A Landsat-Based Model for Retrieving Total Suspended Solids Concentration of Estuaries and Coasts in China

Total Page:16

File Type:pdf, Size:1020Kb

A Landsat-Based Model for Retrieving Total Suspended Solids Concentration of Estuaries and Coasts in China Geosci. Model Dev., 10, 4347–4365, 2017 https://doi.org/10.5194/gmd-10-4347-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts in China Chongyang Wang1,2,3, Shuisen Chen1, Dan Li1, Danni Wang4, Wei Liu1,2,3, and Ji Yang1,2,3 1Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Center for Remote Sensing Big Data Application, Guangdong Key Laboratory of Remote Sensing and GIS Technology Application, Guangzhou Institute of Geography, Guangzhou 510070, China 2Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4Department of Resources and the Urban Planning, Xin Hua College of Sun Yat-Sen University, Guangzhou 510520, China Correspondence to: Shuisen Chen ([email protected]) Received: 6 December 2016 – Discussion started: 6 April 2017 Revised: 5 September 2017 – Accepted: 17 October 2017 – Published: 30 November 2017 Abstract. Retrieving total suspended solids (TSS) concen- two-valued issue of the QRLTSS model and to retrieve TSS tration accurately is essential for sustainable management concentration from Landsat imagery. After a 6S model- of estuaries and coasts, which plays a key role in the in- based atmospheric correction of Landsat OLI and ETMC im- teraction between hydrosphere, pedosphere and atmosphere. agery, the TSS concentrations of three regions (Moyangjiang Although many TSS retrieval models have been published, River estuary, Pearl River estuary and Hanjiang River es- the general inversion method that is applicable to different tuary) in Guangdong Province in China were mapped by field conditions is still under research. In order to obtain the QRLTSS model. The results indicated that TSS concen- a TSS remote sensing model that is suitable for estimating trations in the three estuaries showed large variation rang- TSS concentrations with wide range in estuaries and coasts ing from 0.295 to 370.4 mgL−1. Meanwhile we found that by Landsat imagery, after reviewing a number of Landsat- TSS concentrations retrieved from Landsat imagery showed based TSS retrieval models and improving a comparatively good validation accuracies with the synchronous water sam- better one among them, this study developed a quadratic ples (TSS: 7–160 mgL−1, RMSE: 11.06 mgL−1, N D 22). model using the ratio of logarithmic transformation of red The further validation from EO-1 Hyperion imagery also band and near-infrared band and logarithmic transformation showed good performance (in situ synchronous measurement of TSS concentration (QRLTSS) based on 119 in situ sam- of TSS: 106–220.7 mgL−1, RMSE: 26.66 mgL−1, N D 13) ples collected in 2006–2013 from five regions of China. It of the QRLTSS model for the area of high TSS concentra- was found that the QRLTSS model works well and shows tions in the Lingding Bay of the Pearl River estuary. Ev- a satisfactory performance. The QRLTSS model based on idently, the QRLTSS model is potentially applied to simu- Landsat TM (Thematic Mapper), ETMC (Enhanced The- late high-dynamic TSS concentrations of other estuaries and matic Mapper Plus) and OLI (Operational Land Imager) sen- coasts by Landsat imagery, improving the understanding of sors explained about 72 % of the TSS concentration variation the spatial and temporal variation of TSS concentrations on (TSS: 4.3–577.2 mgL−1, N D 84, P value < 0:001) and had regional and global scales. Furthermore, the QRLTSS model an acceptable validation accuracy (TSS: 4.5–474 mgL−1, can be optimized to establish a regional or unified TSS re- root mean squared error (RMSE) ≤ 25 mgL−1, N D 35). In trieval model of estuaries and coasts in the world for differ- addition, a threshold method of red-band reflectance (OLI: ent satellite sensors with medium- and high-resolution simi- 0.032, ETMC and TM: 0.031) was proposed to solve the lar to Landsat TM, ETMC and OLI sensors or with similar Published by Copernicus Publications on behalf of the European Geosciences Union. 4348 C. Wang et al.: A Landsat-based model for retrieving TSS concentration of estuaries and coasts in China red bands and near-infrared bands, such as ALI, HJ-1 A and alytical models are likely more applicable to different water B, LISS, CBERS, ASTER, ALOS, RapidEye, Kanopus-V, bodies than the empirical or semiempirical methods (Binding and GF. et al., 2012, 2010; Chen et al., 2015b; Giardino et al., 2007; Ma et al., 2010; Sipelgas et al., 2009). However, there are still limitations of the application due to the difficulties of re- trieval or inaccuracies on initialization parameters (Binding 1 Introduction et al., 2012; Chen et al., 2015b; Ma et al., 2010; Wu et al., 2013). Therefore, the empirical (especially semiempirical) The amount of total suspended