Removal of Resin and Fatty Acids from Pulp Mill Wastewater Streams

Total Page:16

File Type:pdf, Size:1020Kb

Removal of Resin and Fatty Acids from Pulp Mill Wastewater Streams REMOVAL OF RESIN AND FATTY ACIDS FROM PULP MILL WASTEWATER STREAMS A Dissertation Presented to The Academic Faculty By Stephen P. Makris In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Chemical and Biomolecular Engineering School Georgia Institute of Technology September, 2003 Removal of Resin and Fatty Acids from Pulp Mill Wastewater Streams Approved by: Dr. Sujit Banerjee, Advisor Dr. Yulin Deng Dr. Howard L. Empie Dr. Lucian A. Lucia Dr. Spyros G. Pavlostathis Approved January 5, 2004 ACKNOWLEDGEMENTS Pursuing a Ph.D. degree is both a journey and a commitment requiring the support of many people. I have been extremely fortunate to be surrounded by many talented and caring mentors, colleagues, friends and family. I would like to recognize the assistance of some of these people here. First, I would like to acknowledge the support of the member companies of the Institute of Paper Science and Technology for partially funding this research and my education. My thanks are also extended to Georgia-Pacific Corporation for additional funding and assistance from Keith Bentley, Robert Sackellares, Myra Carpenter, Carl Rush, and Tobin Finley. I would also like to thank Greg Hollod and Dell Majure at Riverwood International for their support of this research. I gratefully thank my advisor, Sujit Banerjee, for the guidance, inspiration and the moments of levity that helped to keep me on course and focused on the completion of this dissertation. I would also like to thank my dissertation committee, Yulin Deng, Howard L. “Jeff” Empie, Lucian A. Lucia, and Spyros G. Pavlostathis, for their time reviewing this manuscript and their thoughtful advice. I give special thanks to my friends and family for their unwavering support; I truly could not have completed this journey without them. My greatest thanks go to my wife, best friend, and light of my life. Libby, this dissertation is dedicated to you. iii TABLE OF CONTENTS Acknowledgement ............................................................................................................ iii Table of contents............................................................................................................... iv List of Tables ................................................................................................................... vii List of Figures................................................................................................................... ix List of Symbols and Abbreviations................................................................................... xi Summary.......................................................................................................................... xii 1. Background..................................................................................................................... 1 1.1. Toxicity Definitions and Testing ................................................................ 2 1.2. Toxicity of Effluent Components ............................................................... 7 Bleach Plant Byproducts................................................................................. 7 Natural Components ....................................................................................... 9 1.3. Effluent treatment systems........................................................................ 13 1.4. Sources of Toxic Components.................................................................. 16 1.5. Partitioning of Resin Acids....................................................................... 18 1.6. Section Summary...................................................................................... 24 2. Dissertation Questions and Research Objectives.......................................................... 27 2.1. Research Objectives.................................................................................. 28 2.2. Thesis Approach ....................................................................................... 30 3. RFA and Toxicity Removal Across the ETS................................................................ 32 3.1. Section Overview...................................................................................... 32 3.2. Experimental Approach ............................................................................ 33 3.3. Experimental............................................................................................. 35 3.4 Results and Discussion ............................................................................. 44 iv 3.5. Section Summary...................................................................................... 69 4. DHA Acute and Chronic Toxicity in Treatment System Effluents.............................. 71 4.1. Section Overview..................................................................................... 71 4.2. Experimental Approach ........................................................................... 73 4.3. Experimental............................................................................................ 74 Microtox® bioassays .................................................................................... 74 Ceriodaphnia dubia bioassays..................................................................... 76 4.4. Results and Discussion ............................................................................ 78 Microtox® dose-response experiments ........................................................ 