Studies on Insect Pests of Drumstick and Their Natural Enemies in Northern Dry Zone Climate of Karnataka, India

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Insect Pests of Drumstick and Their Natural Enemies in Northern Dry Zone Climate of Karnataka, India Int.J.Curr.Microbiol.App.Sci (2020) 9(12): 2175-2180 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 12 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.912.257 Studies on Insect Pests of Drumstick and their Natural Enemies in Northern Dry Zone Climate of Karnataka, India K. B. Rachana1, S. B. Jagginavar1*, H. T. Prakash2 and S. A. Biradar2 1Department of Agricultural Entomology, College of Agriculture, India 2ICAR-Krishi Vigyan Kendra, Vijayapur, Karnataka, UAS, Dharwad, (Karnataka), India *Corresponding author ABSTRACT K e yw or ds Studies on status of insect pests on drumstick crop and their natural enemies were Drumstick, Noorda conducted at College of Agriculture campus, Vijayapur which is located in Northern dry zone climate of Karnataka. The population dynamics of insect pests on drumstick blitealis, Thrips, Natural enemies etc field was recorded throughout season (2018-19). The results revealed that, the insect pests viz., leaf eating caterpillar, Noorda blitealis Walker larvae found throughout the st Article Info year. The Maximum population (10.24 larvae /5 branches) was recorded during 51 Standard Meteorological Week (December). Thrips infestation was observed Accepted: throughout the year and maximum population (16.40 thrips /5 branches) was recorded 16 November 2020 th during 20 Standard Meteorological Week (May). Other insect viz., coccinellids, Available Online: praying mantid, spiders (Non insect) and parasitoid Braconid sp. were also recorded. 10 December 2020 Introduction Eupterotidae: Lepidoptera and Tetragonia siva Lef., Metanastria hyrtaca Cramer, Drumstick (Moringa oleifera L.) is Lasiocampidae: Lepidoptera), bud worm indigenous to our country, Pakistan and (Noorda moringae Tams., Crambidae: Nepal borders, it is widely cultivated in other Lepidoptera), bark eating caterpillar parts of both the old and new world tropics, (Indarbela quadrinotata Walker, including Asia, Africa and South and Central Indarbelidae: Lepidoptera), Stem borers America. Different types of soil and forest (Indarbela tetraonis Moore, Indarbelidae: soil which is rich in humous become the most Lepidoptera and Diaxenopsis apomecynoides ideal for growth of drumstick. In India Bruning, Cerambycida: Coleoptera), longhorn drumstick is locally known as 'Nuggekai' beetle (Batocera rubus L., Cerambycidae: (Kannada). In India drumstick is attacked by Coleoptera), ash weevils (Myllocerus discolor different insect pests, attacking at the various var. variegates Boheman, M. delicatulus and stages of this tree viz., leaf eating caterpillars M. viridanus, Curculionidae: Coleoptera), (Noorda blitealis Walker, Crambidae: aphids (Aphis craccivora Koch, Aphididae: Lepidoptera, Eupterote mollifera Walker, Hemiptera), Tea mosquito bug (Helopeltis 2175 Int.J.Curr.Microbiol.App.Sci (2020) 9(12): 2175-2180 antonii Sign., Miridae: Hemiptera), bud Results and Discussion midges (Stictodiplosis moringae Mani, Cecidomyiidae: Diptera), scale insects The activity of leaf eating caterpillar was (Diaspidiotus sp., Diaspididae: Homoptera observed throughout the year. During study and Ceroplastodes cajani Mask, Coccidae: period the population was ranged from 1.12 to Hemiptera), Pod fly (Gitona distigma Meigen, 10.24 larvae per five branches, respectively. Drosophilidae: Diptera) (Kader and However, the maximum larval population Shanmugavelu, 1982; Ragumoorthi and (10.24 larvae/plant) was recorded during 51st Arumugum, 1992; Kalia and Joshi, 1997; Standard Meteorological Week of December, Munj et al., 1998; Usha et al., 2010; David while minimum