Properties and Recrystallization of Radiation Damaged Pyrochlore and Titanite

Total Page:16

File Type:pdf, Size:1020Kb

Properties and Recrystallization of Radiation Damaged Pyrochlore and Titanite Properties and recrystallization of radiation damaged pyrochlore and titanite Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences, Department of Geosciences of University of Hamburg Submitted by Peter Zietlow 2016 in Hamburg The following evaluators recommend the admission of this dissertation: Prof. Dr. Ulrich Bismayer Prof. Dr. Shrinivas Viladkar Date of the oral Ph.D. defense: 02.11.2016 PROPERTIES AND RECRYSTALLIZATION OF RADIATION DAMAGED PYROCHLORE AND TITANITE Contents Contents Contents ...................................................................................................................................... i Abstract .................................................................................................................................... iii 1 Radiation damaged materials .............................................................................................. 1 1.1 Introduction ................................................................................................................................... 1 1.2 Metamict minerals ........................................................................................................................ 5 1.3 α-decay .......................................................................................................................................... 6 2 Metamict pyrochlore ............................................................................................................. 7 2.1 Crystalline structure ...................................................................................................................... 7 2.2 Structural damage ....................................................................................................................... 10 2.3 Self-annealing .............................................................................................................................. 14 2.4 Sample description ...................................................................................................................... 16 2.5 Experimental methods ................................................................................................................ 18 2.5.1 Electron microprobe ............................................................................................................. 18 2.5.2 X-ray powder diffraction ...................................................................................................... 21 2.5.3 Raman spectroscopy ............................................................................................................ 22 2.5.4 Fourier Transform Infrared spectroscopy ............................................................................ 26 2.5.5 Differential scanning calometry / Thermogravimetry .......................................................... 27 2.6 Group theoretical analysis of the pyrochlore structure .............................................................. 27 2.7 Results ......................................................................................................................................... 29 2.7.1 Microscopy and macroscopic sample change ...................................................................... 29 2.7.2 Electron microprobe ............................................................................................................. 30 2.7.3 Powder X-ray diffraction ...................................................................................................... 35 2.7.4 Raman spectroscopy ............................................................................................................ 44 2.7.5 Newania pyrochlores ............................................................................................................ 55 2.7.6 Fourier Transform Infrared spectroscopy (FTIR) .................................................................. 55 2.7.7 Thermal analysis ................................................................................................................... 56 2.8 Discussion .................................................................................................................................... 59 2.8.1 Electron microprobe analysis ............................................................................................... 59 2.8.2 X-ray diffraction .................................................................................................................... 60 2.8.3 Raman spectroscopy ............................................................................................................ 63 2.8.4 Newania pyrochlore ............................................................................................................. 74 [i] PROPERTIES AND RECRYSTALLIZATION OF RADIATION DAMAGED PYROCHLORE AND TITANITE Contents 2.8.5 Thermal analysis ................................................................................................................... 74 3 Metamict titanite ................................................................................................................. 76 3.1 Titanite structure ......................................................................................................................... 76 3.2 Magic angle spin nuclear magnetic resonance spectroscopy (MAS NMR) ................................. 