solids (TSS) is a critical fac- methods are still used to estimate TSS concentration and will tor of the ecological environment of water bodies, which di- continue to be used for a long time due to their simplicity rectly and deeply affects their optical properties through ab- and sufficient accuracies. It should be noted that the applica- sorbing and scattering of the sunlight (Chen et al., 2015b; tions of empirical or semiempirical TSS models need to be Pozdnyakov et al., 2005; Wang et al., 2016; Wu et al., 2013), revalidated in different regions and periods because they are leading to impacts on the primary production of the water ar- largely region-, time- or environment-dependent (Wu et al., eas (May et al., 2003). Estuaries and coasts are the most im- 2013). We found that previous empirical or semiempirical portant intermediate zones that connect hydrosphere, pedo- Landsat-based TSS retrieval models vary greatly in their sphere and atmosphere, which then pass on a deep and wide main forms of a single band or multiple bands for different impact on many aspects of our societal and natural environ- estuaries and coasts (Ma et al., 2010; Wu et al., 2013). ment (Nechad et al., 2010; Pozdnyakov et al., 2005). The top- The TSS models of a single band include linear function ics of TSS concentration monitoring and spatial and temporal (Fraser, 1998; Islam et al., 2001; Nas et al., 2010; Rao et al., variation assessment have been paid great attention, and the 2009), exponential or logarithmic function (Keiner and Yan, associated research work has been conducted frequently by 1998; Wu et al., 2013; Zhang et al., 2014), and quadratic a variety of scholars, government branches and society com- function (Chen et al., 2014). Those models have been eas- munities (Caballero et al., 2014; Giardino et al., 2015; Liu ily applied to many regions because they not only have the et al., 2003; Lu et al., 2012; Montanher et al., 2014; Nechad simple forms but also more choice of remote sensing data. et al., 2010; Olmanson et al., 2013; Pozdnyakov et al., 2005; We know that the sensitivity of satellite sensor bands is dif- Rao et al., 2009; Shen et al., 2008; Tang et al., 2004b; ferent for different TSS concentrations. Many studies have Zhang et al., 2007). Many methods can be used to estimate proven that reflectance in the red band increases with increas- TSS concentrations of water bodies, including hydrological- ing TSS concentrations, but tends towards convergence or site monitoring, in situ investigation, physical models, nu- keeps stable due to saturation effect under high TSS concen- merical simulation, remote sensing and so on (Chen et al., trations (Ritchie and Zimba, 2006; Feng et al., 2014), while 2015a). Retrieving TSS concentrations from remote sensing the reflectance in the near-infrared band is more sensitive to data has unique advantages due to the wide spatial cover- high TSS concentrations compared to low TSS concentra- age and periodic revisit, such as the Land Observation Satel- tions (Chen et al., 2015b; Feng et al., 2014; Hu et al., 2004; lite (Landsat), the Earth-Observing One satellite (EO-1), the Wang et al., 2010). Thus, those models of a single band have Moderate Resolution Imaging Spectroradiometer (MODIS), limited applications in regions with a wide dynamic range of the Medium Resolution Imaging Spectrometer (MERIS), the TSS concentration. Geostationary Ocean Color Imager (GOCI), the Sea Viewing Models that combined multiple bands worked better than Wide Field of View Sensor (SeaWiFS), Systeme Probatoire those with a single band in avoiding the effect of saturation d’Observation dela Tarre (SPOT) and the Environment and for water bodies of high TSS concentrations and have been Disaster Monitoring and Forecasting Small Satellite Con- applied widely (Dekkera et al., 2001; Doxaran et al., 2003; stellation (HJ). Compared to other remote sensing data, the Feng et al., 2014; Montanher et al., 2014; Oyama et al., 2009; Landsat series of imagery has an advantage in spatiotemporal Wang et al., 2016). Although the band combination includes dynamics analysis of TSS concentrations (Wu et al., 2013) band ratio (Doxaran et al., 2003; Lathrop et al., 1991; Ritchie due to the additional good quality, high spatial resolution and and Cooper, 1991; Topliss et al., 1990; Wang et al., 2016) and inheritance, especially long-term historical data since 1972. other complex forms (Dekkera et al., 2001; Li et al., 2010; Many Landsat-based models have estimated the TSS con- Oyama et al., 2009; Song et al., 2011; Zhang et al., 2015), centration with empirical, semiempirical, semianalytical or these models of multiple-band combination can be also clas- analytical algorithms (Chen et al., 2014; Doxaran et al., sified into linear, exponential, logarithmic or quadratic func- 2003; Fraser, 1998; Islam et al., 2001; Li et al., 2010; Mon- tion.