population (1.12 larve/plant) and Ramamurthy, 2016). With this was recorded during 22nd Standard background, the present study was taken up to Meteorological Week of May (Fig. 1). The study the status of drumstick insect pests and present findings are similar with the results of their natural enemies in Northern dry zone of Munj et al., (1998) who reported Noorda Karnataka. blitealis Walker infestation on drumstick. Defoliation occurred in three peak periods, Materials and Methods first from July to August, second on October and third on January. Activity of pest was The experiment was conducted in kharif noticed throughout the year and the highest season, 2018 at College of Agriculture, population was noticed in January while least Vijayapur. Established drumstick (PKM-1 population was noticed from May to June. Variety) plantation of one and half year old These findings are in accordance with the was used to study the population dynamics of results of Butani and Verma (1981) recorded insect pests and their natural enemies. Noorda blitealis Walker causes maximum damage on drumstick during March to April The observations on the pest incidence were and December to January. Mahesh and recorded at weekly interval from ten Kotikal (2014) observed severe infestation of randomly selected plants. Simultaneously the Noorda blitealis Walker on drumstick. It beneficial fauna was also being recorded and caused 100 per cent foliage damage. Activity mean data was calculated. Observation on leaf of N. blitealis was noticed throughout the eating caterpillar, N.blitealis, thrips and year. Maximum (11.2 larvae per branch) predators were recorded on ten randomly larval population was noticed during second selected plants and expressed as mean fortnight of April and 7.8 larvae per branch population of insects/5 branches. The were noticed during second fortnight of observation on parasitoids was taken by October. collecting the larvae from the field on respective SMW (Standard Meteorological The drumstick infesting thrips species Week) and kept in rearing cages to observe identified as two phytophagous thrips, for parasitoids emergence, later the per cent Euphysothrips subramanii and Exothrips parasitisation was worked out by using the hemavarna (Ramakrishna and Margabandhu) formula, (Thysanoptera: Thripidae) and one was predatory thrips, Franklinothrips sp. Number of parasitoid emerged (Thysanoptera : Aeolothripidae). The activity Per cent parasitisation = × 100 Total number of larvae collected of thrips was observed throughout the year and population was ranged from 2.56 to 16.40 thrips per five branches which was coincided 2176 Int.J.Curr.Microbiol.App.Sci (2020) 9(12): 2175-2180 during 23rd Standard Meteorological Week of Okajima, 1998 reported Franklinothrips sp. June to 22nd Standard Meteorological Week association with prey on economically of May. Maximum population (16.40/ 5 important crops viz., avocados, beans, cacao, branches) was recorded during 20th Standard chillies, citrus, coffee, eggplant and melons. Meteorological Week of May (Fig. 1). The Thrips, Franklinothrips orizabensis Johansen present finding is in accordance with Bana et extensively used for the study of its biology al., 2018 reported Exothrips hemavarna and predatory efficacy on avocado thrips, Ramakrishna and Margabandhu in mango and Scirtothrips perseae Nakahara (Thysanoptera: this thrips was more active in the months of Thripidae). In Europe, F. orizabensis used as February-March (vegetative and flowering an efficient bio-control agent against thrips, S. cum fruit setting stages). Arakaki and perseae. Table.1 Population dynamics of predators during 2018-19 Month SMW Mean number of insects/ branch (n=5) Coccinellids Praying mantid Spiders June 23 0.00 0.02 0.02 24 0.00 0.00 0.02 25 0.02 0.02 0.00 26 0.00 0.00 0.00 July 27 