78 C. dubia dose-response experiments............................................................ 81 4.5. Section Summary..................................................................................... 85 5. Mapping Pulp Mill Sewers for Resin and Fatty Acids ................................................ 86 5.1. Section Overview..................................................................................... 86 5.2. Experimental Approach ........................................................................... 87 5.3. Experimental............................................................................................ 93 5.4. Results and Discussion ............................................................................ 95 5.5. Section Summary.....................................................................................100 6. Resin and Fatty Acids Removal from Pulp Mill Sewers using Flotation....................102 6.1. Section Overview.....................................................................................102 6.2. Experimental Approach ...........................................................................103 6.3. Experimental............................................................................................109 v 6.4. Results and Discussion ..........................................................................113 6.5. Section Summary...................................................................................124 7. Conclusions and Recommendations ..........................................................................125 Appendix A.1.................................................................................................................134 Appendix A.2.................................................................................................................140 References......................................................................................................................146 vi LIST OF TABLES Table 1.1. Fatty acids most commonly found in wastewater streams. ............................. 11 Table 1.2: LC50 (Rainbow trout) of key extractives. ....................................................... 13 Table 3.1. Mill A effluent treatment system characteristics. ............................................ 36 Table 3.2. Summary of sample collection dates and testing matrix. ................................ 43 Table 3.3. Operational ranges for Mill A ETS influent. .................................................. 45 Table 3.4. Operational ranges for Mill A ETS final effluent........................................... 45 Table 3.5. Overall ETS operating efficiencies and flow rates at Mill A. ........................ 46 Table 3.6. Statistical significance of COD levels across ETS (α = 0.05)......................... 48 Table 3.7. Acute and chronic toxicity for December 6-10, 1999. .................................... 49 Table 3.8. Acute and chronic toxicity for March 6-9, 2000. ............................................ 49 Table 3.9 Average RFA and TSS concentration during effluent treatment...................... 52 Table 3.10 Average RFA and TSS removal contributions to overall removal rate.......... 54 Table 3.11. Physicochemical properties for model resin and fatty acids,......................... 59 Table 3.12. Comparison of DHA and RFA levels (ppm) across Mills A and B. ............. 68 Table 4.1. Volumetric concentrations used in Microtox® dose-response experiments. ... 75 Table 4.2. Test conditions for DHA chronic toxicity dose-response experiments. .......... 77 Table 4.3. Results of the Microtox® dose-response experiments. .................................... 79 Table 4.4. Sample pH range over duration of chronic dose-response experiments.......... 82 Table 5.1 – Separation processes and operating principles. ............................................. 88 Table 5.2 – Physicochemical properties of DHA. ...........................................................
Recommended publications
  • Polar Semivolatile Organic Compounds in Biomass-Burning Emissions and Their Chemical Transformations During Aging in an Oxidation flow Reactor
    Atmos. Chem. Phys., 20, 8227–8250, 2020 https://doi.org/10.5194/acp-20-8227-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA Correspondence: Vera Samburova ([email protected]) Received: 20 December 2019 – Discussion started: 23 January 2020 Revised: 7 May 2020 – Accepted: 18 May 2020 – Published: 16 July 2020 Abstract. Semivolatile organic compounds (SVOCs) emit- 350 g mol−1 decreased after OFR aging, while abundances ted from open biomass burning (BB) can contribute to chem- of low-MW compounds (e.g., hexanoic acid) increased. This ical and physical properties of atmospheric aerosols and indicated a significant extent of fragmentation reactions in also may cause adverse health effects. The polar fraction of the OFR. Methoxyphenols decreased after OFR aging, while SVOCs is a prominent part of BB organic aerosols, and thus a significant increase (3.7 to 8.6 times) in the abundance of it is important to characterize the chemical composition and dicarboxylic acids emission factors (EFs), especially maleic reactivity of this fraction. In this study, globally and region- acid (10 to 60 times), was observed. EFs for fresh and ratios ally important representative fuels (Alaskan peat, Moscow from fresh-to-aged BB samples reported in this study can be peat, Pskov peat, eucalyptus, Malaysian peat, and Malaysian used to perform source apportionment and predict processes agricultural peat) were burned under controlled conditions occurring during atmospheric transport.
