Mineralogical.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogical.Pdf ANNUAL REPORT OF THE GEOLOGICAL INSTITUTE OF HUNGARY, 1999 (2000) MINERALOGICAL, PETROLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF CRYSTALLINE ROCKS OF THE ÜVEGHUTA BOREHOLES (MÓRÁGY HILLS, SOUTH HUNGARY) GYÖRGY BUDA*, ZUÁRD PusKÁs**, KAMILLA GÁL-SÓLYMOS**, URS KLÖTZLI*** and BRIAN L. COUSENS**** *Department of Mineralogy, Eötvös L. University, H -1088 Budapest, Múzeum krt. 41A. **Department ofPetrology and Geochemistry, Eötvös L. University, H-1088 Budapest, Múzeum krt. 4/A. ***Laboratory for Geochronology, University of Vienna, Geocentrum, Department of Geology, Althanstrasse l4,A-1090 Vienna ****Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K IS 5B6 ~ ... -..' Keywords: cataclasites, chromite, granites, Hungary, isotope, lamprophyre, microc1ine, microgranite, mylonites Four types of crystalline rocks can be distinguished in the Üveghuta boreholes: 1. Microcline megacryst-bearing granitoids. 2. Amphibole-rich enc1aves. 3. Microgranites. 4. Pegmatites. In the Mórágy Hills these rock types can be found in outcrops as weIl. The amphibole-rich enc1aves are K-Mg-rich calc-alkaline vaugnerite-durbachite with lamprophyric character. The enc10sing granitoids have also K-Mg-rich calc-alkaline character. The two rock types are mineralogically and petrologically different, however, as a result of the interaction between the basic and acidic melts they show many geochemical similarities, e.g. normalised REE patterns and isotope ratios. Partial melts were formed in the collision zone oftwo continental crustal blocks during the Variscan orogeny (340-350 Ma). The more basic melts were formed as a result of partial fusion of a K-, Ba-, Rb-, Sr-rich upper mantle) wedge situated above an older subduc- tion zone, whereas the granitoid melts inc1ude both mantle and continental crustal contributions. The continental crust is presumed to .,.. be of Pan-African origin with Cadomian age (- 620 Ma). Peraluminous microgranitic melts of crustal origin intruded subsequently. Their volatile-rich fractions crystallised as pegmatites. The outer zones of microcline megacrysts with younger age, the widespread micro- cline replacement textures and the biotitisation of amphibole point to K-metasomatism. The crystalline massif has been subjected to vari- ous tectonic events causing frequent mylonitisation, catac1asis and hydrothermal mineralisation (carbonate, pyrite, chalcopyrite etc.). 1. Introduction 2. amphibole-rich enc1aves (syenite, monzonite, diorite), 3. microgranite, The Department of Mineralogy,and the Department of 4. pegmatite. Petrology and Geochemistry of the Eötvös Loránd These rock types also occur in outcrops and quarries University were requested by the Hungarian Geological where their geological settings can be studied better than Institute to carry out mineralogical-petrologicaland geo- on borehole samples (BUDAand PusKÁs 1997). The major- chemical investigationson the crystallinerocks of ten bore- ity of the samples are strongly sheared; mylonitisation and holes drilled in the Mórágy Hills, South Hungary. The aim catac1asis are common. The vein fillings are quartz, car- of the project, co-ordinated by the Institute, was to delin- bonate and small amount of sulphides. ~ eate the most favourablearea for disposal of low-and inter- mediate-levelradioactivewaste. 2.1. Microcline megacryst-bearing granitoiis -.