76 Experimental conditions ................................................................................................................ 77 3.3 NMR results and discussion ......................................................................................................... 78 4 Conclusions .......................................................................................................................... 83 Bibliography ........................................................................................................................... 85 Curriculum vitae ..................................................................................................................... A List of publications .................................................................................................................. B Acknowledgements .................................................................................................................. D Eidesstattliche Versicherung .................................................................................................. E [ii] PROPERTIES AND RECRYSTALLIZATION OF RADIATION DAMAGED PYROCHLORE AND TITANITE Abstract Abstract Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1·1018 α-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1·1018 dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6·1018 dpg), and Blue River/Canada (10.5 wt% U, 115.4·1018 dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm-1 are sensitive to radiation damage (Vandenborre & Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm-1 devided by the sum of the integrated intensities of the bands between 810 and 860 cm-1. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its initial state an amorphous x-ray diffraction pattern superimposed by weak Bragg- maxima that indicates the existence of ordered regions in a damaged matrix. Unlike the other studied pyrochlores, Raman spectra of the Blue River sample show the appearance of local modes above 560 K between 700 and 800 cm-1 resulting from its high content of U and Ta impurities. DSC measurements confirmed the observed structural recovery upon annealing. While the annealing-induced ordering of Panda Hill begins at a lower temperature (ca. 500 K) the recovery of the highly-damaged pyrochlore from Miass occurs at 800 K. The Blue-River pyrochlore shows a multi-step recovery which is similarly seen by XRD. Thermogravimetry showed a continuous mass loss on heating for all radiation-damaged pyrochlores (Panda Hill ca. 1%, Blue River ca. 1.5%, Miass ca. 2.9%). [iii] PROPERTIES AND RECRYSTALLIZATION OF RADIATION DAMAGED PYROCHLORE AND TITANITE Abstract In order to elucidate
Recommended publications
  • Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup
    American Mineralogist, Volume 80, pages 732-743, 1995 Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup GREGORY R. LUMPKIN Advanced Materials Program, Australian Nuclear Science and Technology Organization, Menai 2234, New South Wales, Australia RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Primary alteration of uranpyrochlore from granitic pegmatites is characterized by the substitutions ADYD-+ ACaYO, ANaYF -+ ACaYO, and ANaYOI-I --+ ACaYO. Alteration oc- curred at ""450-650 °C and 2-4 kbar with fluid-phase compositions characterized by relatively low aNa+,high aeaH, and high pH. In contrast, primary alteration of pyrochlore from nepheline syenites and carbonatites follows a different tre:nd represented by the sub- stitutions ANaYF -+ ADYD and ACaYO -+ ADYD. In carbonatites, primary alteration of pyrochlore probably took place during and after replacement of diopside + forsterite + calcite by tremolite + dolomite :t ankerite at ""300-550 °C and 0-2 kbar under conditions of relatively low aHF, low aNa+,low aeaH, low pH, and elevated activities of Fe and Sr. Microscopic observations suggest that some altered pyrochlor1es are transitional between primary and secondary alteration. Alteration paths for these specimens scatter around the trend ANaYF -+ ADYD. Alteration probably occurred at 200-350 °C in the presence of a fluid phase similar in composition to the fluid present during primary alteration but with elevated activities of Ba and REEs. Mineral reactions in the system Na-Ca-Fe-Nb-O-H indicate that replacement of pyrochlore by fersmite and columbite occurred at similar conditions with fluid conpositions having relatively low aNa+,moderate aeaH, and mod- erate to high aFeH.Secondary alteration « 150 °C) is charactlerized by the substitutions ANaYF -+ ADYD,ACaYO -+ ADYD,and ACaXO -+ ADXDtogether with moderate to extreme hydration (10-15 wt% H20 or 2-3 molecules per formula unit).
    [Show full text]
  • Volcanic-Derived Placers As a Potential Resource of Rare Earth Elements: the Aksu Diamas Case Study, Turkey
    minerals Article Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey Eimear Deady 1,*, Alicja Lacinska 2, Kathryn M. Goodenough 1, Richard A. Shaw 2 and Nick M. W. Roberts 3 1 The Lyell Centre, British Geological Survey, Research Avenue South, Edinburgh EH14 4AP, UK; [email protected] 2 Environmental Science Centre, British Geological Survey, Nicker Hill, Keyworth NG12 5GG, UK; [email protected] (A.L.); [email protected] (R.A.S.) 3 Environmental Science Centre, NERC Isotope Geosciences Laboratory, Nicker Hill, Keyworth NG12 5GG, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)131-6500217 Received: 15 February 2019; Accepted: 26 March 2019; Published: 30 March 2019 Abstract: Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands.
