Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paratransgenic Control of Vector Borne Diseases Ivy Hurwitz, Annabeth Fieck, Amber Read, Heidi Hillesland*, Nichole Klein, Angray Kang1 and Ravi Dur- Vasula
Int. J. Biol. Sci. 2011, 7 1334 Ivyspring International Publisher International Journal of Biological Sciences 2011; 7(9):1334-1344 Review Paratransgenic Control of Vector Borne Diseases Ivy Hurwitz, Annabeth Fieck, Amber Read, Heidi Hillesland*, Nichole Klein, Angray Kang1 and Ravi Dur- vasula Center for Global Health, Department of Internal Medicine, University of New Mexico and New Mexico VA Health Care System, Albuquerque, New Mexico, USA. 1. Institute of Dentistry, Queen Mary, University of London, England. * Present address: Department of Internal Medicine, University of Washington Medical Center, Seattle, Washington, USA. Corresponding author: Ravi Durvasula (505)991 3812, [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2011.09.01; Accepted: 2011.10.01; Published: 2011.11.01 Abstract Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host’s ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypa- nosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. -
Alan Robert Templeton
Alan Robert Templeton Charles Rebstock Professor of Biology Professor of Genetics & Biomedical Engineering Department of Biology, Campus Box 1137 Washington University St. Louis, Missouri 63130-4899, USA (phone 314-935-6868; fax 314-935-4432; e-mail [email protected]) EDUCATION A.B. (Zoology) Washington University 1969 M.A. (Statistics) University of Michigan 1972 Ph.D. (Human Genetics) University of Michigan 1972 PROFESSIONAL EXPERIENCE 1972-1974. Junior Fellow, Society of Fellows of the University of Michigan. 1974. Visiting Scholar, Department of Genetics, University of Hawaii. 1974-1977. Assistant Professor, Department of Zoology, University of Texas at Austin. 1976. Visiting Assistant Professor, Dept. de Biologia, Universidade de São Paulo, Brazil. 1977-1981. Associate Professor, Departments of Biology and Genetics, Washington University. 1981-present. Professor, Departments of Biology and Genetics, Washington University. 1983-1987. Genetics Study Section, NIH (also served as an ad hoc reviewer several times). 1984-1992: 1996-1997. Head, Evolutionary and Population Biology Program, Washington University. 1985. Visiting Professor, Department of Human Genetics, University of Michigan. 1986. Distinguished Visiting Scientist, Museum of Zoology, University of Michigan. 1986-present. Research Associate of the Missouri Botanical Garden. 1992. Elected Visiting Fellow, Merton College, University of Oxford, Oxford, United Kingdom. 2000. Visiting Professor, Technion Institute of Technology, Haifa, Israel 2001-present. Charles Rebstock Professor of Biology 2001-present. Professor of Biomedical Engineering, School of Engineering, Washington University 2002-present. Visiting Professor, Rappaport Institute, Medical School of the Technion, Israel. 2007-2010. Senior Research Associate, The Institute of Evolution, University of Haifa, Israel. 2009-present. Professor, Division of Statistical Genomics, Washington University 2010-present. -
Another Way of Being Anisogamous in Drosophila Subgenus
Proc. NatI. Acad. Sci. USA Vol. 91, pp. 10399-10402, October 1994 Evolution Another way of being anisogamous in Drosophila subgenus species: Giant sperm, one-to-one gamete ratio, and high zygote provisioning (evoludtion of sex/paternty asune/male-derived contrIbutIon/Drosophia liftorais/Drosopha hydei) CHRISTOPHE BRESSAC*t, ANNE FLEURYl, AND DANIEL LACHAISE* *Laboratoire Populations, Gen6tique et Evolution, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette Cedex, France; and *Laboratoire de Biologie Cellulaire 4, Unit6 Recherche Associ6e 1134, Universit6 Paris XI, F-91405 Orsay Cedex, France Communicated by Bruce Wallace, July 11, 1994 ABSSTRACT It is generally assume that sexes n animals within-ejaculate short sperm heteromorphism in the Dro- have arisen from a productivity versus provisioning conflict; sophila obscura species group (Sophophora subgenus) to males are those individuals producing gametes n ily giant sperm found solely within the Drosophila subgenus. small, in excess, and individually bereft of all paternity assur- The most extreme pairwise comparison of sperm length ance. A 1- to 2-cm sperm, 5-10 times as long as the male body, between these taxonomic groups represents a factor of might therefore appear an evolutionary paradox. As a matter growth of 300 (12). In all Drosophila species described so far of fact, species ofDrosophila of the Drosophila subgenus differ in this respect, sperm contain a short acrosome, a filiform from those of other subgenera by producing exclusively sperm haploid nucleus, and a flagellum composed of two inactive of that sort. We report counts of such giant costly sperm in mitochondrial derivatives (13, 14) flanking one axoneme Drosophila littondis and Drosophila hydei females, indicating along its overall length: the longer the sperm, the larger the that they are offered in exceedingly small amounts, tending to flagellum and hence the more mitochondrial material. -