%----- In this paper we described the mineralogy and petro- -~ logyof the main rock types, inc1udingthe alteration of min- This rock type is the dominant one in the borehole sam- erals as well as the deformation of rocks. Tectonic settings ples. The occurrences of white or pinkish microc1ines are have been identified based on major and trace element random. The rocks occurring in the near-surface, mylonitic compositions.Trace-elements,Sr,Nd and Pb isotope ratios zones or near to the microgranite dykes contain pinkish were used in order to determine the origin of melts these microc1ine. The white microc1ine-bearing granitoids usual- rocks crystallised from. Finally we outline the genesis of ly contain unaltered amphibole and biotite. the crystalline rocks occurring in the investigatedarea. Microcline megacrysts are mostly euhedral, attaining sizes up to 5x3 cm. The white microc1ine, which also occurs in basic amphibole-rich enc1aves, has a slightly dis- 2. Mineralogy and petrology of the main rock types ordered structure (tjO = 0.86) compared with the pinkish microc1ine (tjO = 0.96 BUDAet al. 1999). Four main rock types havebeen distinguishedbased on lnc1usions of groundmass in microc1ine megacrysts are their textural characters, mineralogical and chemical com- common, inc1uding apatite, sphene, allanite, amphibole, positions : biotite, quartz, plagioc1ase.These inc1usions are not deformed 1. microc1ine megacryst-bearing granitoids (quartz whereas the groundmass of the rock is strongly deformed monzonite, monzogranite), which suggests that the megacrysts crystallised before the " 232 Gy. BUDA, Z. PusKÁs, K. GÁL-SÓLYMOS, U. KLÖTZLI and B. L. COUSENS deformation. The most common twin law is Carlsbad but Apatite is a common accessory mineral, occurring as cross-hatched twinned or untwinned megacrysts are also short, stubby prismatic crystals. observed. String perthite is common. Microc1ineoccurring Pyrite is disseminated throughout the granitoids, and is in ground mass has undulose extinction or shows cross- commonly altered to limonite. hatched twins and has disordered structure (~= 0.5), indi- Chalcopyrite occurs as an inc1usion in pyrite in a form cating crystallisation under the higher temperature and of droplet or rarely as a vein-filling. faster rate of cooling.Manyplagioc1asesare partly or entirely replaced by cross-hatchedmicroc1ines.These replacement 2.2. Amphibole-rich enclaves (diorite, monzonite, syenite) textures can be observed in amphibole-richenc1avesas weIl as in granitoids. The microc1ine megacryst-bearing granitoids contain Plagioclaseis very common. They are mostly zoned dark green, fine grained amphibole-rich enc1aves with few " with lamellar twinning and commonly altered to sericite. microcline and/or plagioc1ase megacrysts. The thickness of The core of the zoned crystals are enriched in biotite-inc1u- these enc1aves are variable between few cms and more than sions. Sometimesthey are strongly deformed and brecciat- 50 metres. The contact between enc1aves and host grani- -/ ed. The vein-fillingsare mostly quartz and epidote-zoisite. toids is not sharp, and the microc1ine megacrysts common- Microc1ine replacement is common. Compositions are ly have "grown" into the enc1aves. These amphibole-rich oligoc1aseto andesine (An28-3S)' enc1aves are slightly strained but porphyritic textures are Quartz forms knots, mostly deformed with undulose weIl preserved. extinction. Their mineralogical and chemical compositions are Biotiteis the most common mafic constituentwith tabul- highly variable. The total alkali content of enc1aves is usu- ar or lamellar shapes. It has reddish-brownand yellowish- ally higher (Na20+K2O -9 Wt%) than that of the enc1os- brown pleochroism in the pinkish microc1inemegacryst- ing granitoids suggesting that the basic and acidic melts bearing granitoids whereas the biotite in the white micro- coexisted. The higher temperature basic melt started to c1ine-bearing rock has greenish-brown, yellowish-brown crystallise at first (e.g. biotite) resulting in a deficiency in pleochroism indicating a slightlyhigher amount of Mg. alkalies which was equilibrated continuously from the SUf- Both are Mg-biotite(ca1c-alkalinetype). They are com- rounding alkali rich granitoid melt by K diffusion. monly strongly deformed with undulose extinction. They Plagioclase is an import ant constituent, commonly altered to chlorite in mylonitic zones. In microc1ine occurring as large porphyritic euhedral crystals. The crys- megacrysts the biotite is aligned parallel to the rim of tal are zoned from andesine (An41-43) cores through