Evaluation of Drought Tolerance in Five Native Caribbean Tree Species with Landscape Potential Michael Morgan and Thomas W

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Drought Tolerance in Five Native Caribbean Tree Species with Landscape Potential Michael Morgan and Thomas W Evaluation of Drought Tolerance in Five Native Caribbean Tree Species With Landscape Potential Michael Morgan and Thomas W. Zimmerman Agroforestry Research Specialist II, Agricultural Experiment Station, University of the Virgin Islands, Kingshill, St. Croix, U.S. Virgin Islands; Research Associate Professor of Biotechnology and Agroforestry, Agricultural Experiment Station, University of the Virgin Islands, Kingshill, St. Croix, U.S. Virgin Islands Abstract wind. Landscape planting around buildings, in parks, and along roads differs from reforestation or restoration plantings Seedlings of five tree species native to the U.S. Virgin Islands in scale (square yards and square meters versus acres and and Puerto Rico with potential for landscape plantings were hectares) and in the size of the trees planted. The American grown in a greenhouse and subjected to three different water- National Standards Institute (ANSI) recommends that the ing intensities. We wanted to determine how fast nursery minimum size for a nursery-grown tree planted for landscap- stock would reach an appropriate size for outplanting and how ing purposes is a 0.5-in (12.5-mm) diameter measured at plant biomass would be allocated. Tree heights were mea- 6 in (15 cm) above the ground, and 4.0 to 5.0 ft (1.2 to 1.5 m) sured weekly for 22 weeks, after which trees were harvested (ANLA/ANSI 2004). By comparison, bare root seedlings to determine root, stem, and leaf weights. All species survived planted for reforestation purposes are typically 1- to 2-ft under the different watering regimes but had different (30- to 60-cm) tall. responses in both height growth and biomass allocation. Only one species, Andira inermis, when subjected to abundant Plant nurseries use abundant water, particularly those watering reached outplanting height by the end of 22 weeks. specializing in showy tropical plants such as species in the Plumeria alba growth did not respond positively to increas- Heliconaceae, Musaceae, and Zingiberaceae families. These ing water and the soil’s lack of field capacity wasted excess plants, after being planted in their final location, continue water. In terms of biomass allocation A. inermis was plastic to need abundant water—which is a problem. Nurseries and in the allocation of biomass by dedicating more biomass to landscape plantings cannot depend on rainfall alone in the roots while under water stress and dedicating more biomass to USVI. During the dry season, access to well, municipal, or stem wood when watered at field capacity. Other species, in pond water is necessary to keep these plants alive. particular, Bucida bucera did not change biomass allocation On the islands, supplies of fresh water are limited. Rainfall is in response to watering levels. The results indicate that U.S. seasonal. No perennial streams or lakes exist to provide fresh Virgin Islands nursery managers can save water during grow- water. People collect rainwater from rooftop-fed cisterns, pump ing of these species by controlling watering levels and still water from wells, or buy desalinated seawater from the Virgin obtain marketable local trees. Islands Water and Power Authority. Yet, drought in the USVI is a more serious concern than ever before in recent history. Introduction Subterranean reservoirs have become depleted, although ac- cording to records, the islands receive about the same amount The U.S. Virgin Islands (USVI) consists of four small islands of rainfall as in past periods of time. Subterranean water in the Caribbean. When Europeans arrived in the Caribbean sources have also become contaminated with salt water intru- at the end of the 15th century, these islands were mostly sions, waste water, and petroleum (USDA NRCS 2000). covered in tropical dry forest and inhabited by natives. In the 17th and 18th centuries, African slaves cleared the islands To reduce water use by plant nurseries and property own- of forest so sugar cane could be cultivated for the benefit of ers, we proposed the use of native tree species adapted to European planters. The cultivation of sugar cane has ceased, landscaping uses. As mentioned previously, tropical dry forest and the forests have grown back, but the islands are quickly was, and still is, the predominant vegetation type in the USVI. urbanizing (Thomas and Devine 2005). Tropical dry forests are adapted to seasonal rainfall regimes and low levels of precipitation. Worldwide, tropical dry New urban and residential developments require bushes and forests and woodlands are characterized by annual precipita- trees to beautify the newly constructed areas and provide tion between 40 and 80 in (1,000 and 2,000 mm) and very environmental services such as shade and protection from 49 Volume 57, Number 1 (2014) dry tropical forests have annual