Evaluating the Potential of Using Spodoptera Litura Eggs for Mass-Rearing Telenomus Remus, a Promising Egg Parasitoid of Spodoptera Frugiperda
insects Article Evaluating the Potential of Using Spodoptera litura Eggs for Mass-Rearing Telenomus remus, a Promising Egg Parasitoid of Spodoptera frugiperda Wanbin Chen , Yuyan Li , Mengqing Wang, Jianjun Mao and Lisheng Zhang * State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (W.C.); [email protected] (Y.L.); [email protected] (M.W.); [email protected] (J.M.) * Correspondence: [email protected]; Tel.: +86-10-6281-5909 Simple Summary: Telenomus remus (Nixon) is an effective egg parasitoid for controlling Spodoptera frugiperda (J. E. Smith), which is a major destructive agricultural pest. Currently, this parasitoid is reared on Corcyra cephalonica (Stainton) eggs in several countries. However, previous studies carried out in China have reported that it cannot parasitize in C. cephalonica eggs. Meanwhile, those works have indicated that Spodoptera litura (Fabricius) can potentially be used as an alternative host. In order to evaluate this potential, our study compared the development and parasitism ability of T. remus on the eggs of S. frugiperda and S. litura at different temperatures in a laboratory. We found that S. litura eggs are more advantageous as an alternative host for the mass-rearing of parasitoid when compared with S. frugiperda eggs. Our results provide a more specific basis and reference for the large-scale Citation: Chen, W.; Li, Y.; Wang, M.; production and low temperature storage of T. remus. Mao, J.; Zhang, L. Evaluating the Potential of Using Spodoptera litura Abstract: Although Telenomus remus, a promising parasitoid of Spodoptera frugiperda, had been Eggs for Mass-Rearing Telenomus successfully reared on the eggs of Corcyra cephalonica in some countries, reports from China have remus, a Promising Egg Parasitoid of argued that it is infeasible. -
Genome Features of Asaia Sp. W12 Isolated from the Mosquito Anopheles Stephensi Reveal Symbiotic Traits
G C A T T A C G G C A T genes Article Genome Features of Asaia sp. W12 Isolated from the Mosquito Anopheles stephensi Reveal Symbiotic Traits Shicheng Chen 1,* , Ting Yu 2, Nicolas Terrapon 3,4 , Bernard Henrissat 3,4,5 and Edward D. Walker 6 1 Department of Clinical and Diagnostic Sciences, School of Health Sciences, Oakland University, 433 Meadowbrook Road, Rochester, MI 48309, USA 2 Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] 3 Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; [email protected] (N.T.); [email protected] (B.H.) 4 Institut National de la Recherche Agronomique (INRA), USC AFMB, 1408 Marseille, France 5 Department of Biological Sciences, King Abdulaziz University, Jeddah 21412, Saudi Arabia 6 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-248-364-8662 Abstract: Asaia bacteria commonly comprise part of the microbiome of many mosquito species in the genera Anopheles and Aedes, including important vectors of infectious agents. Their close association with multiple organs and tissues of their mosquito hosts enhances the potential for paratransgenesis for the delivery of antimalaria or antivirus effectors. The molecular mechanisms involved in the interactions between Asaia and mosquito hosts, as well as Asaia and other bacterial members of the mosquito microbiome, remain underexplored. Here, we determined the genome sequence of Asaia strain W12 isolated from Anopheles stephensi mosquitoes, compared it to other Asaia species associated Citation: Chen, S.; Yu, T.; Terrapon, with plants or insects, and investigated the properties of the bacteria relevant to their symbiosis N.; Henrissat, B.; Walker, E.D. -
Ecological Factors and Drosophila Speciation