Recommended publications
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • A Researcher's Guide to Earth Observations
    National Aeronautics and Space Administration A Researcher’s Guide to: Earth Observations This International Space Station (ISS) Researcher’s Guide is published by the NASA ISS Program Science Office. Authors: William L. Stefanov, Ph.D. Lindsey A. Jones Atalanda K. Cameron Lisa A. Vanderbloemen, Ph.D Cynthia A. Evans, Ph.D. Executive Editor: Bryan Dansberry Technical Editor: Carrie Gilder Designer: Cory Duke Published: June 11, 2013 Revision: January 2020 Cover and back cover: a. Photograph of the Japanese Experiment Module Exposed Facility (JEM-EF). This photo was taken using External High Definition Camera (EHDC) 1 during Expedition 56 on June 4, 2018. b. Photograph of the Momotombo Volcano taken on July 10, 2018. This active stratovolcano is located in western Nicaragua and was described as “the smoking terror” in 1902. The geothermal field that surrounds this volcano creates ideal conditions to produce thermal renewable energy. c. Photograph of the Betsiboka River Delta in Madagascar taken on June 29, 2018. This river is comprised of interwoven channels carrying sediment from the mountains into Bombetoka Bay and the Mozambique Channel. The heavy islands of built-up sediment were formed as a result of heavy deforestation on Madagascar since the 1950s. 2 The Lab is Open Orbiting the Earth at almost 5 miles per second, a structure exists that is nearly the size of a football field and weighs almost a million pounds. The International Space Station (ISS) is a testament to international cooperation and significant achievements in engineering. Beyond all of this, the ISS is a truly unique research platform. The possibilities of what can be discovered by conducting research on the ISS are endless and have the potential to contribute to the greater good of life on Earth and inspire generations of researchers to come.
    [Show full text]
  • Madagascar Mangrove Proposal.Pdf
    UNITED NATIONS ENVIRONMENT PROGRAMME NAIROBI CONVENTION WIOSAP FULL PROPOSAL FOR DEMONSTRATION PROJECT Call title: Implementation of the Strategic Action Programme for the protection of the Western Indian Ocean from land-based sources and activities (WIO-SAP) Participating countries: Comoros, Kenya, Madagascar, Mauritius, Mozambique, Seychelles, Somalia, South Africa, Tanzania [and France (not project beneficiary)] Executing organization: Nairobi Convention Secretariat Duration of demo projects: 2 years Stage of the call: Full proposals Submission dateline: 15th July 2019 (Maximum 20 pages including cover page, budget and annexes) INSTRUCTIONS Organisation Name Centre National de Recherches Oceanographiques (CNRO) Project Title Developing Collaborative Strategies for Sustainable Management of Mangroves in the Boeny Region Littorale, Madagascar Address Po Box 68 NOSY BE, MADAGASCAR Website www.cnro.recherches.gov.mg Contact Person Name: RAJAONARIVELO Mamy Nirina Telephone: 261340129242 Mobile phone: +261320750556 Email: [email protected] Registration Details Type of organisation: Public institution of an industrial and commercial nature Country: MADAGASCAR Registration Number: Decree No. 77-081 of 04 April 1977 and is currently governed by Decree No. 2016-613 of 25 May 2016 Year: 1977 1 | Page Executive Summary: Background: Madagascar accounts for about 2% of the global mangrove extent. About 20% (equivalent to over 60,000 ha) of these mangroves are in the Boeny Region in the north western of the country, supporting a diversity of livelihoods. As such, human pressures are characteristic drivers of degradation and loss. In many cases poverty, traditional dependence on mangrove resources and lack of viable alternative livelihoods are the root causes, coupled with inadequacies in the enforcement of governance mechanisms, exposing mangroves to irresponsible exploitation.