precipitation between 20 and in the length different species were subjected to treatments 40 in (500 and 1,000 mm) (Holdridge 1978). Tropical thorn resulted from delays in obtaining seeds of the various species scrub forests 10 to 20 in (250 to 500 mm) rain yearly. Based and differences in seed germination. Because St. Croix is a on annual precipitation and temperatures, the USVI has both tropical island, freezing temperatures and low levels of winter dry tropical forest and very dry tropical forest. light were not a problem. Mean daily temperature is 79 ˚F (26 ˚C), and St. Croix has roughly 12 hours of sunlight per Most tropical forests experience seasonal droughts that last day, year round (NOAA 2013). for weeks or months, even in forests classified as moist or humid (Mulkey and Wright 1996). Forest plants can also Each pot was filled with a potting mix of two partsSphagnum suffer water limitation daily, during the heat of the midday or peat, one part coarse sand, and one part top soil. Top soil was even from competition with other plants in the shade of the obtained from agricultural fields at the UVI-STX campus. understory (Kainer and others 1998). Fresh water is a limited A soil survey map indicates that the soil is a Sion Clay resource and plants have various physiological responses derived from alkaline marine deposits. It is considered prime and strategies in response to water availability. Some of agricul tural soil if irrigation is available; elsewhere, it is used the adaptations of tropical dry forest plants to drought are as range land (USDA NRCS 2013, 2000). The soil is moderately leathery leaves, leaves that are deciduous in times of drought, alkaline and sometimes causes problems for crops because of photosynthesis through the trunk instead of the leaves during iron deficiencies. Soil tests contracted out by UVI to Waters times of drought, dedication of more growth to roots instead Agricultural Laboratories indicate that the pH is 8. of leaves, and storage of water within the roots and tree trunk One month after transplanting, plants were assigned a weekly itself (Slayter 1967, Farquhar and Sharkey 1982, Sharkey and watering regime: 100 percent field capacity (FC), 66 percent Badger 1982, Gardner and others 1985, Shulze 1986, An- field capacity, and 33 percent field capacity (designated here- derson and others 1995, Brodribb 1996, Sanford and Cuevas after as 100 FC, 66 FC, and 33 FC, respectively). Six plants 1996, Manter and Kerrigan, 2004). of each species were in each watering regime. The pots were To remain profitable and in business, plant nurseries need to color-coded blue, green, and yellow to avoid confusion while produce a sufficient supply of plants at a price people are will- watering and to symbolize a gradient from abundant watering ing to pay. Two ways to reduce costs are to closely monitor through drought. In a previous experiment using 3-gal pots water use and to grow native plants that are adapted to the dry (data unpublished), the watering treatments were field capac- environment of the USVI. The objective of our study was to ity, 50 percent field capacity, and 33 percent field capacity, determine biomass production and allocation to leaves, stems, but we found no increase in plant growth when watering was and roots for five different species subjected to three watering increased from 33 to 50 percent field capacity. By increasing wa- regimes. This information can be an asset to nursery growers tering to 50 and 66 percent of field capacity, we were able to test and landscapers to better understand a plant species’ water- water-conserving treatments while still promoting plant growth. saving strategy. To determine the amount of water that each plant would re- ceive, we needed to determine the field capacity of the plant- Methodology ing substrate. Field capacity refers to the amount of water held in the soil after excess water has drained away. Gravity Five native tree species were included in this study: Andira causes the excess water to drain from the macropores; water inermis (W. Wright) Kunth ex DC, Bucera bucida L., Jac- for plant use is held within the micropores via capillary action quinia arborea Vahl, Pimenta racemosa (Mill.) J.W. Moore, (Brady and Weil 2002). We determined field capacity two and Plumeria alba L. Each species was grown from seed. different ways; the first is theoretical and the second empirical After two adult leaves emerged, the plants were transplanted with the expectation that both methods would produce similar into 61 in3 (1,000 cm3) pots and grown until they reached a results. A theoretically ideal growing medium consists of size of 6 in (15 cm) at which point 18 individuals of each 50 percent mineral or organic particles and 50 percent pore species were transplanted again into 3-gal (11,400-cm3) black space (Brady and Weil 2002). To simplify calculations, we esti- plastic pots (Custom ™Containers) and allowed to recover mated pore space to be evenly divided between micropores and from transplant for 5 weeks before the experiment started.