ECOLOGICAL FACTORS AND DROSOPHILA SPECIATION WARREN P. SPENCER, College of Wooster INTRODUCTION In 1927 there appeared H. J. Muller's announcement of the artificial transmutation of the gene. This discovery was received with enthusiasm throughout the scientific world. Ever since the days of Darwin biological alchemists had tried in vain to induce those seemingly rare alterations in genes which were coming to be known as "the building stones of evolution." In the same year Charles Elton published a short book on animal ecology. It was received with little acclaim. That is not sur- prising. To the modern biologist ecology has seemed a bit out-moded, rather beneath the dignity of a laboratory scientist. Without detracting from the importance of Muller's discovery, in the light of the develop- ments of the past 13 years we venture to say that Elton conies nearer to providing the key to the process of evolution than does radiation genetics. Here is a quotation from Elton's chapter on ecology and evolution. '' Many animals periodically undergo rapid increase with practically no checks at all. In fact the struggle for existence sometimes tends to disappear almost entirely. During the expansion in numbers from a minimum, almost every animal survives, or at any rate a very high proportion of them do so, and an immeasurably larger number survives than when the population remains constant. If therefore a heritable variation were to occur in the small nucleus of animals left at a min- imum of numbers, it would spread very quickly and automatically, so that a very large porportion of numbers of individuals would possess it when the species had regained its normal numbers. -
Thermal Sensitivity of the Spiroplasma-Drosophila Hydei Protective Symbiosis: the Best of 2 Climes, the Worst of Climes
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.070938; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermal sensitivity of the Spiroplasma-Drosophila hydei protective symbiosis: The best of 2 climes, the worst of climes. 3 4 Chris Corbin, Jordan E. Jones, Ewa Chrostek, Andy Fenton & Gregory D. D. Hurst* 5 6 Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown 7 Street, Liverpool L69 7ZB, UK 8 9 * For correspondence: [email protected] 10 11 Short title: Thermal sensitivity of a protective symbiosis 12 13 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.070938; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 The outcome of natural enemy attack in insects has commonly been found to be influenced 17 by the presence of protective symbionts in the host. The degree to which protection 18 functions in natural populations, however, will depend on the robustness of the phenotype 19 to variation in the abiotic environment. We studied the impact of a key environmental 20 parameter – temperature – on the efficacy of the protective effect of the symbiont 21 Spiroplasma on its host Drosophila hydei, against attack by the parasitoid wasp Leptopilina 22 heterotoma. -
Genome Divergence and Gene Flow Between Drosophila Simulans And
bioRxiv preprint doi: https://doi.org/10.1101/024711; this version posted August 14, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Genome divergence and gene flow between Drosophila simulans and D. mauritiana Sarah B. Kingan, Anthony J. Geneva, Jeffrey P. Vedanayagam, and Daniel Garrigan Department of Biology, University of Rochester, Rochester, New York 1 bioRxiv preprint doi: https://doi.org/10.1101/024711; this version posted August 14, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Running title: Gene flow between allopatric Drosophila Key words: Drosophila; genome; introgression, speciation Corresponding author: Daniel Garrigan Department of Biology University of Rochester Rochester, New York 14627 Phone: +1-585-276-4816 Email: [email protected] 2 bioRxiv preprint doi: https://doi.org/10.1101/024711; this version posted August 14, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. ABSTRACT The fruit fly Drosophila simulans and its sister species D. mauritiana are a model system for studying the genetic basis of reproductive isolation, primarily because interspecific crosses produce sterile hybrid males and their phylogenetic proximity to D. -
Factors Regulating the Population Dynamics and Damage Potential of Pollen Beetle (Meligethes Aeneus F.) on Crops of Oilseed Rape