    [Show full text]
  • Columbium (Niubium) and Tantalum
    COLUMBIUM (NIOBIUM) AND TANTALUM By Larry D. Cunningham Domestic survey data and tables were prepared by Robin C. Kaiser, statistical assistant, and the world production table was prepared by Regina R. Coleman, international data coordinator. Columbium [Niobium (Nb)] is vital as an alloying element in economic penalty in most applications. Neither columbium nor steels and in superalloys for aircraft turbine engines and is in tantalum was mined domestically because U.S. resources are of greatest demand in industrialized countries. It is critical to the low grade. Some resources are mineralogically complex, and United States because of its defense-related uses in the most are not currently (2000) recoverable. The last significant aerospace, energy, and transportation industries. Substitutes are mining of columbium and tantalum in the United States was available for some columbium applications, but, in most cases, during the Korean Conflict, when increased military demand they are less desirable. resulted in columbium and tantalum ore shortages. Tantalum (Ta) is a refractory metal that is ductile, easily Pyrochlore was the principal columbium mineral mined fabricated, highly resistant to corrosion by acids, a good worldwide. Brazil and Canada, which were the dominant conductor of heat and electricity, and has a high melting point. pyrochlore producers, accounted for most of total estimated It is critical to the United States because of its defense-related columbium mine production in 2000. The two countries, applications in aircraft, missiles, and radio communications. however, no longer export pyrochlore—only columbium in Substitution for tantalum is made at either a performance or upgraded valued-added forms produced from pyrochlore.
    [Show full text]
  • Phase Decomposition Upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Østfold, Norway
    MINERALOGY CHIMIA 2010, 64, No. 10 705 doi:10.2533/chimia.2010.705 Chimia 64 (2010) 705–711 © Schweizerische Chemische Gesellschaft Phase Decomposition upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Østfold, Norway Lutz Nasdala*a, Katja Ruschela, Dieter Rhedeb, Richard Wirthb, Ljuba Kerschhofer-Wallnerc, Allen K. Kennedyd, Peter D. Kinnye, Friedrich Fingerf, and Nora Groschopfg Abstract: The internal textures of crystals of moderately radiation-damaged monazite–(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite–(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a ‘pseudomorph’ after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, ‘wet’ environment, and hence their suitability as potential host ceramics for the long-term immobilisation of ra- dioactive waste. Keywords: Chemical alteration · Monazite–(Ce) · Radiation damage · Thorium silicate 1. Introduction eventually to the formation of a non-crys- to undergo chemical alteration, and its in- talline form.[1,2] Such normally crystalline, crease with cumulative radiation damage, The accumulation of structural damage irradiation-amorphised minerals are com- ii) how exactly chemical alteration proc- generated by the corpuscular self-irra- monly described by the term ‘metamict’.[3] esses take place, and iii) as to which de- diation of minerals containing actinide The metamictisation process is controlled gree these materials (i.e.
    [Show full text]
  • Raman Spectroscopic Study of Variably Recrystallized Metamict Zircon from Amphibolite-Facies Metagranites, Serbo-Macedonian Massif, Bulgaria
    1357 The Canadian Mineralogist Vol. 44, pp. 1357-1366 (2006) RAMAN SPECTROSCOPIC STUDY OF VARIABLY RECRYSTALLIZED METAMICT ZIRCON FROM AMPHIBOLITE-FACIES METAGRANITES, SERBO-MACEDONIAN MASSIF, BULGARIA ROSITSA TITORENKOVA§ Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofi a, Bulgaria BORIANA MIHAILOVA Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D–20146 Hamburg. Germany LUDMIL KONSTANTINOV Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofi a, Bulgaria ABSTRACT We investigated zircon from high-grade metagranites of the Serbo-Macedonian Massif, in Bulgaria, by cathodoluminescence (CL), back-scattered-electron imaging, electron-microprobe analysis, and Raman microspectroscopy. The structural state in various zones was assessed using: (i) the position and width of the Raman peak near 1008 cm–1, (ii) the relative Raman intensity –1 of the symmetrical and anti-symmetrical SiO4 modes, (iii) the width of the peaks near 357 and 439 cm , and (iv) the occurrence of extra Raman scattering near 162, 509, 635 and 785 cm–1. The analyzed zones are divided into two main groups: (A) areas with a well-resolved Raman peak near 1008 cm–1, and (B) areas with a very weak Raman scattering near 1008 cm–1. Group B can be classifi ed into two subgroups: (B-i) dark zones in CL images, with a high concentration of uranium (up to 7000 ppm), and (B-ii) outermost bright zones in CL images with a concentration of U lower than that in the inner areas and commonly below the detection limit.
