Solar Powered Beach Buggy Challenge
Total Page:16
File Type:pdf, Size:1020Kb
Solar Powered Beach Buggy Challenge Group #1 Team Members: Jared Cozart Jose Rosales Robinson Charles Tony Jimogaon Spring 2018 4/27/18 Sponsored by Duke Energy List of Figures 0 1. Block diagram for electrical system of the buggy 9 2. House of Quality 14 3. UFP Baja presenting solid-rear-axle 18 4. UFP Baja with independent axles 19 5. Vehicle with single-strutted frame example 20 6. Function of space frame 20 7. Comparison of tire types 21 8. Brushless DC motor characteristics 23 9. Car Frame Materials 30 10. Rack and Pinion System 30 11. Differential Steering 31 12. Comparison of polycrystalline and monocrystalline solar cell 33 13. Basic diagram of a string inverter 36 14. Basic diagram of a microinverter system 37 15. Basic diagram of a solar system utilizing power optimizers 38 16. Images of Single-board computers 42 17. Images of GPS Tracking Units 44 18. Buck converter voltage regulator circuit with 5V output 50 19. Buck converter voltage regulator circuit with 3.3V output 51 20. Different motor controllers in consideration 52 21. PWM Solar Charge Controller Wiring Diagrams 54 22. MPPT Block Diagram 56 23. MINI-BUCK Power Stage Schematic 56 24. MINI-BUCK Controller and Bias Supply Schematic 57 25. MINI-BUCK Efficiency Curve Vs Output Current 57 26. Rover 20A MPPT Solar Charge Controller 58 27. Rover Efficiency Vs. Output power(12V) 59 28. Rover Efficiency Vs. Output power(24V) 59 29. Rover Current Vs. Voltage and Power Vs. Voltage 60 30. Diagram of a typical LIDAR system 61 31. Schematic diagram of a typical avalanche pulser 63 32. Peak amplitudes of current pulses as a function of supply voltage 64 33. Output of Laser Diodes at full and 100 MHz Bandwidth 64 34. The Test Management Process 71 35. Basic diagram of the operation of the Lidar system 74 36. Basic block diagram of the Lidar system 75 37. Illustration of the timing relationship between signals 77 38. Basic principle of SETS sampling 78 39. Receiver Circuit 80 40. Circuit Schematic of the Sequential-Equivalent-Timing Circuit 82 1 41. Control Logic Schematic 82 42. Laser Driver 83 43. ROS Core Data Flow 91 44. Navigation Mock-up 94 45. Navigation Design 95 46. Visual Representation of Neural Network 99 2 List of Tables 1. Components of buggy system and team member responsible 9 2. Various properties of common metals 21 3. Comparison of AC and DC motors 23 4. Comparison of Brush and Brushless motors 24 5. Battery types: Cost vs. Performance 25 6. Battery Types: Advantages and Disadvantages 26 7. Lead Acid Battery Comparison 28 8. Solar Panel Comparison 39 9. Single-Board Computer Comparison 41 10. GPS Chipset Specifications 45 11. GPS Antennae Comparison 47 12. Wireless Technologies Comparison 48 13. Specifications for 3 DC motor controllers 52 14. Solar Charge Controller Comparison 60 15. Measurements of Current, Power and Width of Optical Pulses 65 16. Power Consumption of System by Parts 66 17. LIDAR PCB Parts List 85 18. Open Source LIDAR Specification 85 19. Major Project Milestones 97 20. Static Structural Safety Factor 111 21. Static Structural Stress Safety Tools 112 22. Static Structural Stress Tool Results 113 23. Static Structural Stress Safety Tools 112 24. Static Structural Stress Tool 2 Results 115 25. Static Structural Stress Tool 2 Safety Factor 115 26. Structural Steel Constants 115 27. Structural Steel Compressive Ultimate Strength 116 28. Structural Steel Compressive Yield Strength 116 29. Structural Steel Tensile Yield Strength 116 30. Structural Steel Ultimate Strength 116 31. Structural Steel Isotropic Secant Coefficient of Thermal Expansion 116 32. Structural Steel Alternating Stress Mean Stress 117 33. Structural Steel Isotropic Relative Permeability 117 3 Table of Contents 1. Executive Summary …………………………………………………………...6 2. Project Description …………………………………………………………...8 2.1. Block Diagram ……………………………………………………...8 2.2. Requirement Specifications ………………………...……………...10 2.3. Project Constraints …………………...……………...……………...10 2.4. Economic and Time Constraints …………………...……………...10 2.5. Ethical, Health, and Safety Constraints ……………...…………...11 2.6. Environmental, Social, and Political Constraints ……………...12 2.7. Manufacturability and Sustainability constraints ……………...13 2.8. House of Quality …………………...……………...……………...13 2.9. Objectives ……………...……………...……………...……………...15 3. Initial Research ……………...……………...……………...……………...16 3.1. Mechanical Components ……………...……………...……………...16 3.1.1. Chassis ...…………………...……………...……………...16 3.1.2. Suspension .…………………...……………...……………...17 3.1.3. Drivetrain ….…………………...……………...……………...18 3.1.4. Frame Structure and Material Selection ……………...19 3.1.5. Beach Buggy Tires ……………...……………...…………...21 3.1.6. Motors ………………………...……………...……………...22 3.1.7. Batteries ………………………...