    [Show full text]
  • Infra Oct03 An
    CONSTRUCTION • PUBLIC WORKS • NATURAL RESOURCES Volume 8, Number 9 • October 2003 Welcome to InfraStructures CONSTRUCTION • TRAVAUX PUBLICS • RESSOURCES NATURELLES Volume 8 Number 9 Until recently, InfraStructures has been read mainly by French speaking October 2003 users of heavy machinery. Over the last seven years, InfraStructures has become a leader in its field. First by becoming the only magazine covering all aspects of the industry published in French in Canada. Then by being the first to publish all its editorial content on the web, and also by being the only construction magazine, published in French, having a significant readership outside the Province of Quebec. ÉDITOR / PUBLISHER Jean-François Villard For many years, we have received requests for an English version of InfraStructures. Technical limitations, and the lack of advertising revenue have prevented us from publishing such a magazine in print. Now, with the ADVERTISING extent of the use of Internet by professionals, we feel that the time as come MONTRÉAL for a portable digital file (.pdf) version of InfraStructures in English. Jean-François Villard André Charlebois While the content of the English version differs slightly from the original, most of the important news will be published in English. In the near future, QUEBEC City more and more of the content of the original will be translated into English. Gilbert Marquis (418) 651-1176 With over 500 visitors per day on average, spending over 13 minutes per visit, the website of InfraStructures in one of the most important sites of this kind. More than two thirds of the visitors come from outside Canada.
    [Show full text]
  • CHAPTER 47 PULP of WOOD OR of OTHER FIBROUS CELLULOSIC MATERIAL; WASTE and SCRAP of PAPER OR PAPERBOARD X 47-1 Note L
    )&f1y3X CHAPTER 47 PULP OF WOOD OR OF OTHER FIBROUS CELLULOSIC MATERIAL; WASTE AND SCRAP OF PAPER OR PAPERBOARD X 47-1 Note l. For the purposes of heading 4702, the expression "chemical wood pulp, dissolving grades" means chemical woodpulp having by weight an insoluble fraction of 92 percent or more for soda or sulfate woodpulp or of 88 percent or more for sulfite woodpulp after one hour in a caustic soda solution containing 18 percent sodium hydroxide (NaOH) at 20oC, and for sulfite woodpulp an ash content that does not exceed 0.15 percent by weight. )&f2y3X X 47-2 4701.00.00 00 4 Mechanical woodpulp................................ t....... Free Free 4702.00.00 Chemical woodpulp, dissolving grades............... ........ Free Free 20 9 Sulfite....................................... t 40 5 Sulfate or soda............................... t 4703 Chemical woodpulp, soda or sulfate, other than dissolving grades: Unbleached: 4703.11.00 00 9 Coniferous............................... t....... Free Free 4703.19.00 00 1 Nonconiferous............................ t....... Free Free Semibleached or bleached: 4703.21.00 Coniferous............................... ........ Free Free 20 3 Semibleached........................ t 40 9 Bleached............................ t 4703.29.00 Nonconiferous............................ ........ Free Free 20 5 Semibleached........................ t 40 1 Bleached............................ t 4704 Chemical woodpulp, sulfite, other than dissolving grades: Unbleached: 4704.11.00 00 8 Coniferous............................... t....... Free Free 4704.19.00 00 0 Nonconiferous............................ t....... Free Free Semibleached or bleached: 4704.21.00 00 6 Coniferous............................... t....... Free Free 4704.29.00 00 8 Nonconiferous............................ t....... Free Free 4705.00.00 00 0 Semichemical woodpulp.............................. t....... Free Free 4706 Pulps of other fibrous cellulosic material: 4706.10.00 00 7 Cotton linters pulp..........................