Recommended publications
  • An Antifungal Property of Crude Plant Extracts from Anogeissus Leiocarpus and Terminalia Avicennioides
    34 Tanzania Journal of Health Research (2008), Vol. 10, No. 1 An antifungal property of crude plant extracts from Anogeissus leiocarpus and Terminalia avicennioides A. MANN*, A. BANSO and L.C. CLIFFORD Department of Science Laboratory Technology, The Federal Polytechnic, P.M.B. 55, Bida, Niger State, Nigeria Abstract: Chloroform, ethanolic, methanolic, ethyl acetate and aqueous root extracts of Anogeissus leiocarpus and Ter- minalia avicennioides were investigated in vitro for antifungal activities against Aspergillus niger, Aspergillus fumigatus, Penicillium species, Microsporum audouinii and Trichophyton rubrum using radial growth technique. The plant extracts inhibited the growth of all the test organisms. The minimum inhibitory concentration (MIC) of the extracts ranged between 0.03μg/ml and 0.07μg/ml while the minimum fungicidal concentration ranged between 0.04μg/ml and 0.08μg/ml. Ano- geissus leiocarpus appears to be more effective as an antifungal agent than Terminalia avicennioides. Ethanolic extracts of the two plant roots were more effective than the methanolic, chloroform, or aqueous extracts against all the test fungi. Key words: Anogeissus leiocarpus, Terminalia avicennioides, extracts, inhibitory, fungicidal, Nigeria Introduction sential oil of Aframomum melagulatus fruit inhibited the mycelia growth of Trichophyton mentagrophytes Many of the plant materials used in traditional medi- at a pronounced rate but the inhibitory concentration cine are readily available in rural areas and this has obtained against Aspergillus niger was lower. made traditional medicine relatively cheaper than Since medicinal plants play a paramount role in modern medicine (Apulu et al., 1994). Over Sixty the management of various ailments in rural commu- percent of Nigeria rural population depends on tra- nities, there is therefore, a need for scientific verifica- ditional medicine for their healthcare need (Apulu et tion of their activities against fungi.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • A Single Tree Model to Consistently Simulate Cooling, Shading, and Pollution Uptake of Urban Trees
    International Journal of Biometeorology https://doi.org/10.1007/s00484-020-02030-8 ORIGINAL PAPER A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees Rocco Pace1,2 & Francesco De Fino3 & Mohammad A. Rahman4 & Stephan Pauleit4 & David J. Nowak5 & Rüdiger Grote1 Received: 3 April 2020 /Revised: 24 September 2020 /Accepted: 6 October 2020 # The Author(s) 2020 Abstract Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone).
    [Show full text]
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea
    EMU Vol. 96,89-101,1996 0 Royal Australasian Ornithologists Union 1996 0158-4197/96/0289 + 12 Received 10-4-1995, accepted 14-7-1995 Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea Andrew L. MacklJ and Debra D. Wright132 University of Miami, Department of Biology, Coral Gables, Florida 33124, USA Department of Ornithology, Academy of Natural Sciences, 19th and Parkway, Philadelphia, Pennsylvania 19103, USA Summary: During 1989-93, 170 species of birds were ob- net capture rates. Comparisons among four other sites in served and 1787 individuals captured in mist nets at the southern Papua New Guinea reveal striking similarities Crater Mountain Biological Research Station, Chimbu among sites in number of species and trophic organisation. Province, Papua New Guinea. Populations of many species Range extensions, weights and natural history observations fluctuated on annual or supra-annual schedules; 46 species are reported for many species. Feeding observations of nec- were considered transients. Areas of the forest where many tarivorous and frugivorous birds at over 50 species of plant understorey trees had been removed exhibited reduced mist are reported. In a review of the ecology of New Guinea's avifauna, Management Area, a conservation project based on Beehler (1982) reported that no long-term field studies land-use management by the traditional Pawaiian and had been carried out in diverse avian communities of Gimi landowners. The station is 10 km east of Haia in New Guinea. Since then there has been some progress, Chimbu Province, Papua New Guinea (6"43.4'S, mostly in lowland sites (Bell 1982a, 1982b, 1982c, 145'5.6'E) at c.