0.02 0.00 0.02 28 0.08 0.00 0.00 29 0.00 0.00 0.04 30 0.00 0.02 0.00 31 0.02 0.00 0.02 August 32 0.00 0.00 0.00 33 0.04 0.00 0.06 34 0.02 0.02 0.04 35 0.06 0.04 0.00 September 36 0.00 0.00 0.00 37 0.04 0.00 0.02 38 0.02 0.00 0.00 39 0.00 0.00 0.02 October 40 0.02 0.00 0.02 41 0.04 0.00 0.06 42 0.00 0.02 0.00 43 0.02 0.00 0.00 44 0.00 0.00 0.00 November 45 0.00 0.02 0.04 46 0.00 0.00 0.00 47 0.00 0.00 0.02 48 0.00 0.00 0.06 December 49 0.00 0.00 0.04 50 0.00 0.00 0.00 Cont.. 2177 Int.J.Curr.Microbiol.App.Sci (2020) 9(12): 2175-2180 51 0.00 0.00 0.08 52 0.00 0.00 0.02 January 1 0.00 0.00 0.00 2 0.02 0.00 0.04 3 0.00 0.00 0.02 4 0.00 0.00 0.06 5 0.02 0.02 0.00 February 6 0.00 0.00 0.00 7 0.02 0.00 0.00 8 0.00 0.02 0.00 9 0.06 0.00 0.00 March 10 0.00 0.02 0.00 11 0.04 0.00 0.00 12 0.02 0.00 0.00 13 0.00 0.00 0.02 14 0.02 0.00 0.00 April 15 0.00 0.02 0.02 16 0.00 0.00 0.00 17 0.00 0.00 0.00 18 0.00 0.00 0.00 May 19 0.00 0.02 0.02 20 0.00 0.00 0.00 21 0.00 0.00 0.04 22 0.00 0.00 0.00 Mean 0.01 0.01 0.02 S.D. ± 0.02 0.01 0.02 SMW: Standard Meteorological Week Table.2 Population status of parasitiods and per cent parasitisation Sl SMW No. of larvae collected No. of Parasitisation No. (N. blitealis) emerged (%) parasitoids 1 32 20 2.00 10.00 2 33 20 1.00 5.00 3 34 20 1.00 5.00 4 35 20 3.00 15.00 5 49 20 2.00 10.00 6 50 20 2.00 10.00 7 51 20 1.00 5.00 8 52 20 3.00 15.00 9 4 20 2.00 10.00 10 5 20 2.00 10.00 Mean 1.9 S.D. ± 0.74 2178 Int.J.Curr.Microbiol.App.Sci (2020) 9(12): 2175-2180 Fig Population dynamics of leaf eating caterpillar, Noorda blitealis Walker and thrips* during 2018-19 18 Larvae Thrips 16 14 12 10 8 6 4 Mean number of larvae and thrips per 5 branches larvae thrips of and Mean number 2 0 1 2 3 4 5 6 7 8 9 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 11 12 13 14 15 16 17 18 19 20 21 22 23 JUNE JULY August September October November December January February March April May Months Fig.
Recommended publications
  • Moringa Oleifera 31.05.2005 8:55 Uhr Seite 1
    Moringa oleifera 31.05.2005 8:55 Uhr Seite 1 Moringa oleifera III-4 Moringa oleifera LAM., 1785 syn.: Guilandina moringa LAM.; Hyperanthera moringa WILLD.; Moringa nux-ben PERR.; Moringa pterygosperma GAERTN., 1791 Meerrettichbaum, Pferderettichbaum Familie: Moringaceae Arabic: rawag Malayalam: murinna, sigru Assamese: saijna, sohjna Marathi: achajhada, shevgi Bengali: sajina Nepali: shobhanjan, sohijan Burmese: daintha, dandalonbin Oriya: sajina Chinese: la ken Portuguese: moringa, moringueiro English: drumstick tree, Punjabi: sainjna, soanjna horseradish tree, ben tree Sanskrit: shobhanjana, sigru French: moringe à graine ailée, Sinhalese: murunga morungue Spanish: ángela, ben, moringa Gujarati: midhosaragavo, saragavo Swahili: mrongo, mzunze Hindi: mungna, saijna, shajna Tamil: moringa, murungai Kannada: nugge Telegu: mulaga, munaga, Konkani: maissang, moring, tellamunaga moxing Urdu: sahajna Fig. 1: Flower detail (front and side view) Enzyklopädie der Holzgewächse – 40. Erg.Lfg. 6/05 1 Moringa oleifera 31.05.2005 8:55 Uhr Seite 2 Moringa oleifera III-4 Drumstick tree, also known as horseradish tree and ben It is cultivated and has become naturalized in other parts tree in English, is a small to medium-sized, evergreen or of Pakistan, India, and Nepal, as well as in Afghanistan, deciduous tree native to northern India, Pakistan and Bangladesh, Sri Lanka, Southeast Asia, West Asia, the Nepal. It is cultivated and has become naturalized well Arabian peninsula, East and West Africa, throughout the beyond its native range, including throughout South Asia, West Indies and southern Florida, in Central and South and in many countries of Southeast Asia, the Arabian Pe- America from Mexico to Peru, as well as in Brazil and ninsula, tropical Africa, Central America, the Caribbean Paraguay [17, 21, 29, 30, 51, 65].
