumbium is an alloy of iron and columbium. Ferrocolumbium is used principally as an additive to improve the strength and corrosion resistance of steel used in high strength linepipe, structural members, lightweight components in cars and trucks, and exhaust manifolds. High purity ferrocolumbium is used in superalloys for applications such as jet engine components, rocket assemblies, and heat-resisting and combustion equipment.5 Exhibit 1 summarizes the principal producers of tantalum, columbium and ferrocolumbium in the United States in 1992. Only Cabot Corporation and Shieldalloy Metallurgical Corporation use ores as their starting material.6 B.
    [Show full text]
  • Alkali Oxide-Tantalum Oxide and Alkali Oxide-Niobium Oxide Ionic Conductors
    NASA CR-1 34599 .Aft ALKALI OXIDE-TANTALUM OXIDE AND ALKALI OXIDE-NIOBIUM OXIDE IONIC CONDUCTORS by R. S. Roth, H. S. Parker, W. S. Brower and D. Minor prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT C-29933C NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C. 20234 1 1 Report No. 2. Government Accession No. 3. Recioient's Catalog No. CR-134599 NBSIR 7L-LL0 A Tit I a t r-v /-4 Ci it^titla H. 1 iiie ana oudiiti6 5. Report Date ALKALI OXIDE-TANTALUM OXIDE AND ALKALI OXIDE-NIOBIUM OXIDE April 1974 IONIC CONDUCTORS 6. Performing Organisation Code 7. Author(s) 8. Performing Organization Report No. R. S. Roth, H. s. Parker, W. S. Brower and D. Minor 10. Work Unit No. 9. Performing Organization Name and Address YOK 5650 National Bureau of Standards 11. Contract or Grant No. Washington, D.C. 20234 C-29933C 13. Type of Report and Period Covered Final Report 12. Sponsoring Agency Name and Address October 1972 - October 1973 National Aeronautics and Space Administration Lewis Research Center 14. Sponsoring Agency Code 21000 Brookpark Road Cleveland, Ohio 44135 15. Supplementary Notes Project Manager: Patricia O'Donnell 16. Abstract A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems ^'^2°5"-^^^'^°3' Nb^O^-NaNbO^, Nb^O^-KNbO^, Ta^O^-NaTaO^ , Ta^O^-LiTaO^ and Ta^O^-KTaO^. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaulated <by the sponsoring agency) by dielectric loss measurements.
    [Show full text]
  • Classification and Nomenclature of the Pyrochlore Group
    American Mineralogist, Volume62, pages403410, 1977 Classificationand nomenclatureof the pyrochlore group D. D. HoclnrHl Departmentof Geology,Uniuersity of Ottawa Ottawa,Canada Kl N 6N5 Abstract The IMA Subcommitteeon Nomenclatureof the PyrochloreGroup recommendsthe following classificationand nomenclature: Group pyrochlore[Ar-.B,O6(O,OH,F)r-".pHzO] Subgroups pyrochlore,microlite,betafite Species pyrochlore,kalipyrochlore, bariopyrochlore, yttropyrochlore, ceriopyrochlore, plumbopyrochlore, uranpy- rochlore(pyrochlore subgroup); microlite, stannomicrolite, bariomicrolite, plumbomicrolite, bismuto- microlite,uranmicrolite (microlite subgroup); yttrobetafite, plumbobetafite, betafite (betafite subgroup). Subgroupsare divided according to B-atoms(Nb, Ta, Ti) andspecies according to,4-atoms (K, Sn, Ba,REE, Pb,Bi, U). Forty-eightnames related to the pyrochloregroup should be dropped,and fivetype specimens should be reinvesti- sated. Introduction burg et al. (1960),van der Veen (1963),and Bon- The pyrochloregroup comprisesa seriesof cubic shtedt-Kupletskaya(1966). Adding to this growing oxidescontaining essential amounts of niobium,tan- complexity,the literaturecontinued to perpetuate "species" talum,or titanium.Pyrochlore itself was described by rnineral of questionablevalidity, such as Wdhlerin 1826,microlite by Shepardin 1835,and blomstrandite,ellsworthite, and chalcolamprite,and "hatchettolite"by Smith in 1877.The remaining synonymssuch as mendeleeviteand betafite, neo- memberswere all describedin the presentcentury. tantalite and microlite,
    [Show full text]
  • Pyrochlore Formation, Phase Relations, and Properties in the Cao–Tio2–(Nb,Ta)2O5 Systems R.S