    [Show full text]
  • A Landsat-Based Model for Retrieving Total Suspended Solids Concentration of Estuaries and Coasts
    Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-297, 2017 Manuscript under review for journal Geosci. Model Dev. Discussion started: 6 April 2017 c Author(s) 2017. CC-BY 3.0 License. A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts Chongyang Wang1,2,3, Shuisen Chen2, Dan Li2, Wei Liu1,2,3, Ji Yang1,2,3, Danni Wang4 1 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 5 2 Guangzhou Institute of Geography, Guangzhou 510070, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Department of Resources and the Urban Planning, Xin Hua College of Sun Yat-Sen University, Guangzhou 510520, China Correspondence to: Shuisen Chen ([email protected]) 10 Abstract. Retrieving total suspended solids (TSS) concentration accurately is essential for sustainable management of estuaries and coasts, which plays a key role in the interaction of hydrosphere, pedosphere and atmosphere. Although many TSS retrieval models have been published, the general inversion method that is applicable to different field conditions is still under research. In order to obtain a TSS remote sensing model that is suitable for estimating the TSS concentrations with wide range in estuaries and coasts by Landsat imageries, this study recalibrated and validated a 15 number of regression-techniques-based TSS retrieval models using 129 in-situ samples collected from five regions of China during the period of 2006-2013. It was found that the optimized Quadratic model using the Ratio of Logarithmic transformation of red band and near infrared band and logarithmic transformation of TSS concentration (QRLTSS) works well and shows a relatively satisfactory performance.
    [Show full text]
  • Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency
    ARTICLES https://doi.org/10.1038/s41561-018-0279-1 Mangrove canopy height globally related to precipitation, temperature and cyclone frequency Marc Simard 1*, Lola Fatoyinbo 2*, Charlotte Smetanka1,3, Victor H. Rivera-Monroy4, Edward Castañeda-Moya4,5, Nathan Thomas2,6 and Tom Van der Stocken 1 Mangrove wetlands are among the most productive and carbon-dense ecosystems in the world. Their structural attributes vary considerably across spatial scales, yielding large uncertainties in regional and global estimates of carbon stocks. Here, we present a global analysis of mangrove canopy height gradients and aboveground carbon stocks based on remotely sensed mea- surements and field data. Our study highlights that precipitation, temperature and cyclone frequency explain 74% of the global trends in maximum canopy height, with other geophysical factors influencing the observed variability at local and regional scales. We find the tallest mangrove forests in Gabon, equatorial Africa, where stands attain 62.8 m. The total global man- grove carbon stock (above- and belowground biomass, and soil) is estimated at 5.03 Pg, with a quarter of this value stored in Indonesia. Our analysis implies sensitivity of mangrove structure to climate change, and offers a baseline to monitor national and regional trends in mangrove carbon stocks. angroves are forested wetlands that represent a functional derived from space-borne remote sensing data and in situ measure- link between the terrestrial and oceanic carbon cycles1, stor- ments, to perform a global analysis of the spatial patterns and vari- ing up to four times as much carbon per unit area in com- ability in mangrove forest structure.
    [Show full text]
  • Geo-Data: the World Geographical Encyclopedia
    Geodata.book Page iv Tuesday, October 15, 2002 8:25 AM GEO-DATA: THE WORLD GEOGRAPHICAL ENCYCLOPEDIA Project Editor Imaging and Multimedia Manufacturing John F. McCoy Randy Bassett, Christine O'Bryan, Barbara J. Nekita McKee Yarrow Editorial Mary Rose Bonk, Pamela A. Dear, Rachel J. Project Design Kain, Lynn U. Koch, Michael D. Lesniak, Nancy Cindy Baldwin, Tracey Rowens Matuszak, Michael T. Reade © 2002 by Gale. Gale is an imprint of The Gale For permission to use material from this prod- Since this page cannot legibly accommodate Group, Inc., a division of Thomson Learning, uct, submit your request via Web at http:// all copyright notices, the acknowledgements Inc. www.gale-edit.com/permissions, or you may constitute an extension of this copyright download our Permissions Request form and notice. Gale and Design™ and Thomson Learning™ submit your request by fax or mail to: are trademarks used herein under license. While every effort has been made to ensure Permissions Department the reliability of the information presented in For more information contact The Gale Group, Inc. this publication, The Gale Group, Inc. does The Gale Group, Inc. 27500 Drake Rd. not guarantee the accuracy of the data con- 27500 Drake Rd. Farmington Hills, MI 48331–3535 tained herein. The Gale Group, Inc. accepts no Farmington Hills, MI 48331–3535 Permissions Hotline: payment for listing; and inclusion in the pub- Or you can visit our Internet site at 248–699–8006 or 800–877–4253; ext. 8006 lication of any organization, agency, institu- http://www.gale.com Fax: 248–699–8074 or 800–762–4058 tion, publication, service, or individual does not imply endorsement of the editors or pub- ALL RIGHTS RESERVED Cover photographs reproduced by permission No part of this work covered by the copyright lisher.