megacryst. These inc1usionsare not deformed. labradorite (And back to andesine rims (An36-3S)' This Amphiboleis not common. Mostlyit occurs in the white complex zonation also suggests the coexistence of acidic microc1inemegacryst-bearinggranitoid. It forms tabular or and basic melts before and during the crystallisation. prismatic euhedral crystals. Twins are common according Plagioc1ase crystals are saussuritised and sericitised, and to the (100) law. Rarely it forms knots. Alteration to chlo- microc1ine-replacement texture also occurs. Rarely crystals rite and ca1cite is also common. Compositions are Mg- are strained and exhibit undulose extinction. hornblende and actinolitic hornblende. Except for the euhedral megacrysts, microcline is main- Accessory minerals: ly an anhedral groundmass phase, containing inc1usions of AIIaniteis euhedral and zoned. Metamictisation is com- plagioc1ase, amphibole, biotite and abundant acicular mon, with most crystals altered to REE-fluorcarbonates, apatite. They are either untwinned or have cross-hatched -~ c1ayand/or opaque minerals. It contains biotite, quartz, twins, and also OCcUfwith or without perthite exsolu- feldspar inc1usionssuggestinglate crystallisation. Epidote- tion. zoisite overgrowth is occasionally observed. Sometimes Quartz is rare and mostly forms knots in the grtmnd- ,.-;.-- crystals are fractured, and cracks are filled with quartz. mass. They are mylonitised with undulose extinction. The Amphibole is a very common mostly euhedral, prismatic high LREE content of the rock originates from abundant phase. Sometimes they are
Recommended publications
  • Volcanic-Derived Placers As a Potential Resource of Rare Earth Elements: the Aksu Diamas Case Study, Turkey
    minerals Article Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey Eimear Deady 1,*, Alicja Lacinska 2, Kathryn M. Goodenough 1, Richard A. Shaw 2 and Nick M. W. Roberts 3 1 The Lyell Centre, British Geological Survey, Research Avenue South, Edinburgh EH14 4AP, UK; [email protected] 2 Environmental Science Centre, British Geological Survey, Nicker Hill, Keyworth NG12 5GG, UK; [email protected] (A.L.); [email protected] (R.A.S.) 3 Environmental Science Centre, NERC Isotope Geosciences Laboratory, Nicker Hill, Keyworth NG12 5GG, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)131-6500217 Received: 15 February 2019; Accepted: 26 March 2019; Published: 30 March 2019 Abstract: Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands.
    [Show full text]
  • Phase Decomposition Upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Østfold, Norway
    MINERALOGY CHIMIA 2010, 64, No. 10 705 doi:10.2533/chimia.2010.705 Chimia 64 (2010) 705–711 © Schweizerische Chemische Gesellschaft Phase Decomposition upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Østfold, Norway Lutz Nasdala*a, Katja Ruschela, Dieter Rhedeb, Richard Wirthb, Ljuba Kerschhofer-Wallnerc, Allen K. Kennedyd, Peter D. Kinnye, Friedrich Fingerf, and Nora Groschopfg Abstract: The internal textures of crystals of moderately radiation-damaged monazite–(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite–(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a ‘pseudomorph’ after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, ‘wet’ environment, and hence their suitability as potential host ceramics for the long-term immobilisation of ra- dioactive waste. Keywords: Chemical alteration · Monazite–(Ce) · Radiation damage · Thorium silicate 1. Introduction eventually to the formation of a non-crys- to undergo chemical alteration, and its in- talline form.[1,2] Such normally crystalline, crease with cumulative radiation damage, The accumulation of structural damage irradiation-amorphised minerals are com- ii) how exactly chemical alteration proc- generated by the corpuscular self-irra- monly described by the term ‘metamict’.[3] esses take place, and iii) as to which de- diation of minerals containing actinide The metamictisation process is controlled gree these materials (i.e.