    [Show full text]
  • Resin Acids in Rosin (Colophony) Solder Flux Fume Laboratory Method Using Gas Chromatography
    Health and Safety Executive Resin acids in rosin (colophony) solder flux fume Laboratory method using gas chromatography Scope 1 This method describes the measurement of time-weighted average concentrations of rosin (also known as colophony) based solder flux fume collected onto membrane filters with analysis of the resin acid components, after derivatisation, by gas chromatography (GC). Summary 2 A measured volume of air is drawn through a membrane filter mounted in a sampling head close to the breathing zone. The filter is solvent desorbed, the resin acids derivatised and then quantified using GC with a flame ionisation detector (FID). If confirmation of the resin acid components’ identities is required, samples may also be analysed by GC with a mass spectrometer (MS) detector. However, MS is not recommended for quantitative analysis as, unlike an FID, the MS detector gives different response factors for the various resin acids. The use of alternative methods not included in the MDHS series is acceptable provided they can demonstrate the accuracy and reliability appropriate to the application. Recommended sampling 3 For long-term exposures: Maximum sampling time: 8 hours; Sampling rate: 1–2 l-1min; Sampled volume: up to 960 litres. For short-term exposures: Sampling time: 15 mins; Sampling rate: 2 lmin-1; Sampled volume: 30 litres. Prerequisites 4 Users of this method will need to be familiar with the content of MDHS14.1 Safety 5 Users of this method should be familiar with normal laboratory practice and MDHS83/3 carry out a suitable risk assessment. It is the user’s responsibility to establish appropriate health and safety practices and to ensure compliance with regulatory requirements.
    [Show full text]
  • Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
    Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects.
    [Show full text]
  • Q2 2021 Presentation 16 July 2021
    Q2 2021 presentation 16 July 2021 Follow us on LinkedIn www.norskeskog.com Sustainable and innovative industry ENTERING Biochemicals 1,000 tonnes of 500 tonnes of 300 tonnes of ▪ Leading publication paper producer with five & materials biochemicals capacity1 CEBINA capacity CEBICO capacity (pilot) industrial sites globally Q1 2023 Q4 2021 ▪ Ongoing transition into higher growth and ENTERING higher value markets Renewable Interliner 760k tonnes of ~200k tonnes of ▪ Becoming a leading independent European packaging containerboard capacity Interliner capacity recycled containerboard company in 2023 Q4 2022 ▪ Packaging market growth and margin EXPANDING outlook strengthened since announcement Waste-to- Green bio- Sustainable energy plant mass energy ▪ High return waste-to-energy project +400 GWh of waste- ~425 GWh of wood ~28 GWh of biogas ~1,000 GWh of biomass energy based energy capacity pellets capacity energy capacity energy capacity2 improving green energy mix in Q2 2022 Q2 2022 ▪ Promising biochemicals and materials projects spearheaded by Circa PRESENT ▪ Industrial sites portfolio provide foundation for Publication 1,400k tonnes of 400k tonnes of 360k tonnes of further industrial development paper Newsprint capacity LWC capacity SC capacity Under construction Date Estimated start-up date 2 1) Norske Skog is the largest shareholder with ~26% ownership position in Circa; 2) Installed capacity for biofuel and waste from recycled paper of 230 MW Second quarter in brief Final investment decision made for Golbey conversion to containerboard
    [Show full text]
  • Deinking of Screen-Printed Electrodes Printed on Invasive Plant-Based Paper
    sustainability Article Article DeinkingDeinking of of Screen-Printed Screen-Printed Electrodes Printed on InvasiveInvasive Plant-Based Plant-Based Paper UrškaUrška Kav Kavˇciˇc*čič *, Igor, Igor Karlovits Karlovits and and Janja Janja Zule Zule PulpPulp and and Paper Paper Institute, Institute, Bogiši Bogiši´ceva8,ćeva 8, 1000 Ljubljana, Slov Slovenia;enia; igor.karlovits@icp-lj. [email protected] (I.K.); janja.zule@icp- [email protected] (J.Z.) (J.Z.) * Correspondence: [email protected] Received: 21 January 2020; Accepted: 6 February 2020; Published: date Received: 21 January 2020; Accepted: 9 February 2020; Published: 12 February 2020 Abstract: The deinking of paper-based printed electronics is a growing concern regarding the Abstract: The deinking of paper-based printed electronics is a growing concern regarding the increase increase of printed electronics products. The benefits of using paper-based substrates instead of of printed electronics products. The benefits of using paper-based substrates instead of polymer polymer or ceramic for the single-use printed electrodes can contribute to sustainability goals. The or ceramic for the single-use printed electrodes can contribute to sustainability goals. The use of use of invasive plant species for making paper substrates for printed electronics is a unique invasive plant species for making paper substrates for printed electronics is a unique opportunity opportunity to have several environmental benefits. In this study, the recycling issue of these to have several environmental benefits. In this study, the recycling issue of these products through products through the use of the deinking technique was evaluated. Screen-printed electrodes the use of the deinking technique was evaluated.