    [Show full text]
  • Class G Tables of Geographic Cutter Numbers: Maps -- by Region Or Country -- Eastern Hemisphere -- Africa
    G8202 AFRICA. REGIONS, NATURAL FEATURES, ETC. G8202 .C5 Chad, Lake .N5 Nile River .N9 Nyasa, Lake .R8 Ruzizi River .S2 Sahara .S9 Sudan [Region] .T3 Tanganyika, Lake .T5 Tibesti Mountains .Z3 Zambezi River 2717 G8222 NORTH AFRICA. REGIONS, NATURAL FEATURES, G8222 ETC. .A8 Atlas Mountains 2718 G8232 MOROCCO. REGIONS, NATURAL FEATURES, ETC. G8232 .A5 Anti-Atlas Mountains .B3 Beni Amir .B4 Beni Mhammed .C5 Chaouia region .C6 Coasts .D7 Dra region .F48 Fezouata .G4 Gharb Plain .H5 High Atlas Mountains .I3 Ifni .K4 Kert Wadi .K82 Ktaoua .M5 Middle Atlas Mountains .M6 Mogador Bay .R5 Rif Mountains .S2 Sais Plain .S38 Sebou River .S4 Sehoul Forest .S59 Sidi Yahia az Za region .T2 Tafilalt .T27 Tangier, Bay of .T3 Tangier Peninsula .T47 Ternata .T6 Toubkal Mountain 2719 G8233 MOROCCO. PROVINCES G8233 .A2 Agadir .A3 Al-Homina .A4 Al-Jadida .B3 Beni-Mellal .F4 Fès .K6 Khouribga .K8 Ksar-es-Souk .M2 Marrakech .M4 Meknès .N2 Nador .O8 Ouarzazate .O9 Oujda .R2 Rabat .S2 Safi .S5 Settat .T2 Tangier Including the International Zone .T25 Tarfaya .T4 Taza .T5 Tetuan 2720 G8234 MOROCCO. CITIES AND TOWNS, ETC. G8234 .A2 Agadir .A3 Alcazarquivir .A5 Amizmiz .A7 Arzila .A75 Asilah .A8 Azemmour .A9 Azrou .B2 Ben Ahmet .B35 Ben Slimane .B37 Beni Mellal .B4 Berkane .B52 Berrechid .B6 Boujad .C3 Casablanca .C4 Ceuta .C5 Checkaouene [Tétouan] .D4 Demnate .E7 Erfond .E8 Essaouira .F3 Fedhala .F4 Fès .F5 Figurg .G8 Guercif .H3 Hajeb [Meknès] .H6 Hoceima .I3 Ifrane [Meknès] .J3 Jadida .K3 Kasba-Tadla .K37 Kelaa des Srarhna .K4 Kenitra .K43 Khenitra .K5 Khmissat .K6 Khouribga .L3 Larache .M2 Marrakech .M3 Mazagan .M38 Medina .M4 Meknès .M5 Melilla .M55 Midar .M7 Mogador .M75 Mohammedia .N3 Nador [Nador] .O7 Oued Zem .O9 Oujda .P4 Petitjean .P6 Port-Lyantey 2721 G8234 MOROCCO.