    [Show full text]
  • Western Ghats), Idukki District, Kerala, India
    International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758 Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 3; Issue 2; March 2018; Page No. 114-120 The moths (Lepidoptera: Heterocera) of vagamon hills (Western Ghats), Idukki district, Kerala, India Pratheesh Mathew, Sekar Anand, Kuppusamy Sivasankaran, Savarimuthu Ignacimuthu* Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India Abstract The present study was conducted at Vagamon hill station to evaluate the biodiversity of moths. During the present study, a total of 675 moth specimens were collected from the study area which represented 112 species from 16 families and eight super families. Though much of the species has been reported earlier from other parts of India, 15 species were first records for the state of Kerala. The highest species richness was shown by the family Erebidae and the least by the families Lasiocampidae, Uraniidae, Notodontidae, Pyralidae, Yponomeutidae, Zygaenidae and Hepialidae with one species each. The results of this preliminary study are promising; it sheds light on the unknown biodiversity of Vagamon hills which needs to be strengthened through comprehensive future surveys. Keywords: fauna, lepidoptera, biodiversity, vagamon, Western Ghats, Kerala 1. Introduction Ghats stretches from 8° N to 22° N. Due to increasing Arthropods are considered as the most successful animal anthropogenic activities the montane grasslands and adjacent group which consists of more than two-third of all animal forests face several threats (Pramod et al. 1997) [20]. With a species on earth. Class Insecta comprise about 90% of tropical wide array of bioclimatic and topographic conditions, the forest biomass (Fatimah & Catherine 2002) [10].
    [Show full text]
  • Bugs R All FINAL Apr 2014 R
    ISSN 2230 ! 7052 Newsletter of the $WIU4#NNInvertebrate Conservation & Information Network of South Asia (ICINSA) No. 21, April 2014 Photo: Aniruddha & Vishal Vishal Aniruddha & Photo: Contents Pages !"#$%&'(')*$+",-$.%+"/0"1-)2"3%%4&%,"')"5)*)*"67*$*47'"8*(#-,"/0"6*)2*&/$%"9)'.%$,'4+"3+"!"#$%%&'()#*"#+,'-.%/)#0"#1,'-23)#*"# 4'5'/,'6('-#'67#1"8"#9'-2:;<:('-'## # #"""## """## """# """## """## """## """# """######### ########=>? :%;"<%=/$>"/0"!"#"$%&'#(' '()*(+&',&-('.?'=/"@A@@"B8/&%/#4%$*C"D%)%3$'/)'>*%C"8)/>*&/)')'E"0$/("F)>'*";5#@"#$"#A%B7%#C#D"#E'."""""GHI J>/)*4*"BF),%=4*E"0*-)*"/0"K*$*>//$L"M*))-$L"M%$*&*L"N/-47"F)>'*";5#@26'5'6#!"#8'2-O""""## """## """# """## """### ###"""""PH@Q <%=/$>"/0"&/)2H7/$)%>"2$*,,7/##%$L"0*%12-2,2*3$4".(-%,252*"N4/&&L"@RSR"BJ$47/#4%$*C"D%T2/)''>*%E"0$/("U*7*$*,74$*L"F)>'*L" ;'47"*>>'V/)*&">'*2)/,V="=7*$*=4%$,";5#F"#4"#9G.2)#H"!"#D,'I'6%##'67#1"*"#H'2(I'7 """## """## """# """## """## ########@@H@W :/4%"/)"47%"X$,4",'27V)2"/0"5%$>/)Y,"5-(#')2"!)4L"6"*$&1-"#42'.'"5#"#2*L"5%$>/)"@S@I"BZ+(%)/#4%$*L"[/$('='>*%L"?/)%$')*%E" ')"M*$)*&*"6'$>"N*)=4-*$+L"<*'2*>"1',4$'=4L"U*7*$*,74$*L"F)>'*";5#J62-<77,'#$,':G-2('-##C#@2/,'.#0'/'. ## """## """######################@\H@G ['$,4"$%=/$>"/0"#7/4/4*]',"')"47%"U'&%V)*%L"^+=*%)'>*%";5#J"8"#02KK'#'67#*"#*5:GG6 """ """## """## """## """"""""@I 1'.%$,'4+"*)>",%*,/)*&"/==-$$%)=%"/0"3-_%$`'%,"*4"5';*a'"9)'.%$,'4+"8*(#-,L"b;*&'/$L"U*>7+*"?$*>%,7" ;5#82.'7-2#$'/B<&L'#'67#0"#4"#0'G """## """## """# """## """## """## """ """## """## """## """#"""""""""""""""""""""@PH"WQ 6'/&/2+"/0"47%"(/47"7&#"-"'#*%".43*#",""8$*(%$"B^%#'>/#4%$*C"^*,'/=*(#'>*%E"/)"F)>'*)"6*>*("D$%%.0&*8%-"5%".,"#"$$"
    [Show full text]
  • The Biology of Casmara Subagronoma (Lepidoptera
    insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms.