    [Show full text]
  • The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States
    Global Change Biology (2016) 22, 2329–2352, doi: 10.1111/gcb.13160 SPECIAL FEATURE The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States JAMES S. CLARK1 , LOUIS IVERSON2 , CHRISTOPHER W. WOODALL3 ,CRAIGD.ALLEN4 , DAVID M. BELL5 , DON C. BRAGG6 , ANTHONY W. D’AMATO7 ,FRANKW.DAVIS8 , MICHELLE H. HERSH9 , INES IBANEZ10, STEPHEN T. JACKSON11, STEPHEN MATTHEWS12, NEIL PEDERSON13, MATTHEW PETERS14,MARKW.SCHWARTZ15, KRISTEN M. WARING16 andNIKLAUS E. ZIMMERMANN17 1Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, 2Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, 3Forest Service 1992 Folwell Avenue,Saint Paul, MN 55108, USA, 4U.S. Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, 5Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, 6Forest Service, Southern Research Station, Monticello, AR 71656, USA, 7Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, 8Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, 9Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, 10School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, 11U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • Comparing Water-Related Plant Functional Traits Among Dominant Grasses of the Colorado Plateau: Implications for Drought Resistance
    Plant Soil https://doi.org/10.1007/s11104-019-04107-9 REGULAR ARTICLE Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau: Implications for drought resistance David L. Hoover & Kelly Koriakin & Johanne Albrigtsen & Troy Ocheltree Received: 7 September 2018 /Accepted: 24 April 2019 # This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019 Abstract above- and belowground biomass, and morphology, Background and aims Water is the primary limiting then assessed how these traits varied by species, and factor for plants in drylands, which are projected to photosynthetic pathway. become even drier with climate change. Plant functional Results Individual water-related traits varied widely, but traits related to water influences individual performance, did not consistently vary by photosynthetic pathway. community composition, and can provide insight into We identified three unique functional trait syndromes which species will be most vulnerable to drought. that could be classified as either conservative or non- Methods Here, we used a trait-based approach to exam- conservative with regard to water use. ine key water-related traits of five perennial grasses of Conclusions Variation in water-related traits may be the Colorado Plateau, with the goals of identifying func- key to the coexistence of species in drylands, but there tional trait syndromes, and assessing vulnerability to is uncertainty as which traits or functional trait syn- drought. We examined 14 traits including hydraulic, dromes will be most vulnerable to changes in climate. Based on the traits examined here, and forecast changes Responsible Editor: Ian Dodd.
    [Show full text]
  • Review on Combretaceae Family
    Int. J. Pharm. Sci. Rev. Res., 58(2), September - October 2019; Article No. 04, Pages: 22-29 ISSN 0976 – 044X Review Article Review on Combretaceae Family Soniya Rahate*, Atul Hemke, Milind Umekar Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, Dist-Nagpur 441002, India. *Corresponding author’s E-mail: [email protected] Received: 06-08-2019; Revised: 22-09-2019; Accepted: 28-09-2019. ABSTRACT Combretaceae, the family of flowering plants consisting of 20 genus and 600 important species in respective genus. The two largest genera of the family are Combretum and Terminalia which contains the more no. of species. The members of the family are widely distributed in tropical and subtropical regions of the world. Most members of the trees, shrubs or lianas of the combretaceae family are widely used medicinally. The members of this family contain the different phytoconstituents of medicinal value e.g tannins, flavonoids, terpenoids and alkaloids. Most of the species of this family are used as antimicrobial, antioxidant and antifungal. The biological activities of the some members of this family yet not found. Apart from the medicinal value many members of the Combretaceae are of culinary and ornamental value. Keywords: Combretaceae, Tannins, Flavonoid, Terminalia, Combretum. INTRODUCTION species of Combretum have edible kernels whereas Buchenavia species have edible succulent endocarps. he family combretaceae is a major group of Chemical constituents like tannins are also found in fruits, flowering plants (Angiosperms) included in the bark, leaves, roots and timber in buchenavia and order of Myrtales. Robert Brown established it in T terminalia genera. Many of the species are reputed to 1810 and its inclusion to the order is not in dispute.