    [Show full text]
  • LCSH Section B
    B, Madame (Fictitious character) BT Boeing bombers B lymphocyte differentiation USE Madame B (Fictitious character) Jet bombers BT Cell differentiation B (Computer program language) B-50 bomber (Not Subd Geog) — — Molecular aspects [QA76.73.B155] UF B-29D bomber BT Molecular biology BT Programming languages (Electronic Boeing B-50 (Bomber) — Tumors (May Subd Geog) computers) Boeing Superfortress (Bomber) [RC280.L9] B & D (Sexual behavior) Superfortress (Bomber) UF B cell neoplasia USE Bondage (Sexual behavior) XB-44 bomber B cell neoplasms B & L Landfill (Milton, Wash.) BT Boeing bombers B cell tumors This heading is not valid for use as a geographic Bombers B lymphocyte tumors subdivision. B-52 (Bomber) BT Lymphomas UF B and L Landfill (Milton, Wash.) USE B-52 bomber NT Burkitt's lymphoma B&L Landfill (Milton, Wash.) [UG1242.B6] Multiple myeloma BT Sanitary landfills—Washington (State) UF B-52 (Bomber) B/D (Sexual behavior) B-1 bomber Stratofortress (Bomber) USE Bondage (Sexual behavior) USE Rockwell B-1 (Bomber) BT Boeing bombers B.E.2 (Military aircraft) (Not Subd Geog) B-2 bomber (Not Subd Geog) Jet bombers UF BE2 (Fighter plane) [Former heading] [UG1242.B6] Strategic bombers BE2 (Military aircraft) UF Advanced Technology Bomber B-57 (Miltary aircraft) Bleriot Experimental 2 (Military aircraft) Spirit (Stealth bomber) USE Canberra (Military aircraft) British Experimental 2 (Military aircraft) Stealth bomber B-58 (Bombers) Royal Aircraft Factory B.E.2 (Military aircraft) BT Jet bombers USE B-58 bomber BT Airplanes, Military Northrop aircraft B-58 bomber (Not Subd Geog) Royal Aircraft Factory aircraft Stealth aircraft UF B-58 (Bombers) B emission stars Strategic bombers B-58 Hustler (Bombers) USE Be stars B-3 organ General Dynamics B-58 Shell stars USE Hammond B-3 organ Hustler (Bombers) B.
    [Show full text]
  • EAZA Madagascar Campaign, “Arovako I Madagasikara” (Conserve Madagascar), in October 2006
    B USHMEAT | R AINFOREST | T IGER | S HELLSHOCK | R HINO | M ADAGASCAR | A MPHIBIAN | C ARNIVORE | A PE EAZA Conservation Campaigns Over the last ten years Europe’s leading zoos and EAZA Madagascar aquariums have worked together in addressing a variety of issues affecting a range of species and habitats. EAZA’s annual conservation campaigns have Campaign raised funds and promoted awareness amongst 2006-2007 millions of zoo visitors each year, as well as providing the impetus for key regulatory change. | INTRODUCTION | As a result of its special geological history Madagascar developed spectacular flora and fauna, including thousands of species unique to this great island. It’s no wonder that Madagascar is seen as one of the most important biodiversity hotspots on earth. Many of Madagascar’s diverse ecosystems, however, are in great danger because of human activities. Forest habitats are dwindling, which is the major problem for the 90% of Madagascar’s fauna that rely on them. A significant number of terrestrial species on the island are listed on the IUCN Red List as Critically Endangered, Endangered or Vulnerable. Much of this island’s unique flora and fauna will disappear soon unless measures are taken to protect them. To address these issues EAZA launched its sixth conservation campaign, the EAZA Madagascar Campaign, “Arovako i Madagasikara” (Conserve Madagascar), in October 2006. | CAMPAIGN AIMS | The Madagascar Campaign was EAZA’s first, and to date only, campaign focusing on the biodiversity of an entire country. Six campaign targets
    [Show full text]
  • Madagascar and the Indian Ocean Islands Mid-Term Assessment, 2020
    Mid-term Assessment CEPF Investment in Madagascar and the Indian Ocean Islands Hotspot May 2020 1. Introduction The Madagascar and the Indian Ocean Islands Biodiversity Hotspot (MADIO Hotspot) comprises the island of Madagascar and neighboring islands and archipelagos in the western Indian Ocean, covering a total land area of 600,461 square kilometers. While the different islands of the hotspot share specific biogeographical features, they form a single unit characterized by a wide disparity in scale in terms of both land mass and human population. Madagascar, an island-continent, makes up about 95 percent of the hotspot’s land area and is home to about 98 percent of the population, overwhelming the three island groups of Comoros, Seychelles, the Mascarene Islands (comprising La Réunion, Mauritius and Rodrigues) and other scattered islands in the Western Indian Ocean in those respects. The hotspot has often been considered a priority among hotspots because of its extreme diversity (with about 15,000 plant species of which more than 12,000 are endemic) and because of the high-level taxonomic endemism, which demonstrates distinct evolutionary mechanisms related to the isolation of the hotspot. The area also qualifies as a hotspot due to a very high level of degraded natural ecosystems. While human well-being and economic development rely heavily on ecosystems, the environment of the hotspot is under immense threat. Humans have deeply disturbed ecosystems and biodiversity across the hotspot for centuries, but today enhanced anthropogenic pressures due to population growth and exacerbated by climate change seriously threaten the already degraded and often fragmented ecosystems.