    ARTICLE IN PRESS Journal of Solid State Chemistry 181 (2008) 406–414 www.elsevier.com/locate/jssc Pyrochlore formation, phase relations, and properties in the CaO–TiO2–(Nb,Ta)2O5 systems R.S. Rotha, T.A. Vanderaha,Ã, P. Bordetb, I.E. Greyc, W.G. Mummec, L. Caid, J.C. Ninod aMaterials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA bCNRS Laboratoire de Cristallographie, BP 166, 38042 Grenoble, France cCSIRO Minerals, Box 312, Clayton South, Vic. 3169, Australia dDepartment of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, USA Received 16 August 2007; received in revised form 29 November 2007; accepted 1 December 2007 Available online 15 December 2007 Abstract 0 Phase equilibria studies of the CaO:TiO2:Nb2O5 system confirmed the formation of six ternary phases: pyrochlore (A2B2O6O ), and five members of the (110) perovskite-slab series Can(Ti,Nb)nO3n+2, with n ¼ 4.5, 5, 6, 7, and 8. Relations in the quasibinary Ca2Nb2O7ÀCaTiO3 system, which contains the Can(Ti,Nb)nO3n+2 phases, were determined in detail. CaTiO3 forms solid solutions with Ca2Nb2O7 as well as CaNb2O6, resulting in a triangular single-phase perovskite region with corners CaTiO3–70Ca2Ti2O6:30Ca2 Nb2O7–80CaTiO3:20CaNb2O6. A pyrochlore solid solution forms approximately along a line from 42.7:42.7:14.6 to 42.2:40.8:17.0 CaO:TiO2:Nb2O5, suggesting formulas ranging from Ca1.48Ti1.48Nb1.02O7 to Ca1.41Ti1.37Nb1.14O7 (assuming filled oxygen sites), respectively. Several compositions in the CaO:TiO2:Ta2O5 system were equilibrated to check its similarity to the niobia system in the pyrochlore region, which was confirmed.
    [Show full text]
  • Mineralogy of Phoscorites of the Arbarastakh Complex (Republic of Sakha, Yakutia, Russia)
    minerals Article Mineralogy of Phoscorites of the Arbarastakh Complex (Republic of Sakha, Yakutia, Russia) Mikhail Nikolaevich Kruk 1,*, Anna Gennadievna Doroshkevich 1,2, Ilya Romanovich Prokopyev 1,3 and Ivan Aleksandrovich Izbrodin 1,2 1 Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] (A.G.D.); [email protected] (I.R.P.); [email protected] (I.A.I.) 2 Geological Institute, Siberian Branch of the Russian Academy of Sciences, 670047 Ulan-Ude, Russia 3 Department of Geology and Geophysics, Novosibirsk State University, 630090 Novosibirsk, Russia * Correspondence: [email protected]; Tel.: +7-913-981-40-34 Abstract: The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is Citation: Kruk, M.N.; Doroshkevich, A.G.; Prokopyev, I.R.; Izbrodin, I.A.
    [Show full text]
  • Mineralogic Notes Series 3
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY . GEORGE OTIS SMITH, Director Bulletin 610 MINERALOGIC NOTES SERIES 3 BY WALDEMAR T. SCHALLER WASHINGTON GOVERNMENT PRINTING OFFICE 1916 CONTENTS. Page. Introduction................................................................ 9 Koechlinite (bismuth molybdate), a new mineral............................ 10 Origin of investigation................................................... 10 Nomenclature......................................................... 10 Locality............................................................... 11 Paragenesis........................................................... 11 Crystallography........'............................................... 14 General character of crystals....................................... 14 Calculation of elements............................................. 14 Forms and angles................................................. 15 Combinations..................................................... 19 < Zonal relations and markings...................................... 19 Habits........................................................... 21 Twinning........................................................ 23 Measured crystals................................................. 26 Etch figures...................................................... 27o Intergrowths........................................................ 31 Relation to other minerals.......................................... 31 Physical properties...................................................
    [Show full text]
  • Complex Oxide Thin Films from Perovskite to Pyrochlore
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2018 Complex Oxide Thin Films from Perovskite to Pyrochlore Clayton Russell Frederick University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Frederick, Clayton Russell, "Complex Oxide Thin Films from Perovskite to Pyrochlore. " Master's Thesis, University of Tennessee, 2018. https://trace.tennessee.edu/utk_gradthes/5130 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Clayton Russell Frederick entitled "Complex Oxide Thin Films from Perovskite to Pyrochlore." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Physics. Jian Liu, Major Professor We have read this thesis and recommend its acceptance: Norman Mannella, Haidong Zhou Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Complex Oxide Thin Films from Perovskite to Pyrochlore A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Clayton Russell Frederick August 2018 62 Abstract The world of condensed matter physics is a fascinating field.
    [Show full text]