Alkali Oxide-Tantalum Oxide and Alkali Oxide-Niobium Oxide Ionic Conductors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding. -
Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup
American Mineralogist, Volume 80, pages 732-743, 1995 Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup GREGORY R. LUMPKIN Advanced Materials Program, Australian Nuclear Science and Technology Organization, Menai 2234, New South Wales, Australia RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Primary alteration of uranpyrochlore from granitic pegmatites is characterized by the substitutions ADYD-+ ACaYO, ANaYF -+ ACaYO, and ANaYOI-I --+ ACaYO. Alteration oc- curred at ""450-650 °C and 2-4 kbar with fluid-phase compositions characterized by relatively low aNa+,high aeaH, and high pH. In contrast, primary alteration of pyrochlore from nepheline syenites and carbonatites follows a different tre:nd represented by the sub- stitutions ANaYF -+ ADYD and ACaYO -+ ADYD. In carbonatites, primary alteration of pyrochlore probably took place during and after replacement of diopside + forsterite + calcite by tremolite + dolomite :t ankerite at ""300-550 °C and 0-2 kbar under conditions of relatively low aHF, low aNa+,low aeaH, low pH, and elevated activities of Fe and Sr. Microscopic observations suggest that some altered pyrochlor1es are transitional between primary and secondary alteration. Alteration paths for these specimens scatter around the trend ANaYF -+ ADYD. Alteration probably occurred at 200-350 °C in the presence of a fluid phase similar in composition to the fluid present during primary alteration but with elevated activities of Ba and REEs. Mineral reactions in the system Na-Ca-Fe-Nb-O-H indicate that replacement of pyrochlore by fersmite and columbite occurred at similar conditions with fluid conpositions having relatively low aNa+,moderate aeaH, and mod- erate to high aFeH.Secondary alteration « 150 °C) is charactlerized by the substitutions ANaYF -+ ADYD,ACaYO -+ ADYD,and ACaXO -+ ADXDtogether with moderate to extreme hydration (10-15 wt% H20 or 2-3 molecules per formula unit). -
The Wodginite Group. Iii. Classification and New Species
633 Canadian Mineralogist Vol. 30, pp. 633-638(1992) THE WODGINITE GROUP. III. CLASSIFICATION AND NEW SPECIES T. SCOTT ERCITI, PETRIERNY eNp FRANK C, HAWTHORNE Deportmentof GeologicalSciences, University of Manitoba, Winnipeg,Manitoba R3T 2N2 ABSTRACT The minerals constituting the wodginite group are isostructural oxides, with the generalformula ABC2Oy (Z = 4);A = Mn2*, Fd*, Li, E B : Sn4*, Ti, Fe3*, Ta;C : Ta, Nb. A classificationsystembased onthe chemistry of the .,4-and B-cationsites has been devised; it useschemical modifiers in conjunctionwith the root name"wodginite". Wodginite itself has the generalformula MnSnTa2Os;two new membersof the wodginite group are charactedzed here:-ferrowodginite, F/+SnTa2Os and titanowoiginite, MnTiTa2Os. Ferrowodginite occurs as 0.01- to- 0.2-mm inclusionsin cassiteritefrom a granitic pegmatitenear Sukula, southwestemFinland. It is dark brown to black' has a dark brown streak, vitreous luster, is optically anisotropic with all n>2, and is nonfluorescent.The calculated density is 7.02 g/cm3; it is brittle, H 5%, without cleavage;it has an irregular fracture. The averagechemical composition(wt. Vo)is: MnO 2.8, FeO 9.3, Fe2O31.9, TiO2 4.3, SnO210.1, Nb2O5 14.8, Ta2O5 56.3, total 99.4.The strongestfivelines in the X-ray powderpauein-are:4.16('50),'2.g7(Aq,2.55(30i, 2.493(40\ {nd 1.a55(30)A. fne unit-cell parametersare o 9.415(7),b 11.442(6),c 5.103(4)A, B 90.8(l)', V 549.'7(6)Ar, spacegroup A/c. Titanowodginiteoccurs as euhedral,diamond-shaped crystals up to I cm acrossat the Tanco pegmatite,Bernic Lake, Manitoba. -
Columbium (Niubium) and Tantalum