    [Show full text]
  • Pacific Islands: Their Culture, (Syzygium Cumini) [Negative Impacts on Cultivation of Bananas] Environment, and Use
    Family: Myrtaceae Taxon: Syzygium cumini Synonym: Eugenia cumini (L.) Druce Common Name jambolan Eugenia jambolana Lam. Malabar plum Myrtus cumini L. (basionym) jamélongue Syzygium jambolanum (Lam.) DC. Jambolanapflaume Caryophyllus jambos Stokes guayabo pesgua Java plum Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(Hawai'i) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 9 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs
    [Show full text]
  • Management of Noorda Blitealis Wlk. on Moringa Oleifera Lam. Using Biorationals in the Home Gardens of Jaffna District, Sri Lanka K.Sharjana1, G
    International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-5, Issue-6, June- 2019] Management of Noorda blitealis Wlk. on Moringa oleifera Lam. using biorationals in the home gardens of Jaffna district, Sri Lanka K.Sharjana1, G. Mikunthan2 Department of Agricultural Biology, Faculty of Agriculture, University of Jaffna, Sri Lanka Abstract— Moringa oleifera Lam. (Moringaceae) is one of the main crops grown for pods and leaves in Jaffna home gardens in Sri Lanka. After the introduction of Periyakulam 1 (PKM 1) Moringa, a leaf eating caterpillar (Noorda blitealis Wlk.) turned out to be a serious pest causing damage to the leaves. Considering the severity of the damage, this study was carried out to find out the suitable biorationals to manage the pest in an eco-friendly method. Using the leaf disc dipping method biorationals such as 1% neem oil, 3% neem seed kernel extract and 2.5g/L neem leaf extract were used to determine the larval mortality. Consumption of the treated leaf area was measured to determine the larval antifeedant activity for 1% neem oil, 3% neem seed kernel extract, (2.5g/L) neem leaf extract, 15% (g/mL) garlic extract and 75% fermented cow urine and ash solution. Distilled water was used as control in both experiments. The experiments were carried out at a temperature of 28.9 ± 1.13°C and 73% relative humidity in complete randomized design. On the 6th day after treatment larval mortality in 1% neem oil, 3% neem seed kernel extract and 2.5g/L neem leaf extract were 85%, 83.33% and 70% respectively.