    [Show full text]
  • U-Th-Pb Zircon Geochronology by ID-TIMS, SIMS, and Laser Ablation ICP-MS: Recipes, Interpretations, and Opportunities
    ÔØ ÅÒÙ×Ö ÔØ U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities U. Schaltegger, A.K. Schmitt, M.S.A. Horstwood PII: S0009-2541(15)00076-5 DOI: doi: 10.1016/j.chemgeo.2015.02.028 Reference: CHEMGE 17506 To appear in: Chemical Geology Received date: 17 November 2014 Revised date: 15 February 2015 Accepted date: 20 February 2015 Please cite this article as: Schaltegger, U., Schmitt, A.K., Horstwood, M.S.A., U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpreta- tions, and opportunities, Chemical Geology (2015), doi: 10.1016/j.chemgeo.2015.02.028 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities U. Schaltegger1, A. K. Schmitt2, M.S.A. Horstwood3 1Earth and Environmental Sciences, Department of Earth Sciences, University of Geneva, Geneva, Switzerland ([email protected]) 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA ([email protected])
    [Show full text]
  • Micro-Spectroscopy – Shedding Light on Rock Formation
    VOL. 17 NO. 3 (2005) AARTICLERTICLE Micro-spectroscopy – shedding light on rock formation Simon FitzGerald Horiba Jobin Yvon Ltd, 2 Dalston Gardens, Stanmore, Middlesex HA7 1BQ, UK. E-mail: [email protected] Introduction valuable insight into stress/strain in semi- Shedding light on rock Whilst there are many imaging tech- conductors, chirality/diameter of carbon formation niques available to a research scien- nanotubes and crystallinity of polymers. Investigation of mineral and rock samples tist, the information which is provided The elemental characterisation of XRF, can gain strongly from Raman and XRF is often only of a visual/topographical however, is ideal for micro-electronics, analysis. Raman allows fast identification nature. What they fail to provide is true including analysis of circuit boards and of mineral forms, and with microscopic compositional (chemical/elemental) soldering, and compliance testing for the spatial resolution, can be used to study analysis of the materials. However, micro- forthcoming European WEEE/RoHS “lead heterogeneity within rocks, probe inclu- spectroscopic techniques such as Raman free” legislation. sions in situ, and identify minute frag- or X-ray fluorescence (XRF) can fill this Other areas of interest for micro- ments. gap, allowing highly detailed images to spectroscopy include pharmaceuticals At the Johannes Gutenberg-Universität be generated based upon the sample’s (crystal polymorphs, tablet formulation, in Mainz, Germany, Dr Lutz Nasdala and material composition. well plates), coatings (homogeneity, co-workers have extensively explored The information the two techniques thickness) and metallurgy (alloys, plating, the use of micro-Raman in mineralogy, provide are quite different, but their appli- corrosion).