    [Show full text]
  • Raman Spectroscopic Study of Variably Recrystallized Metamict Zircon from Amphibolite-Facies Metagranites, Serbo-Macedonian Massif, Bulgaria
    1357 The Canadian Mineralogist Vol. 44, pp. 1357-1366 (2006) RAMAN SPECTROSCOPIC STUDY OF VARIABLY RECRYSTALLIZED METAMICT ZIRCON FROM AMPHIBOLITE-FACIES METAGRANITES, SERBO-MACEDONIAN MASSIF, BULGARIA ROSITSA TITORENKOVA§ Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofi a, Bulgaria BORIANA MIHAILOVA Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D–20146 Hamburg. Germany LUDMIL KONSTANTINOV Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofi a, Bulgaria ABSTRACT We investigated zircon from high-grade metagranites of the Serbo-Macedonian Massif, in Bulgaria, by cathodoluminescence (CL), back-scattered-electron imaging, electron-microprobe analysis, and Raman microspectroscopy. The structural state in various zones was assessed using: (i) the position and width of the Raman peak near 1008 cm–1, (ii) the relative Raman intensity –1 of the symmetrical and anti-symmetrical SiO4 modes, (iii) the width of the peaks near 357 and 439 cm , and (iv) the occurrence of extra Raman scattering near 162, 509, 635 and 785 cm–1. The analyzed zones are divided into two main groups: (A) areas with a well-resolved Raman peak near 1008 cm–1, and (B) areas with a very weak Raman scattering near 1008 cm–1. Group B can be classifi ed into two subgroups: (B-i) dark zones in CL images, with a high concentration of uranium (up to 7000 ppm), and (B-ii) outermost bright zones in CL images with a concentration of U lower than that in the inner areas and commonly below the detection limit.
    [Show full text]
  • U-Th-Pb Zircon Geochronology by ID-TIMS, SIMS, and Laser Ablation ICP-MS: Recipes, Interpretations, and Opportunities
    ÔØ ÅÒÙ×Ö ÔØ U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities U. Schaltegger, A.K. Schmitt, M.S.A. Horstwood PII: S0009-2541(15)00076-5 DOI: doi: 10.1016/j.chemgeo.2015.02.028 Reference: CHEMGE 17506 To appear in: Chemical Geology Received date: 17 November 2014 Revised date: 15 February 2015 Accepted date: 20 February 2015 Please cite this article as: Schaltegger, U., Schmitt, A.K., Horstwood, M.S.A., U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpreta- tions, and opportunities, Chemical Geology (2015), doi: 10.1016/j.chemgeo.2015.02.028 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities U. Schaltegger1, A. K. Schmitt2, M.S.A. Horstwood3 1Earth and Environmental Sciences, Department of Earth Sciences, University of Geneva, Geneva, Switzerland ([email protected]) 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA ([email protected])
    [Show full text]
  • Micro-Spectroscopy – Shedding Light on Rock Formation
    VOL. 17 NO. 3 (2005) AARTICLERTICLE Micro-spectroscopy – shedding light on rock formation Simon FitzGerald Horiba Jobin Yvon Ltd, 2 Dalston Gardens, Stanmore, Middlesex HA7 1BQ, UK. E-mail: [email protected] Introduction valuable insight into stress/strain in semi- Shedding light on rock Whilst there are many imaging tech- conductors, chirality/diameter of carbon formation niques available to a research scien- nanotubes and crystallinity of polymers. Investigation of mineral and rock samples tist, the information which is provided The elemental characterisation of XRF, can gain strongly from Raman and XRF is often only of a visual/topographical however, is ideal for micro-electronics, analysis. Raman allows fast identification nature. What they fail to provide is true including analysis of circuit boards and of mineral forms, and with microscopic compositional (chemical/elemental) soldering, and compliance testing for the spatial resolution, can be used to study analysis of the materials. However, micro- forthcoming European WEEE/RoHS “lead heterogeneity within rocks, probe inclu- spectroscopic techniques such as Raman free” legislation. sions in situ, and identify minute frag- or X-ray fluorescence (XRF) can fill this Other areas of interest for micro- ments. gap, allowing highly detailed images to spectroscopy include pharmaceuticals At the Johannes Gutenberg-Universität be generated based upon the sample’s (crystal polymorphs, tablet formulation, in Mainz, Germany, Dr Lutz Nasdala and material composition. well plates), coatings (homogeneity, co-workers have extensively explored The information the two techniques thickness) and metallurgy (alloys, plating, the use of micro-Raman in mineralogy, provide are quite different, but their appli- corrosion).