COLUMBIUM (NIOBIUM) AND TANTALUM By Larry D. Cunningham Domestic survey data and tables were prepared by Robin C. Kaiser, statistical assistant, and the world production table was prepared by Regina R. Coleman, international data coordinator. Columbium [Niobium (Nb)] is vital as an alloying element in economic penalty in most applications. Neither columbium nor steels and in superalloys for aircraft turbine engines and is in tantalum was mined domestically because U.S. resources are of greatest demand in industrialized countries. It is critical to the low grade. Some resources are mineralogically complex, and United States because of its defense-related uses in the most are not currently (2000) recoverable. The last significant aerospace, energy, and transportation industries. Substitutes are mining of columbium and tantalum in the United States was available for some columbium applications, but, in most cases, during the Korean Conflict, when increased military demand they are less desirable. resulted in columbium and tantalum ore shortages. Tantalum (Ta) is a refractory metal that is ductile, easily Pyrochlore was the principal columbium mineral mined fabricated, highly resistant to corrosion by acids, a good worldwide. Brazil and Canada, which were the dominant conductor of heat and electricity, and has a high melting point. pyrochlore producers, accounted for most of total estimated It is critical to the United States because of its defense-related columbium mine production in 2000. The two countries, applications in aircraft, missiles, and radio communications. however, no longer export pyrochlore—only columbium in Substitution for tantalum is made at either a performance or upgraded valued-added forms produced from pyrochlore. -
The Periodic Table of Elements
The Periodic Table of Elements 1 2 6 Atomic Number = Number of Protons = Number of Electrons HYDROGENH HELIUMHe 1 Chemical Symbol NON-METALS 4 3 4 C 5 6 7 8 9 10 Li Be CARBON Chemical Name B C N O F Ne LITHIUM BERYLLIUM = Number of Protons + Number of Neutrons* BORON CARBON NITROGEN OXYGEN FLUORINE NEON 7 9 12 Atomic Weight 11 12 14 16 19 20 11 12 13 14 15 16 17 18 SODIUMNa MAGNESIUMMg ALUMINUMAl SILICONSi PHOSPHORUSP SULFURS CHLORINECl ARGONAr 23 24 METALS 27 28 31 32 35 40 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 POTASSIUMK CALCIUMCa SCANDIUMSc TITANIUMTi VANADIUMV CHROMIUMCr MANGANESEMn FeIRON COBALTCo NICKELNi CuCOPPER ZnZINC GALLIUMGa GERMANIUMGe ARSENICAs SELENIUMSe BROMINEBr KRYPTONKr 39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 RUBIDIUMRb STRONTIUMSr YTTRIUMY ZIRCONIUMZr NIOBIUMNb MOLYBDENUMMo TECHNETIUMTc RUTHENIUMRu RHODIUMRh PALLADIUMPd AgSILVER CADMIUMCd INDIUMIn SnTIN ANTIMONYSb TELLURIUMTe IODINEI XeXENON 85 88 89 91 93 96 98 101 103 106 108 112 115 119 122 128 127 131 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 CESIUMCs BARIUMBa HAFNIUMHf TANTALUMTa TUNGSTENW RHENIUMRe OSMIUMOs IRIDIUMIr PLATINUMPt AuGOLD MERCURYHg THALLIUMTl PbLEAD BISMUTHBi POLONIUMPo ASTATINEAt RnRADON 133 137 178 181 184 186 190 192 195 197 201 204 207 209 209 210 222 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 FRANCIUMFr RADIUMRa RUTHERFORDIUMRf DUBNIUMDb SEABORGIUMSg BOHRIUMBh HASSIUMHs MEITNERIUMMt DARMSTADTIUMDs ROENTGENIUMRg COPERNICIUMCn NIHONIUMNh -
The Crystal Ghemistry of Complex Niobium and Tantalum Oxides Ll. Composition and Structure of Wodginite