    [Show full text]
  • Cashew Cashew
    AESA BASED IPM PACKAGE C ASHEWNUT , , Tel : 040-2330 3424 Tel Balaji Scan Pvt. Ltd., Important Natural Enemies of Cashewnut Insect Pests Parasitoids Plants Suitable for Ecological Engineering in Cashewnut Plantation Polynema spp. Gonatocerus spp. Tetrastichus spp. C luster bean Sunflower Ocimum spp. Fopius arisanus Diachasmimorpha kraussi Hormius spp. Cosmos Spearmint Mustard Predators Marigold C arrot Sorghum Dicyphus hesperus Chrysoperla spp. Ladybird beetle Cowpea Buckwheat Maize Red ant Spider Preying mantis The AESA based IPM - Cashewnut, was compiled by the NIPHM working group under the Chairmanship of Dr. Satyagopal Korlapati, IAS, DG, NIPHM, and guidance of Shri. Utpal Kumar Singh, IAS, JS (PP). The package was developed taking into account the advice of experts listed below on various occasions before finalization. NIPHM Working Group: Chairman : Dr. Satyagopal Korlapati, IAS, Director General Vice-Chairmen : Dr. S. N. Sushil, Plant Protection Advisor : Dr. P. Jeyakumar, Director (PHM) Core Members: 1. Er. G. Shankar, Joint Director (PHE), Pesticide Application Techniques Expertise 2. Dr. O. P. Sharma, Joint Director (A & AM), Agronomy Expertise 3. Dr. Dhana Raj Boina, Assistant Director (PHM), Entomology Expertise 4. Dr. Satish Kumar Sain. Assistant Director (PHM), Pathology Expertise Contributions by DPPQ&S Experts: 1. Shri. Ram Asre, Additional Plant Protection Advisor (IPM) 2. Shri R. Murali, Deputy Director (Entomology) 3. Dr. Sanjay Arya, Deputy Director (Plant Pathology) 4. Dr. Subhash Kumar, Deputy Director (Weed Science) Contributions by External Experts: 1. Dr. Suresh D. Ekabote, Associate Professor, COH, Hiriyur. 2. Dr. S. Lingaraju, University of Agriculture Sciences, Dharwad 3. Dr. V.K. Koshta, Prof. and Head, Dept. of Entomology, College of Agriculture, Krishak Nagar, Raipur, CG 4.
    [Show full text]
  • Species and Abundance of Thrips Associated with Flowers of Moringa
    Species and Abundance of Thrips Associated with Flowers of Moringa oleifera in Southeastern Mexico Author(s): Guillermo López-Guillén, Javier de la Rosa Cancino, Thierry Hance and Arturo Goldarazena Source: Southwestern Entomologist, 43(4):847-853. Published By: Society of Southwestern Entomologists https://doi.org/10.3958/059.043.0425 URL: http://www.bioone.org/doi/full/10.3958/059.043.0425 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. VOL. 43, NO. 4 SOUTHWESTERN ENTOMOLOGIST DEC. 2018 Species and Abundance of Thrips Associated with Flowers of Moringa oleifera in Southeastern Mexico Especies y Abundancia de Trips Asociados a Flores de Moringa oleifera en el Sureste de México Guillermo López-Guillén1, Javier de la Rosa Cancino2, Thierry Hance3, and Arturo Goldarazena3 Abstract. Moringa oleifera Lam. is a plant with nutraceutical and industrial value, and its seeds can be used to make biodiesel.
    [Show full text]
  • Aravalli Range of Rajasthan and Special Thanks to Sh
    Occasional Paper No. 353 Studies on Odonata and Lepidoptera fauna of foothills of Aravalli Range, Rajasthan Gaurav Sharma ZOOLOGICAL SURVEY OF INDIA OCCASIONAL PAPER NO. 353 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA Studies on Odonata and Lepidoptera fauna of foothills of Aravalli Range, Rajasthan GAURAV SHARMA Zoological Survey of India, Desert Regional Centre, Jodhpur-342 005, Rajasthan Present Address : Zoological Survey of India, M-Block, New Alipore, Kolkata - 700 053 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Gaurav Sharma. 2014. Studies on Odonata and Lepidoptera fauna of foothills of Aravalli Range, Rajasthan. Rec. zool. Surv. India, Occ. Paper No., 353 : 1-104. (Published by the Director, Zool. Surv. India, Kolkata) Published : April, 2014 ISBN 978-81-8171-360-5 © Govt. of India, 2014 ALL RIGHTS RESERVED . No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. This book is sold subject to the condition that it shall not, by way of trade, be lent, resold hired out or otherwise disposed of without the publisher’s consent, in any form of binding or cover other than that in which, it is published. The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 800.00 Foreign : $ 40; £ 30 Published at the Publication Division by the Director Zoological Survey of India, M-Block, New Alipore, Kolkata - 700053 and printed at Calcutta Repro Graphics, Kolkata - 700 006.