    [Show full text]
  • Reworking the Gawler Craton: Metamorphic and Geochronologic Constraints on Palaeoproterozoic Reactivation of the Southern Gawler Craton, Australia
    Reworking the Gawler Craton: Metamorphic and geochronologic constraints on Palaeoproterozoic reactivation of the southern Gawler Craton, Australia Rian A. Dutch, B.Sc (Hons) Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Adelaide January 2009 Chapter 2 In-situ EPMA monazite chemical dating at the University of Adelaide: Setup, procedures, comparisons and application to determining the timing of high-grade deformation and metamorphism in the southern Gawler Craton. Abstract Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling the development of orogenic systems. Electron Probe Micro-Analysis (EPMA) chemical dating of monazite provides a useful method of obtaining good precision age data from monazite bearing mineral assemblages. presented here is a review of EPMA monazite dating theory together with a detailed description of the EPMA monazite setup and methods developed at the University of Adelaide. This includes the initial setup and optimisation of the technique on the Cameca SX51 electron microprobe, sample preparation and data reduction and analysis techniques. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to Ordovician, produce ages which are within error of the isotopically determined ages, indicating the validity of the developed setup. The technique is then applied to a sample of unknown age from the southern Gawler Craton to determine the timing of high-grade metamorphism and deformation in the Fishery Bay region. Three samples from the late Archaean to Palaeoproterozoic Sleaford Complex produced EPMA monazite ages of 1707 ± 20 Ma, 1690 ± 8 Ma and 1708 ± 12 Ma indicating that the high-grade metamorphism and deformation in this region was a result of reworking during the 1725–1690 Ma Kimban Orogeny, and not the 2450–2420 Ma Sleafordian Orogeny.
    [Show full text]
  • Zircon - a Very Old Gemstone 鋯鋯石 - 由來已久的寶石 Prof
    Zircon - A Very Old Gemstone 鋯鋯石 - 由來已久的寶石 Prof. Dr Henry A. Hänni(亨瑞 翰尼), FGA, SSEF Research Associate Fig. 1 A selection of zircons of various origins. The greyish cabochon is a cat’s eye weighing 4.5 cts. 一組不同產地的鋯石。灰色調的素面鋯石貓眼為4.5 cts。 Photo © H.A.Hänni 本文提及兩種含鋯的常見寶石材料 — 鋯石和 hafnium and lead, Zircons usually contain traces 氧化鋯。作者詳述了鋯石的特徵 — 獨特的脫 of the radioactive elements uranium and thorium. 晶法,它不但影響寶石的物理特性,而且間接 As these decay, naturally, over millions of years, 地形成星光或貓眼效應;同時描述鋯石的產地 the alpha particles released gradually destroy 及顏色處理,並簡述氧化鋯的特性。 the zircon crystal lattice, a process that is called metamictisation. The degree of metamictisation Introduction depends on the concentraton of radioactive The mineral Zircon has quite a simple chemical elements and the duration of irradiation. Fig. 3 formula, ZrSiO4; a zirconium orthosilicate. shows a qualitative ED-XRF analysis, showing the Zircons are magnificent gemstones with a high elements present in a metamict green gem from lustre, and they occur in different colours, such Sri Lanka. as white, reddish, yellow, orange and green (Fig. 1). Coloured varieties of zircon may appear in the market as hyacinth (golden to red-brown), jargon (colourless to grey and smoky), metamict (green) or starlite (blue). These terms including “matara diamond” are largely obsolete and only used in older books. Zircons from Cambodia can be heated to blue or colourless. In the early 20th century heated colourless zircons were the perfect Fig. 2 A collection of rough zircons from various deposits: On substitute for diamonds. the left Mogok (Burma), on the right Tunduru (Tanzania), granite sample with zircon, Madagascar (5 cm across).