American Mineralogist, Volume 59, pages 1040-1044, 1974 TheCrystal Ghemistry of ComplexNiobium and Tantalum Oxides ll. Compositionand Structure of Wodginite J. Gnermu, axo M. R. TnonNsnn Diaision of Mineralogy, CSIRO, Floreat Park, Iilestern Australia, 6014 Abstract The structure of wodginite (non-centrosymmetric monoclinic space group Cc; ideal formula, MnXtX[lao,, where site Xg contains 5-valent ions (and all the niobium) and the average valency of cations in site X, is 4) was determined by film methods to be an ordered form of tho ixiolite structure. The a and D cell edges and angle B increase with manganesb content, whereas c remains constant for wodginites from five localities in Western Australia. Composition and Lattice Parameters from Wodgina, hand picked from a homogeneous The charasteristicsof the mineral wodginite were region of a polished section.Electron probe analysis clearly describedby Nickel, Rowland, and McAdam and powderX-ray diffraction (Hiigg Guinier focussing (1963) for samplesof the mineral from Wodgina, camera) gave the cell dimensibnsand composition Australia, and Bernic Lake, Manitoba. The s,truc- usedin the calculationsshown in Table l. Data were ture was not fully defined, and the efiect of com- collectedphotographically along two axes([010] and positionalvariations on the st,ructurecould not there- Ul2l) using a Nonius Integrating Weissenberg fore be discussed. camera, equiinclination geometry,and CuKa radia- Table 1 shows the compositions and lattice tion. After the applicationof Lorenz and polarization parametersof wodginitesfrom five localitiesin West- corrections, these two sets of data were inter-cor- ern Australia and the averageparameters quoted by related, and symmetrically similar reflections were Grice, eerny and Ferguson (1972) fbr the wod- averagedto give 555 independentobservations. -
Aluminum Electrolytic Vs. Polymer – Two Technologies – Various Opportunities
Aluminum Electrolytic vs. Polymer – Two Technologies – Various Opportunities By Pierre Lohrber BU Manager Capacitors Wurth Electronics @APEC 2017 2017 WE eiCap @ APEC PSMA 1 Agenda Electrical Parameter Technology Comparison Application 2017 WE eiCap @ APEC PSMA 2 ESR – How to Calculate? ESR – Equivalent Series Resistance ESR causes heat generation within the capacitor when AC ripple is applied to the capacitor Maximum ESR is normally specified @ 120Hz or 100kHz, @20°C ESR can be calculated like below: ͕ͨ͢ 1 1 ͍̿͌ Ɣ Ɣ ͕ͨ͢ ∗ ͒ ͒ Ɣ Ɣ 2 ∗ ∗ ͚ ∗ ̽ 2 ∗ ∗ ͚ ∗ ̽ ! ∗ ̽ 2017 WE eiCap @ APEC PSMA 3 ESR – Temperature Characteristics Electrolytic Polymer Ta Polymer Al Ceramics 2017 WE eiCap @ APEC PSMA 4 Electrolytic Conductivity Aluminum Electrolytic – Caused by the liquid electrolyte the conductance response is deeply affected – Rated up to 0.04 S/cm Aluminum Polymer – Solid Polymer pushes the conductance response to much higher limits – Rated up to 4 S/cm 2017 WE eiCap @ APEC PSMA 5 Electrical Values – Who’s Best in Class? Aluminum Electrolytic ESR approx. 85m Ω Tantalum Polymer Ripple Current rating approx. ESR approx. 200m Ω 630mA Ripple Current rating approx. 1,900mA Aluminum Polymer ESR approx. 11m Ω Ripple Current rating approx. 5,500mA 2017 WE eiCap @ APEC PSMA 6 Ripple Current >> Temperature Rise Ripple current is the AC component of an applied source (SMPS) Ripple current causes heat inside the capacitor due to the dielectric losses Caused by the changing field strength and the current flow through the capacitor 2017 WE eiCap @ APEC PSMA 7 Impedance Z ͦ 1 ͔ Ɣ ͍̿͌ ͦ + (͒ −͒ )ͦ Ɣ ͍̿͌ ͦ + 2 ∗ ∗ ͚ ∗ ͍̿͆ − 2 ∗ ∗ ͚ ∗ ̽ 2017 WE eiCap @ APEC PSMA 8 Impedance Z Impedance over frequency added with ESR ratio 2017 WE eiCap @ APEC PSMA 9 Impedance @ High Frequencies Aluminum Polymer Capacitors have excellent high frequency characteristics ESR value is ultra low compared to Electrolytic’s and Tantalum’s within 100KHz~1MHz E.g. -
Development of Niobium-Boron Grain