    [Show full text]
  • Reworking the Gawler Craton: Metamorphic and Geochronologic Constraints on Palaeoproterozoic Reactivation of the Southern Gawler Craton, Australia
    Reworking the Gawler Craton: Metamorphic and geochronologic constraints on Palaeoproterozoic reactivation of the southern Gawler Craton, Australia Rian A. Dutch, B.Sc (Hons) Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Adelaide January 2009 Chapter 2 In-situ EPMA monazite chemical dating at the University of Adelaide: Setup, procedures, comparisons and application to determining the timing of high-grade deformation and metamorphism in the southern Gawler Craton. Abstract Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling the development of orogenic systems. Electron Probe Micro-Analysis (EPMA) chemical dating of monazite provides a useful method of obtaining good precision age data from monazite bearing mineral assemblages. presented here is a review of EPMA monazite dating theory together with a detailed description of the EPMA monazite setup and methods developed at the University of Adelaide. This includes the initial setup and optimisation of the technique on the Cameca SX51 electron microprobe, sample preparation and data reduction and analysis techniques. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to Ordovician, produce ages which are within error of the isotopically determined ages, indicating the validity of the developed setup. The technique is then applied to a sample of unknown age from the southern Gawler Craton to determine the timing of high-grade metamorphism and deformation in the Fishery Bay region. Three samples from the late Archaean to Palaeoproterozoic Sleaford Complex produced EPMA monazite ages of 1707 ± 20 Ma, 1690 ± 8 Ma and 1708 ± 12 Ma indicating that the high-grade metamorphism and deformation in this region was a result of reworking during the 1725–1690 Ma Kimban Orogeny, and not the 2450–2420 Ma Sleafordian Orogeny.
    [Show full text]
  • Zircon - a Very Old Gemstone 鋯鋯石 - 由來已久的寶石 Prof
    Zircon - A Very Old Gemstone 鋯鋯石 - 由來已久的寶石 Prof. Dr Henry A. Hänni(亨瑞 翰尼), FGA, SSEF Research Associate Fig. 1 A selection of zircons of various origins. The greyish cabochon is a cat’s eye weighing 4.5 cts. 一組不同產地的鋯石。灰色調的素面鋯石貓眼為4.5 cts。 Photo © H.A.Hänni 本文提及兩種含鋯的常見寶石材料 — 鋯石和 hafnium and lead, Zircons usually contain traces 氧化鋯。作者詳述了鋯石的特徵 — 獨特的脫 of the radioactive elements uranium and thorium. 晶法,它不但影響寶石的物理特性,而且間接 As these decay, naturally, over millions of years, 地形成星光或貓眼效應;同時描述鋯石的產地 the alpha particles released gradually destroy 及顏色處理,並簡述氧化鋯的特性。 the zircon crystal lattice, a process that is called metamictisation. The degree of metamictisation Introduction depends on the concentraton of radioactive The mineral Zircon has quite a simple chemical elements and the duration of irradiation. Fig. 3 formula, ZrSiO4; a zirconium orthosilicate. shows a qualitative ED-XRF analysis, showing the Zircons are magnificent gemstones with a high elements present in a metamict green gem from lustre, and they occur in different colours, such Sri Lanka. as white, reddish, yellow, orange and green (Fig. 1). Coloured varieties of zircon may appear in the market as hyacinth (golden to red-brown), jargon (colourless to grey and smoky), metamict (green) or starlite (blue). These terms including “matara diamond” are largely obsolete and only used in older books. Zircons from Cambodia can be heated to blue or colourless. In the early 20th century heated colourless zircons were the perfect Fig. 2 A collection of rough zircons from various deposits: On substitute for diamonds. the left Mogok (Burma), on the right Tunduru (Tanzania), granite sample with zircon, Madagascar (5 cm across).
    [Show full text]
  • Perovskite and Pyrochlore Tantalum Oxide Nitrides: Synthesis and Characterization
    Perovskite and Pyrochlore Tantalum Oxide Nitrides: Synthesis and Characterization Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University by Spencer Hampton Porter, B.S. Graduate Program in Chemistry Ohio State University 2012 Thesis Committee Dr. Patrick Woodward, Advisor Dr. Joshua Goldberger Copyright Spencer Porter 2012 Abstract Oxide nitrides are an emerging class of compounds. Perovskite RETaN2O [RE = La (Imma), Ce (Pnma), Pr (Pnma)] as well as ATaO2N[A = Ca (Pnma), Sr (I 4/mcm), Ba (Pm3¯m)] and pyrochlore RE 2Ta2N2O5 where RE = Ce, Pr (both: Fd3¯m) have been synthesized by solid state and solution-based methods. Crystal structures solved by powder XRD and NPD for all the rare earth analogs (La, Ce, Pr) are reported for the first time. Studies on the preparation techniques of oxide nitrides in both, bulk powder and film format, has shown that solution based precipitation tech- niques decrease crystallite size, increase reactivity, and enable isomorphic films by sedimentation processes. Computational studies on anion ordering generated a library of ordering models herein and finds that, like O2N com- pounds, an ordered cis orientation and out-of-center tantalum displacement provide the most stable model for perovskites with an -N2O anion stoi- chiometry. UV-Vis diffuse reflectance reveals band gaps for CeTaN2O (2.0 eV), PrTaN2O (2.0 eV), Ce2Ta2N2O5 (3.0 eV) and Pr2Ta2N2O5 (3.3 eV). Structure-property relations from calculations elucidate that valence band maximum positions within the compound series is affected by bond lengths and f-orbital contributions.