    [Show full text]
  • Investigations Into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite
    Investigations into the Synthesis, Characterisation and Uranium Extraction of the Pyrochlore Mineral Betafite. A thesis submitted for the fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) Scott Alan McMaster B.Sc (App Chem) B.Sc (App Sci) (Hons) School of Applied Sciences College of Science, Engineering and Health RMIT University February 2016 II I Document of authenticity I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is a result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged. Scott A. McMaster February 2016 II Acknowledgements The research conducted in this thesis would not have been possible without the help of a number of people, and I would like to take this opportunity to personally thank them. Firstly, I’d like to thank my primary supervisor Dr. James Tardio; you have provided me with endless support and help throughout my 3rd year undergraduate research, honours and PhD candidature. Your enthusiasm, ideas, and patience have been essential in producing a thesis I can say I’m truly proud of. To Prof. Suresh Bhargava, I cannot thank you for your guidance and the opportunities that you have given me enough. You have taught me so much about being a good scientific communicator which I believe is one of the most valuable qualities I have gained throughout my candidature, for that I am extremely grateful.
    [Show full text]
  • Thermoluminescence of Zircon
    Scanning Microscopy Volume 1995 Number 9 Luminescence Article 2 1995 Thermoluminescence of Zircon Philibert Iacconi Université de Nice-Sophia Antipolis, [email protected] Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Iacconi, Philibert (1995) "Thermoluminescence of Zircon," Scanning Microscopy: Vol. 1995 : No. 9 , Article 2. Available at: https://digitalcommons.usu.edu/microscopy/vol1995/iss9/2 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy Supplement 9, 1995 (Pages 13-34) 0892-953X/95$5.00+ .25 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA THE~1OLUMINESCENCE OF ZIRCON Philibert Iacconi Lab. de Physique Electronique des Solides, Centre de Rech. sur !es Solides et leurs Applications, LPES-CRESA, Faculte des Sciences, Universite de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France Telephone number: (33) 4 9207 6331 / FAX number: (33) 4 9207 6336 IE.Mail: [email protected] Abstract Introduction The thermoluminescence (TL) of synthetic zircons When they are heated, some natural minerals such into which some impurities have been individually insert­ as zircon, quartz, etc., exhibit the so-called thermolumi­ ed is investigated. The results obtained show that, after nescence (TL) phenomenon [56]. Usually, they are X-irradiation at 77K, the synthetic zircons present three large gap materials and contain several kinds of lattice kinds of thermoluminescent emissions. The first is relat­ defects (imperfections, impurities) which are able to trap 4 ed to the Off ions, the second is typical of the SiO4 - charge carriers.