DEVELOPMENT OF NIOBIUM-BORON GRAIN REFINER FOR ALUMINIUM-SILICON ALLOYS A thesis submitted for the degree of Doctor of Philosophy (PhD) by Magdalena Nowak Brunel Centre for Advanced Solidification Technology (BCAST) Brunel University September 2011 To my mother and my late father... II Abstract Aluminium castings with a large grain structure have poor mechanical properties which are primarily due to casting defects as opposed to fine grain structure. The grain refinement practice using chemical addition is well established for wrought alloys, however in the case of casting alloys, the practice of adding grain refiners and the impact on castability is not well established. The addition of well known Al-5Ti-B grain refiner to casting alloys with silicon (Si) content above 3 wt.% is not effective. This is believed to be due to the chemical reaction between Ti and Si. The current research aim is to find an alternative, but effective, chemical phase which can refine Al-Si alloy grains. Based on a crystallographic database search and intermetallic phases found in Aluminium–Niobium-Boron, there exists several iso-structural phases similar to those of Al3Ti and TiB2. We have selected a phase which exhibits chemical phase stability with Si (below 900 oC) and developed a potential novel grain refiner Nb-B for Al-Si cast alloys. Various Al-Si binary alloys and a commercial sourced LM6 (Al-10Si-Mg) cast alloys were cast after novel grain refiner addition to the melt. It is the first time that such fine grain structures were achieved for Al-Si alloys when Si >4wt.%. -
Stable Isotopes of Niobium Properties of Niobium
Stable Isotopes of Niobium Isotope Z(p) N(n) Atomic Mass Natural Abundance Nuclear Spin Nb-93 41 52 92.906376 100% 9/2+ Niobium was discovered in 1801 by Charles Hatchett. Its name comes from the Greek name Niobe, meaning “daughter of Tantalus” (tantalum is closely related to niobium in the periodic table of elements). Because the niobium was discovered in an ore called columbite, it was known temporarily as columbium. Niobium, a gray or silvery soft metal, is ductile and very malleable at room temperature and does not tarnish or oxidize at room temperature. It only reacts with oxygen and halogens when heated. It is less corrosion- resistant than tantalum is at high temperatures. Niobium is not attacked by nitric acid up to 100 °C but is vigorously attacked by the mixture of nitric and hydrofluoric acids. It is unaffected at room temperature by most acids and by aqua regia. It is attacked by alkaline solutions, to some extent, at all temperatures. Niobium becomes a superconductor at 9.15 °K. It is insoluble in water, hydrochloric acid, nitric acid and aqua regia; soluble in hydrofluoric acid; and soluble in fused alkali hydroxide. At ordinary temperatures niobium does not react with most chemicals; however, the metal is slowly attacked by hydrofluoric acid and dissolves and is attacked by hydrogen fluoride and fluorine gases, forming niobium pentafluoride. Niobium is oxidized by air at 350 ºC, first forming a pale yellow oxide film of increasing thickness, which changes its color to blue. On further heating to 400 ºC, it converts to a black film of niobium dioxide. -
Separation of Niobium and Tantalum - a Literature Survey Ernest L
Ames Laboratory ISC Technical Reports Ames Laboratory 8-15-1956 Separation of niobium and tantalum - a literature survey Ernest L. Koerner Iowa State College Morton Smutz Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports Part of the Chemistry Commons Recommended Citation Koerner, Ernest L. and Smutz, Morton, "Separation of niobium and tantalum - a literature survey" (1956). Ames Laboratory ISC Technical Reports. 145. http://lib.dr.iastate.edu/ameslab_iscreports/145 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Separation of niobium and tantalum - a literature survey Abstract During recent years increased interest has been shown in the metal niobium. Because niobium has a high melting point (4376° F) and a low neutron cross-section, the Atomic Energy Commission has encouraged research on new methods of winning the metal from its ores with the ultimate hope of finding a process which would yield niobium metal at a reasonable price. The two areas of endeavor in which·the principal difficulties in finding such an economic process occur are the separation of tantalum from the niobium and the conversion of purified niobium salts to the metal. This report, then, was written to consolidate the more important information available in the literature on one of these troublesome areas, that of the separation of niobium and tantalum. -