Factors regulating the population dynamics and damage potential of pollen beetle (Meligethes aeneus F.) on crops of oilseed rape Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Marie-Luise Tölle geboren in Gifhorn Göttingen, Mai 2014 D 7 1. Referentin/Referent: Prof. Dr. Stefan Vidal 2. Korreferentin/Korreferent: Prof. Dr. Andreas von Tiedemann Tag der mündlichen Prüfung: 12.05.2011 Contents Table of contents page Chapter I General introduction ........................................................................................................... 1 The pest: Meligethes aeneus ............................................................................................. 2 Factors influencing the population dynamics of pollen beetle ............................................ 3 Possible effects of insecticides on population growth and damage of pollen beetle ........... 4 Parasitoids and parasitisation of pollen beetle ................................................................... 5 Trap cropping in oilseed rape ............................................................................................ 6 References ........................................................................................................................ 7 Chapter II Cultivar and phenology of winter oilseed rape affect the abundance and reproduction of Meligethes aeneus (Fabricius) ......................................................................................11 -
Fertility Table of an Exotic Parasitoid, Telenomus Remus Nixon (Hymenoptera: Scelionidae) on Spodoptera Litura (Fabricius)
J. Bioi. Control. 13: 25-31. 1999 Fertility table of an exotic parasitoid, Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera litura (Fabricius) CHANDISH R. BALLAL and S. RAMANI Project Directorate of Biological Control P. B. No. 2491, H. A. Farm Post, Bellary Road Hebbal, Bangalore 560024, Karnataka, India ABSTRA CT: Fecundity studies on Telenomus remus, an exotic parasitoid of Spodoptera litura (Fabricius) indicated that in individual rearing, net reproductive rate was higher (120.53) and the population increased with an infinitesimal rate of 0.399 and a finite rate of 1.491. In group rearing, the corresponding figures were lower, being 65.03, 0.348 and 1.416, respectively_ There was a preponderance of females in the individual rearing method, while a balanced sex ratio was obtained in group rearing. KEY WORDS: Fertility table, rearing, Spodoptera litura, Telenomus remus Spodoptera litura (Fabricius) cabbage (Krishnamoorthy and Mani, (Lepidoptera: Noctuidae) is an important 1985). The release of T. remus in the field polyphagous pest infesting 120 host plants has enhanced the biological control of and is a serious pest on cole crops, tobacco, Spodoptera species in Barbados (Alam, groundnut, taro and castor (Singh and 1974), India (Patel et ai., 1979) and Jalali, 1997). TelellOmus remus Nixon Venezuela (Hernandez et ai., 1989). (Hymenoptera: Scelionidae) was recorded The construction of fertility tables to as an important parasitoid of S. litura in calculate certain vital statistics is an colocasia plantations in Western Samoa important component in the basic (Braune, 1982). This exotic parasitoid was understanding of the population dynamics introduced into India as one of the of a species (Southwood, 1978). -
Pesticidal Plants
Pesticidal Plants • Philip C. • Philip Stevenson, R. Steven Belmain and Murray B. Isman Pesticidal Plants From Smallholder Use to Commercialisation Edited by Philip C. Stevenson, Steven R. Belmain and Murray B. Isman Printed Edition of the Special Issue Published in Plants www.mdpi.com/journal/plants Pesticidal Plants Pesticidal Plants From Smallholder Use to Commercialisation Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman University of Greenwich University of Greenwich University of British Columbia UK UK Canada Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Plants (ISSN 2223-7747) from 2019 to 2020 (available at: https://www.mdpi.com/journal/plants/special issues/Pesticidal). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-788-8 (Pbk) ISBN 978-3-03928-789-5 (PDF) Cover image courtesy of Philip C. Stevenson. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
Tsetse Fly Evolution, Genetics and the Trypanosomiases - a Review E
Entomology Publications Entomology 10-2018 Tsetse fly evolution, genetics and the trypanosomiases - A review E. S. Krafsur Iowa State University, [email protected] Ian Maudlin The University of Edinburgh Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Genetics Commons, and the Parasitic Diseases Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/546. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tsetse fly evolution, genetics and the trypanosomiases - A review Abstract This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b.