    [Show full text]
  • ANNUAL REPORT 1997 1 Main Figures Per Area
    NORSKE SKOG ANNUAL REPORT 1997 1 Main figures per Area 1997 1996 1995 1994 1993 1992 1991 1990 1989 Area Paper Operating revenue NOK million 9,284 9,493 8,066 5,831 4,731 4,773 5,855 6,733 5,768 Operating profit NOK million 1,134 2,078 1,708 454 469 95 656 721 398 Operating margin % 12.2 21.9 21.2 7.8 9.9 2.0 11.2 10.7 6.9 Area Fibre Operating revenue NOK million 1,376 1,222 2,171 1,498 1,052 1,202 1,247 1,709 2,025 Operating profit NOK million 49 -127 682 178 -187 -176 -164 327 615 Operating margin % 3.6 -10.4 31.4 11.9 -17.8 -14.6 -13.2 19.1 30.4 Area Building Materials Operating revenue NOK million 2,667 2,579 2,333 2,048 1,704 1,688 1,725 1,960 1,911 Operating profit NOK million -16 27 96 146 85 64 9 107 93 Operating margin % -0.6 1.0 4.1 7.1 5.0 3.8 0.5 5.5 4.9 Operating revenue per market Operating revenue per product Rest of Other world 8% 2% Pulp 8% Norway 23% Newsprint Special grades 1% USA 10% 40% SC magazine paper 20% Other Europe 25% Germany 15% LWC magazine paper 9% UK 11% France 8% Building materials 20% 2 NORSKE SKOG ANNUAL REPORT 1997 1997 Highlights Price decline caused weaker result Growth in sawn timber Expansion in Eastern Europe Prices of paper and pulp fell during the In September, Norske Skog took over In November, Norske Skog took over first quarter of 1997.
    [Show full text]
  • Paper Recycling Technology Detailed Part 1A
    Paper Recycling Technology and Science Dr. Richard A. Venditti Paper Science and Engineering Forest Biomaterials Department North Carolina State University Lecture: Paper recycling and technology course introduction and objectives Dr. Richard Venditti Faculty member in the Paper Science and Engineering Program in the Forest Biomaterials Department at North Carolina State University PhD in Chemical Engineering, BS in Pulp and Paper Science and Chemical Engineering Research areas: � Paper recycling � Utilization of forest/agricultural materials for new applications � Life cycle analysis Named a TAPPI Fellow in 2012 Relevant research projects: – The detection of adhesive contaminants – The changes in fibers upon recycling – Automatic sorting of recovered papers – Flotation deinking surfactants – Agglomeration deinking – Screening phenomena and pressure sensitive adhesives – Deposition of adhesive contaminants – Neural networks to control deinking operations – Sludge conversion to bio-ethanol and to bio- materials Course Outline The US Paper Recycling Industry Recovered Paper Grades and Contaminants Effect of Recycling on Fibers/Paper Unit Operations � Pulping, Cleaning, Screening, Washing, Flotation, Dispersion, Bleaching, ….. Image Analysis, Deinking Chemicals System Design Advanced/Additional Topics Course Activities Viewing of the Videos of Lectures � Base lectures by Venditti � Guest lectures from industry leaders Homework assignments Final Exam Critical Issues in Recycling: Going deeper into the recovered paper stream
    [Show full text]
  • United States Patent \ .J Patented Oct
    2,907,738 United States Patent \ .j Patented Oct. 3, 1959 1 2 dibasic acids would also give polymerization in which the natural resin acid ester becomes an intimate part ‘ 2,907,738 of the ?nal polymer chemical composition. Such esteri ‘MIXED RESIN ACID ESTERS OF 4,4-BIS(47 ?cation reactions involving the phenolic hydroxyl groups HYDROXYARYL) PENTANOIC ACID 01 would conveniently be carried out by heating with a mix ture of the dibasic acid and acetic anhydride. Sylvan 0. Greenlee, Racine, Wis., assignor to The hydroxyaryl—substituted aliphatic acids contem~ S. C. Johnson & Son, Inc., Racine, Wis. plated for use in preparing the desired resinous poly No Drawing. Application June 30,1955 hydric phenols have two hydroxyphenyl groups attached ‘ Serial No.