Effect of Oxygen on the Corrosion of Niobium and Tantalum by Liquid Lithium
ORNL-TM-4069 DECEIVED BY TIC MAR 2 01973 THE EFFECT OF OXYGEN ON THE CORROSION OF NIOBIUM AND TANTALUM BY LIQUID LITHIUM R. L. Klueh MASTER SiSTiHBUTWfl c-f THIS &3CmMT 13 U&UMITED r. I . • -I ' / •''Hi'; 1 . V/', •• I • • H I •-' , C •!", >i ; ' o ': 'J -1 ; .•..'.' •-•'I' < . • . .J ,• ! OAK RIDGE NATIONAL LABORATORY '-I. ' ' t- /operated'by "unjon 'carbide, coloration • forjhe'u.s. atowic1 ENERGY'CQMMISSION 1 • - " <•:-.*- '' .1 iS> '•'• . ' , 1 <• \ .1 I . 'v: • = 1 r i. H. ORNL-TM-4069 Contract No. W-7405-eng-26 METALS AND CERAMICS DIVISION THE EFFECT OF OXYGEN ON THE CORROSION OF NIOBIUM AND TANTALUM BY LIQUID LITHIUM R. L. Klueh NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States noi' the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility fir the accuracy, com- pleteness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. MARCH 1973 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by • i UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION MASTER • • • 11X CONTENTS Page Abstract 1 Introduction 1 Experimental 5 Results ...... 7 The Effect of Oxygen in Lithium 7 The Effect of Oxygen in the Refractory Metal 9 Discussion ........ 16 Acknowledgments 21 THE EFFECT OF OXYGEN ON THE CORROSION OF NIOBIUM AND TANTALUM BY LIQUID LITHIUM R. L. -
First U.S. Occurrence of Wodginite from Powhatan County, Virginia
American Mineralogist, Volume 69, pages 807-809, 1984 First U.S. occurrenceof wodginitefrom PowhatanCounty, Virginia MrcHeel A. WIse eNo Pnrn er,nNf Department of Earth Sciences, University of Manitoba Winnipeg, Manitoba R3T 2N2 Canada Abstract Wodginite occurs as black subhedral grains in the Be, Nb-Ta, Sn bearing Herbb #2 pegmatite in Powhatan County, Virginia. The wodginite is associatedwith amazonite and topaz in the intermediate zone of the pegmatite. Other Nb-Ta-bearing minerals found associated with wodginite are cassiterite, in part as inclusions in wodginite, and par- tially ordered man6ianocolumbite.The Herbb wodginite is compositionally similar to previ- ously studied wodginitesand has an averageformula (Mnz.aoFe?.1sb+.or(Snz.oqTirrcTaost Fd.14)x.8e(Ta7.ozNbos8)>8.0oOrz.The average unit cell dimensions ate a 9.471(2), b tt.43t(2),c 5.108(l)A, p90"47'(t),v 553.1(l)43. Introduction ite), quartz and muscovite are the dominant minerals present. Beryl, topaz, columbite-tantalite,wodginite, A black mineral, at first believed to be columbite- cassiterite,and minor spessartinealso occur in the peg- tantalite, was collected by the first author from the Herbb matite, mainly in the clayey decomposition products. #2 pegmatite in Powhatan County, central Virginia. Wodginite is found scatteredthroughout the kaolinized Griffitts et al. (1953) noted "small lustrous tabular to feldsparof the intermediatezones. Veinlets of wodginite equant crystals of columbite-tantalite"in albitized por- also occur near perthitic amazonitebodies and to a lesser tions of this pegmatite,a speciesalso quotedby Jahnset eitent are also associatedwith topaz. al. (1952).Recent examination of Nb,Ta-bearingminerals from this locality has led to the identification of the rare Physical properties Mn,Sn,Ta-oxidemineral, wodginite.