    [Show full text]
  • 3 Vindas-Barcoding RR
    Ciencia y Tecnología, 27(1 y 2): 24-34 ,2011 ISSN: 0378-0524 EVALUATION OF THREE CHROROPLASTIC MARKERS FOR BARCODING AND FOR PHYLOGENETIC RECONSTRUCTION PURPOSES IN NATIVE PLANTS OF COSTA RICA * Milton Vindas-Rodríguez1, Keilor Rojas-Jiménez2,3 , Giselle Tamayo-Castillo 2,4. 1Escuela de Biología, Instituto Tecnológico de Costa Rica; 2Instituto Nacional de Biodiversidad, Costa Rica 3Biotec Soluciones Costa Rica, S.A. 4Escuela de Química, Universidad de Costa Rica. Recibido 6 de diciembre, 2010; aceptado 30 de junio, 2011 Abstract DNA barcoding has been proposed as a practical and standardized tool for species identification. However, the determination of the appropriate marker DNA regions is still a major challenge. In this study, we eXtracted DNA from 27 plant species belonging to 27 different families native of Costa Rica, amplified and sequenced the plastid genes matK and rpoC1 and the intergenic spacer trnH-psbA. Bioinformatic analyses were performed with the aim of determining the utility of these markers as possible barcodes to discriminate among species and for phylogenetic reconstruction. From the markers selected, the trnH-psbA spacer was the most variable in terms of genetic distance and the most promising region for barcoding. However, it presented a limited use for constructing phylogenies due to the compleXity of its alignment. The locus matK was less variable but was also useful for species discrimination and for phylogenetic tree generation. The rpoC1 region was highly conserved and suitable for phylogenetic studies, but presented a limited utility as a barcode. The marker combination matK and rpoC1 provided the best resolution for establishing valid phylogenetic relationships among the analyzed plant families.
    [Show full text]
  • Ethnobotany of the Miskitu of Eastern Nicaragua
    Journal of Ethnobiology 17(2):171-214 Winter 1997 ETHNOBOTANY OF THE MISKITU OF EASTERN NICARAGUA FELIXG.COE Department of Biology Tennessee Technological University P.O. Box5063, Cookeville, TN 38505 GREGORY J. ANDERSON Department of Ecology and Evolutionary Biology University of Connecticut, Box U-43, Storrs, CT 06269-3043 ABSTRACT.-The Miskitu are one of the three indigenous groups of eastern Nicaragua. Their uses of 353 species of plants in 262 genera and 89 families were documented in two years of fieldwork. Included are 310 species of medicinals, 95 species of food plants, and 127 species used for construction and crafts, dyes and tannins, firewood, and forage. Only 14 of 50 domesticated food species are native to the New World tropics, and only three to Mesoamerica. A majority of plant species used for purposes other than food or medicine are wild species native to eastern Nicaragua. Miskitu medicinal plants are used to treat more than 50 human ailments. Most (80%) of the medicinal plants are native to eastern Nicaragua, and two thirds have some bioactive principle. Many medicinal plants are herbs (40%) or trees (30%), and leaves are the most frequently used plant part. Herbal remedies are most often prepared as decoctions that are administered orally. The Miskitu people are undergoing rapid acculturation caused by immigration of outsiders. This study is important not only for documenting uses of plants for science in general, but also because it provides a written record in particular of the oral tradition of medicinal uses of plants of and for the Miskitu. RESUMEN.-Los Miskitus son uno de los tres grupos indigenas del oriente de Nicaragua.
    [Show full text]
  • NATIVE NAMES and USES of SOME PLANTS of EASTERN GUATEMALA Mid HONDURAS
    NATIVE NAMES AND USES OF SOME PLANTS OF EASTERN GUATEMALA MiD HONDURAS. By S. F. BLAKE. INTRODUCTION. In the spring of 1919 an Economic Survey Mission of the United States State Department, headed by the late Maj. Percy H. Ashmead, made a brief examination of the natural products and resources of the region lying between the Chamelec6n Valley in Honduras and the Motagua VaUey in Guatemala. Work was also done by the botanists of the expedition in the vicinity of Izabal on Lak.. Izaba!. Descriptions of the new species collected by the expedition, with a short account of its itinerary, have already been published by the writer,' and a number of the new forms have been illustrated. The present list is based · wholly on the data and specimens collected by the botanists and foresters of this expedition-H. Pittier, S. F. Blake, G. B. Gilbert, L. R. Stadtmiller, and H. N. Whitford-and no attempt has been made to incorporate data from other regions of Central America. Such information will be found chiefly in various papers published by Henry Pittier,' J. N. Rose,' and P. C. Standley.' LIST OF NATIVE NAllES AND USES. Acacia sp. CACHITO. eoaNIZuELO. ISCAN.... L. FAAACEJ..E. Acacla sp. I....&GAR'l"O. SANPlWBANO. FABACE'·. A tree up to 25 meters high and 45 em. to diameter. The wood is lISed for bunding. Acalypha sp. Co8TII I A DE PANTA. EUPHOllBlAc!:a. 'Contr. U. S. Not. Herb. 24: 1-32. pl •. 1-10, ,. 1-4. 1922. • Ensayo oobre las plantas usuatee de Costa Rica. pp. 176, pk.
    [Show full text]