    [Show full text]
  • Experimental Determination of the Incorporation of Th Into Orthophosphates and the Resetting of Geochronological Systems of Monazite
    Experimental determination of the incorporation of Th into orthophosphates and the resetting of geochronological systems of monazite Vorgelegt von Dipl. Geol. Anne-Magali SEYDOUX-GUILLAUME an der Fakultät VI - Bauingenieurwesen und Angewandte Geowissenschaften - der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Berichter: Prof. Dr. G. Franz Berichter: Prof. Dr. W. Heinrich Berichter: Prof. Dr. J.M. Montel Tag der wissenschaftlichen Aussprache: 15. Oktober 2001 Berlin 2001 D83 TTaabbllee ooff ccoonntteennttss Table of contents Table of contents ABSTRACT - ZUSAMMENFASSUNG - RESUME 1 INTRODUCTION 4 CHAPTER I - Th partitioning between monazite and xenotime An experimental determination of the Th partitioning between monazite and xenotime using Analytical Electron Microscopy 12 z Abstract 12 z Introduction 13 z Experimental and analytical techniques 15 - Starting materials 15 - Experimental procedure 15 - Analytical Electron Microscopy (AEM) 17 - X-ray diffraction (XRD) 20 z Results 20 - Compositions of monazite and xenotime determined by AEM 23 - Rietveld refinement results and composition-volume relationships 25 z Discussion 29 - A tentative diagram of phase relations in the ternary system CePO4-YPO4-ThSiO4 29 - The monazite-xenotime thermobarometer in presence of ThSiO4 31 z Concluding remarks 33 z Acknowledgements 34 z References 34 CHAPTER II - Structure of a natural monazite: behaviour under heating An XRD, TEM and Raman study of experimental
    [Show full text]
  • Annealing Induced Recrystallization of Radiation Damaged Titanite And
    Annealing induced recrystallization of radiation damaged titanite and allanite Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Universität Hamburg vorgelegt von Tobias Beirau aus Glinde Hamburg 2012 Als Dissertation angenommen vom Fachbereich Geowissenschaften der Universität Hamburg auf Grund der Gutachten von Prof. Dr. Ulrich Bismayer und Dr. habil. Boriana Mihailova Tag der mündlichen Prüfung: 29.06.2012 Hamburg, den 14. Mai 2012 Prof. Dr. Oßenbrügge Sprecher Fachbereich Geowissenschaften Contents Abstract .................................................................................................................................... 3 1 Introduction ....................................................................................................................... 5 Nuclear waste forms .................................................................................................................. 5 Radiation damage ...................................................................................................................... 6 Titanite ...................................................................................................................................... 7 Allanite .................................................................................................................................... 11 Objectives of the current study................................................................................................ 13 2 Experimental techniques
    [Show full text]
  • Radiation Damage and Uranium Concentration in Zircon As Assessed by Raman Spectroscopy and Neutron Irradiation
    American Mineralogist, Volume 95, pages 1192–1201, 2010 Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation A.E. MA RS E LLOS 1,2,* A ND J.I. GA RV E R 2 1Department of Earth and Atmospheric Sciences, State University of New York, Albany, New York 12222, U.S.A. 2Department of Geology, Union College, Schenectady, New York 12308, U.S.A. ABSTR A CT Radiation damage of natural and synthetic zircon grains is evaluated by Raman spectroscopy to understand annealing and stability of fission tracks. Analyses focus on a suite of 338 Paleozoic detrital zircon grains from metamorphosed strata in the Hellenic forearc that were variably annealed by a Miocene thermal event, as well as a suite of 97 synthetic zircon grains. The Raman wavenumber shift of ν3 [SiO4] reveals that radiation damage and damage distribution in this suite mainly depends on uranium concentration. In zircon with similar uranium concentration, the Raman wavenumber shift allows for the determination of radiation damage in different crystals, which is a function of effec- tive accumulation time. Nine detrital zircons grains with moderate radiation damage were stepwise annealed at 1000 and 1400 °C, which resulted in progressive removal of radiation damage revealed in an increase of ν3 [SiO4] peak positions. For a partly reset sample that was brought to temperatures of ~350 °C in a geologic setting (Hellenic forearc), we use the Raman measurements and uranium determination to estimate a Zircon Damage Discrimination Factor (ZRDD), which is our attempt to estimate only radiation damage in single grains by accounting for affects of the uranium atom in the Raman wavenumber.
    [Show full text]