    [Show full text]
  • Investigations Into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite
    Investigations into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite. A thesis submitted for the fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) Scott Alan McMaster B.Sc (App Chem) B.Sc (App Sci) (Hons) School of Applied Sciences College of Science, Engineering and Health RMIT University February 2016 II I Document of authenticity I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is a result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged. Scott A. McMaster February 2016 II Acknowledgements The research conducted in this thesis would not have been possible without the help of a number of people, and I would like to take this opportunity to personally thank them. Firstly, I’d like to thank my primary supervisor Dr. James Tardio; you have provided me with endless support and help throughout my 3rd year undergraduate research, honours and PhD candidature. Your enthusiasm, ideas, and patience have been essential in producing a thesis I can say I’m truly proud of. To Prof. Suresh Bhargava, I cannot thank you for your guidance and the opportunities that you have given me enough. You have taught me so much about being a good scientific communicator which I believe is one of the most valuable qualities I have gained throughout my candidature, for that I am extremely grateful.
    [Show full text]
  • Mineralogical.Pdf
    ANNUAL REPORT OF THE GEOLOGICAL INSTITUTE OF HUNGARY, 1999 (2000) MINERALOGICAL, PETROLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF CRYSTALLINE ROCKS OF THE ÜVEGHUTA BOREHOLES (MÓRÁGY HILLS, SOUTH HUNGARY) GYÖRGY BUDA*, ZUÁRD PusKÁs**, KAMILLA GÁL-SÓLYMOS**, URS KLÖTZLI*** and BRIAN L. COUSENS**** *Department of Mineralogy, Eötvös L. University, H -1088 Budapest, Múzeum krt. 41A. **Department ofPetrology and Geochemistry, Eötvös L. University, H-1088 Budapest, Múzeum krt. 4/A. ***Laboratory for Geochronology, University of Vienna, Geocentrum, Department of Geology, Althanstrasse l4,A-1090 Vienna ****Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K IS 5B6 ~ ... -..' Keywords: cataclasites, chromite, granites, Hungary, isotope, lamprophyre, microc1ine, microgranite, mylonites Four types of crystalline rocks can be distinguished in the Üveghuta boreholes: 1. Microcline megacryst-bearing granitoids. 2. Amphibole-rich enc1aves. 3. Microgranites. 4. Pegmatites. In the Mórágy Hills these rock types can be found in outcrops as weIl. The amphibole-rich enc1aves are K-Mg-rich calc-alkaline vaugnerite-durbachite with lamprophyric character. The enc10sing granitoids have also K-Mg-rich calc-alkaline character. The two rock types are mineralogically and petrologically different, however, as a result of the interaction between the basic and acidic melts they show many geochemical similarities, e.g. normalised REE patterns and isotope ratios. Partial melts were formed in the collision zone oftwo continental crustal blocks during the Variscan orogeny (340-350 Ma). The more basic melts were formed as a result of partial fusion of a K-, Ba-, Rb-, Sr-rich upper mantle) wedge situated above an older subduc- tion zone, whereas the granitoid melts inc1ude both mantle and continental crustal contributions.
    [Show full text]