‘ 519,279’ 10 to a single carbon atom. The preparation of these sub~ stituted acids may be most conveniently carried out by 9 Claims. (Cl. 260-24)‘ condensing a keto-acid with the desired phenol. Expe rience in the preparation of bisphenols and related com pounds indicates that the carbonyl group of the keto This invention relates to new compositions which are 15 acid must be located next to a terminal carbon atom in ‘mixed esters of‘polyhydric alcohols, natural resin,acids, order to obtain satisfactory yields. A terminal carbon and hydroxyaryl-substituted aliphatic acids. atom as used herein refers to primary carbon atoms An object of this invention is to produce new com other ‘than the carboxyl carbon atom of the keto-acid. positions from natural resin acids, polyhydric alcohols Prior applications, Serial Nos. 464,607 and 489,300, and hydroxyaryl-substituted aliphatic acids which are 20 ?led October 25, 1954, and February 18, 1955, respec~ valuable as intermediates in the production of other more tively, disclose a number of illustrative compounds suit complex compositions.
    [Show full text]
  • Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-Gc Analysis
    ORIGINAL RESEARCH published: 25 January 2016 doi: 10.3389/fenrg.2016.00002 Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis Anne E. Harman-Ware1* , Robert Sykes1 , Gary F. Peter2 and Mark Davis1 1 National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA, 2 School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from Edited by: the pine samples were quantified, using standard curves, and included the monoter- Subba Rao Chaganti, University of Windsor, Canada penes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included Reviewed by: caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in Yu-Shen Cheng, derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabi- National Yunlin University of Science and Technology, Taiwan etic, abietic, and neoabietic acids.
    [Show full text]
  • Third Quarter 2020
    THIRD QUARTER 2020 - QUARTERLY REPORT - PRESENTATION - PRESS RELEASES NORSKE SKOG QUARTERLY REPORT – THIRD QUARTER 2020 (UNAUDITED) 2 ││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││ INTRODUCTION Norske Skog is a world leading producer of publication paper with Of the four mills in Europe, two will produce recycled containerboard strong market positions in Europe and Australasia. Publication paper following planned conversion projects. In addition to the traditional includes newsprint and magazine paper. Norske Skog operates six publication paper business, Norske Skog aims to further diversify its mills in five countries, with an annual production capacity of 2.3 million operations and continue its transformation into a growing and high- tonnes. Four of the mills are located in Europe, one in Australia and margin business through a range of exciting fibre projects. one in New Zealand. The group also operates a pellet facility in New Zealand. Newsprint and magazine paper is sold through sales offices The parent company, Norske Skog ASA, is incorporated in Norway and and agents to over 80 countries. The group has approximately 2 300 has its head office at Skøyen in Oslo. The company is listed on Oslo employees. Stock Exchange with the ticker NSKOG. KEY FIGURES NOK MILLION Q3 2020 Q2 2020 Q3 2019 YTD 2020 YTD 2019 INCOME STATEMENT
    [Show full text]