……………...……………...24 3.1.8. Frame Materials ……………...……………...……………...29 3.1.9. Steering ………………………...……………...……………...30 3.2. Electrical Components ……………...……………...……………...31 3.2.1. Solar Cells …………………...……………...……………...31 3.2.1.1. Advantages ……………...……………...……………..33 3.2.1.2. Disadvantages ………………………...……………...34 3.2.2. Inverters ……………...……………...……………...35 3.2.2.1. String Inverters ……………………...……………...35 3.2.2.2. Micro Inverters ………………………...……………...36 3.2.2.3. Power Optimizers …………………...……………...37 3.2.3. Single Board Computer …………………...……………...39 3.2.4. GPS Tracking Unit ………………………...……………...42 3.2.4.1. GPS Antennae ………………………...……………...46 3.2.5. Wireless Networking ………………………...……………...47 3.2.6. Voltage Regulator ..………………………...……………...49 3.2.7. Linear Voltage Regulator …………………...……………...49 3.2.8. Switching Regulators ………………………...……………...49 3.2.9. Voltage Regulator Circuits …………………...……………...50 3.2.10. Motor Controller …………………………………………...51 4 3.2.11. Motor Controller Selection …………………...……………...51 3.2.12. Solar Charge Controller …………………...……………...53 3.2.13. Types of Solar Charge Controller ………………………...54 3.2.13.1. PWM ………………………………………………...54 3.2.13.2. MPPT ………………………………………………...55 3.2.14. LIDAR ……………………………………………………...61 3.2.15. Power Calculation …………………………………………...65 3.3. Software Components …………………………………………...67 3.3.1. Programming Languages …………………...……………...67 3.3.2. Image Processing …………………………………………...67 3.3.3. Robot Control …………………………………………...68 3.3.4. Operating System …………………………………………...68 4. Related Standards ...……………………………...………...……………...69 4.1. PCB Standard …………………………...…………...……………...69 4.2. Software Testing Standard (ISO/IEC/IEEE 29119) ……………...70 4.2.1. Part 2 - Test Processes …………………...……………...70 4.2.2. Part 4 - Test Techniques …………………...……………...71 5. Project Hardware and Software Design Details …………………………73 5.1. LIDAR ………………………………………………………………73 5.2. Solar Cells ………………………………………………………86 5.3. Code Design ………………………………………………………86 5.3.1. Robot Operating System ………………………………86 5.3.1.1. Nodes ………………………………………………87 5.3.1.2. Advantage of ROS ………………………………87 5.3.1.3. Limitations ………………………………………87 5.3.1.4. Data Flow ………………………………………………88 5.4. Sensor Design ………………………………………………………90 5.5. Navigation Design ………………………………………………91 5.5.1. Components ………………………………………………91 5.5.2. Concepts ………………………………………………………92 5.5.3. Design ………………………………………………………94 6. Course of Action Moving Forward ………………………………………95 7. Administrative Content ………………………………………………………96 7.1. Milestone Discussion ………………………………………………96 7.2. Budget and Finance Discussion ………………………………97 7.3. References ………………………………………………………98 8. Appendix …………………………………………………………………….99 8.1. An Explanation of Neural Networks ………………………………..99 8.1.1. General Structure …………………………………………...99 8.1.2. Training Process …………………………………………..100 5 8.1.3. Image Processing ………………………………………….102 8.2. Review of Relevant Papers ……………………………………….103 8.2.1. Navigator Design Report 2011 Intelligent Ground Vehicle Competition ………………………………………………..103 8.2.2. End to End Learning for Self-Driving Cars ……………….103 8.2.3. End-to-End Driving via Conditional Imitation Learning ….104 8.2.4. Autonomous Off-Road Vehicle Control Using End-to-End Learning …………………………………………………….104 8.3. Development Environment Setup Instructions ………………...105 8.3.1. VM Setup …………………………………………………..105 8.3.2. ROS (BSD License) ……………………………………….105 8.3.3. Rosserial Arduino (BSD License) ………………………..106 8.3.4. Adafruit Arduino Libraries (BSD License) ……………….107 8.3.5. Clone the Repo …………………………………………….107 8.3.6. Test (With an Arduino) ……………………………………108 8.3.7. Errata ……………………………………………………….108 8.4. Development Environment Resources ………………………….109 8.5. SolidWorks CAD Iteration Information …………………………..109 8.6. Ansys Analysis Data ……………………………………………...111 1. Executive Summary In recent years, there has a been a growing interest in both the public and commercial sectors with regards to the viability of automated motor vehicles. While there has been much research and prototyping done in the realm of converting traditional, on-road vehicles into self-driving cars, our team was unable 6 to find anything concerning the automation of cars for non-standard terrain, such as sand. As a result, we have decided to create an automated, single passenger buggy for use on a populated beach. It will also be entirely operated on solar power, in order to demonstrate the viability and low power consumption of environmental detection and recognition systems. The buggy will consist of a chassis, able to carry a passenger weighing a minimum of 120 lbs, across the beach at approximately 3 miles an hour. Through a combination of stereoscopic camera vision and Lidar, it will be able to conclusively detect and identify objects, communicate with an onboard Arduino unit, and through there affect the rotational speed of the