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 1965 Band/Volume: 144 Autor(en)/Author(s): Amsel Hans-Georg Artikel/Article: Pyraliden-Studien 2. Die Noorda blitealis Wlk.-Gruppe (Lep.: Pyralidae). 1-7 download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Stuttgarter Beiträge zur Naturkunde aus dem Staatlichen Museum für Naturkunde in Stuttgart Stuttgart 15. Juli 1965 Nr. 144 Pyraliden-Studien 2* Die Noorda blitealis Wlk.-Gruppe (Lep. : Pyralidae) (Ergebnisse der Entomologischen Reise Willi Richter, Stuttgart, in Äthiopien 1959/60 - Nr. 7) Von H. G. Amsel, Karlsruhe Mit 6 Abbildungen (Aus den Landessammlungen für Naturkunde Karlsruhe) Aus der eremischen Subregion der Paläarktis wurden bisher 2 Arten der Noorda blitealis Wlk.-Gruppe bekannt, und zwar Noorda blitealis Wlk. aus dem Jordantal, aus Beiruth, aus SO- Iran (Belutschistan und Fars) und Epinoorda caradjae Rbl. vom Jor- dantal und aus S-Iran (Fars). Außerdem beschrieb Zerny 1917 nach einem 6 eine Noorda atripalpalis aus Kordofan, also aus einem Grenzgebiet der Paläarktis, und stellte sie in die Nähe von fessalis Sw. Da fessalis nicht zu Noorda gehört, wie eine Über- prüfung dieser Art ergab, kann angenommen werden, daß auch atripalpalis nicht zur blitealis-Gruppe zu stellen sein wird, um so mehr als atripalpalis ein ganz abweichen- des Zeichnungsprinzip besitzt. Ich selbst beschrieb außerdem noch eine Noorda uni- punctalis (Stuttg. Beitr. Naturk. Nr. 121: 3, Taf. 1 Fig. 3 [Imago]) 1963 aus Konso in SW-Äthiopien und stellte sie zur blitealis -Gruppe, da das Zeichnungsprinzip dieser Art offensichtlich deren Einreihung hier erfordert.
    [Show full text]
  • PACIFIC INSECTS MONOGRAPH Ll
    PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni­ mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka­ tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A.
    [Show full text]
  • The Effect of Citronella Essential Oil on Controlling the Mango Red
    Volume 8, Number 2, June .2015 ISSN 1995-6673 JJBS Pages 77 - 80 Jordan Journal of Biological Sciences The Effect of Citronella Essential Oil on Controlling the Mango Red-Banded Caterpillar, Noorda albizonalis Hampson (Lepidoptera: Pyralidae) * Mizu Istianto and Albertus Soemargono Indonesian Tropical Fruit Research Institute, Agency for Agricultural Research and Development, P.O. Box 5, telp. +62755-20137, fax. +62755-20592 Solok 27301, West Sumatera - Indonesia Received: September 19, 2014 Revised: January 27 , 2014 Accepted: January 31, 2015 Abstract Mango fruit borer (red-banded caterpillar) Noorda albizonalis is one of the important pests detrimental to the cultivation of mangoes. A control measure to reduce the level of attacks is necessary in order to prevent a high loss of yield. Plant based pesticides (as citronella essential oil) are potential pest control agents that are environmentally friendly and are safer than the currently used pest-control agents. The present paper was conducted at the Cukurgondang Research Station, Pasuruan- East Java, Indonesia. The experiment was arranged in a randomized block design with 8 replications in which the treatments were concentrations of essential oil 2, 4, 6 cc/l and control (untreated). The parameters observed were the intensity of fruit borer attack and the economic profit obtained from the application of citronella oil. The results showed that the application of citronella essential oil could reduce the rate of fruit borer attack and the production loss on mango, mainly at a concentration of 6 and 4 cc/l. The profit per hectare gained from its application at a concentration of 6 and 4 cc/l was IDR 3,596,000 and IDR 2,864,000, respectively (US$1 = IDR 9,700).
    [Show full text]