    [Show full text]
  • S INDEX to SITES
    Important Bird Areas in Africa and associated islands – Index to sites ■ INDEX TO SITES A Anjozorobe Forest 523 Banc d’Arguin National Park 573 Blyde river canyon 811 Ankaizina wetlands 509 Bandingilo 888 Boa Entrada, Kapok tree 165 Aangole–Farbiito 791 Ankarafantsika Strict Nature Bangui 174 Boatswainbird Island 719 Aba-Samuel 313 Reserve 512 Bangweulu swamps 1022 Bogol Manyo 333 Aberdare mountains 422 Ankarana Special Reserve 504 Banti Forest Reserve 1032 Bogol Manyo–Dolo 333 Abijatta–Shalla Lakes National Ankasa Resource Reserve 375 Banyang Mbo Wildlife Sanctuary Boin River Forest Reserve 377 Park 321 Ankeniheny Classified Forest 522 150 Boin Tano Forest Reserve 376 Abraq area, The 258 Ankober–Debre Sina escarpment Bao Bolon Wetland Reserve 363 Boja swamps 790 Abuko Nature Reserve 360 307 Barberspan 818 Bokaa Dam 108 Afi River Forest Reserve 682 Ankobohobo wetlands 510 Barka river, Western Plain 282 Boma 887 African Banks 763 Annobón 269 Baro river 318 Bombetoka Bay 511 Aftout es Sâheli 574 Antsiranana, East coast of 503 Barotse flood-plain 1014 Bombo–Lumene Game Reserve Ag Arbech 562 Anysberg Nature Reserve 859 Barrage al Mansour Ad-Dhabi 620 209 Ag Oua–Ag Arbech 562 Arabuko-Sokoke forest 426 Barrage al Massira 617 Bonga forest 323 Aglou 622 Arâguîb el Jahfa 574 Barrage de Boughzoul 63 Boorama plains 787 Aguelhok 561 Arboroba escarpment 287 Barrage de la Cheffia 60 Bordj Kastil 969 Aguelmane de Sidi Ali Ta’nzoult Arbowerow 790 Barrage Idriss Premier 612 Bosomtwe Range Forest Reserve 616 Archipel d’Essaouira 618 Barrage Mohamed V 612
    [Show full text]
  • Ecosystèm Profile Madagascar and Indian
    ECOSYSTÈM PROFILE MADAGASCAR AND INDIAN OCÉAN ISLANDS HOTSPOT ABSTRACT FROM PROFILE : NICHE, STRATEGY, LOGICAL FRAMEWORK BASED ON THE FINAL ECOSYSTEM PROFILE, DECEMBRE 2014 1. NICHE FOR THE CEPF INVESTMENT During the past several decades, the Madagascar and Indian Ocean Islands Hotspot has received much attention from the international community for biodiversity conservation. However, the level of attention varies significantly from country to country, and also considerably among regions within countries (all regions of Madagascar, for example, have not received comparable assistance). There are also variations in the levels of support for different activities. Meanwhile, indicators and trends show that while progress has emerged, threats remain significant and ecosystem degradation continues at a steady pace, endangering the long-term conservation of hundreds of species and the well-being of a growing population that is dependent on the health of the ecosystems they live in. The level of CEPF financial commitment over the next seven years will be small in comparison to global interventions, as well as to the needs for biodiversity conservation across the hotspot. It is therefore necessary to define an investment niche in order to guide future CEPF investments on themes and towards geographical areas to maximize the program’s impact in terms of biodiversity conservation and sustainable development. Defining such a niche should also reduce the risk of duplication with existing initiatives funded by other stakeholders, and avoid investments that would have only a marginal impact. The CEPF niche must also meet the CEPF main objective, which is to support the establishment of conservation communities in the hotspots in which civil society effectively assumes its role in leading species and landscape conservation at the local, national and regional levels, in conjunction with other stakeholders.
    [Show full text]