Tree-Ring Variation in Pinyon Predicts Likelihood of Death Following Severe Drought

Total Page:16

File Type:pdf, Size:1020Kb

Tree-Ring Variation in Pinyon Predicts Likelihood of Death Following Severe Drought November 2000 NOTES 3237 Ecology, 81(11), 2000, pp. 3237±3243 q 2000 by the Ecological Society of America TREE-RING VARIATION IN PINYON PREDICTS LIKELIHOOD OF DEATH FOLLOWING SEVERE DROUGHT KIONA OGLE,1 THOMAS G. WHITHAM, AND NEIL S. COBB Northern Arizona University, Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Flagstaff, Arizona 86011 USA Abstract. A severe drought in northern Arizona caused widespread pinyon (Pinus edulis) mortality, exceeding 40% in some populations. We measured tree-ring widths of pinyons that survived and that died in three sites designated as ``high,'' ``medium,'' and ``low'' stress. Growth characteristics during the previous 10±15 years can be used to predict the likelihood of drought-induced death; dead trees exhibited 1.5 times greater variation in growth than live trees. A model of ring-width deviations vs. drought severity showed a loss of ``climatic sensitivity'' with age in dead trees. These differences were independent of site. We found two distinct tree types that are predisposed to die during drought; highly sensitive young trees, and insensitive older trees. As the Southwest has a dynamic climate typi®ed by severe droughts, it is important to understand how droughts act as bottleneck events to affect a dominant tree in a major vegetation type of the United States. Key words: climatic sensitivity; drought; environmental stress; mortality, likelihood following drought; Pinus edulis; pinyon pine; tree rings. INTRODUCTION (Betancourt 1987, Betancourt et al. 1990), allowing us General circulation models project that a doubling to place current changes into a paleoecological per- spective. From a community perspective, much is of atmospheric CO2 in the near future will result in shifts in the spatio-temporal distribution of precipita- known about how environmental stress affects pinyons, tion (e.g., Cubasch et al. 1995). Complex interactions which in turn affects insect herbivores (Mopper et al. between the terrestrial biosphere and a changing cli- 1991, Cobb et al. 1997), mycorrhizal mutualists (Gehr- mate are predicted to dramatically affect vegetation ing and Whitham 1994, Gehring et al. 1998), birds and responses (Neilson and Drapek 1998). By studying cur- mammals (Christensen and Whitham 1991, 1993). rent patterns of drought-induced plant death, we may The purpose of this study was to compare growth be able to predict important population and commu- attributes of pinyons that died (``dead'') during the nity-level responses to various climate change scenar- 1996 drought with those that survived (``live''). We ios. hypothesized that, prior to death, dead pinyons were Severe droughts have the potential to greatly impact more sensitive than live trees to wet and dry events, pinyon (Pinus edulis) populations and their associated and this greater sensitivity should be expressed as communities. In northern Arizona, a severe drought in greater ring-width variation. Though variance in ring 1996 resulted in high pinyon mortality rates, exceeding widths has been adopted as an index of environmental 40% on south-facing slopes of cinder cones where the sensitivity (e.g., Fritts 1974, 1976), it does not separate effects of drought are likely to be most severe. Pinyon the components of the tree's environment that drive the is an appropriate tree for study because it is considered response (e.g., climate, herbivory, nutrients, competi- to be drought adapted, and it is widely distributed tion). We focused on the role of climate by modeling across Mexico and the western United States (Mirov ring-width responses to drought severity and tested for 1967, Lanner and Van Devender 1998). Moreover, a differences in ``climatic sensitivity'' between live and rich history of its biogeographical expansion with the dead trees. This analysis allowed us to investigate how changing climate of the last 40 000 yr has accumulated climatic sensitivity varies across the extreme water and nutrient-stressed cinder soils of Sunset Crater National Manuscript received 24 May 1999; revised 10 January 2000; Monument (358229 N, 1118329 W) and adjacent sandy accepted 13 January 2000; ®nal version received 4 February loam soils (e.g., Table 1). 2000. This study is unique in several aspects: (1) very high 1 Present address: Duke University, Department of Biol- ogy, Durham, North Carolina 27708 USA. pinyon mortality during 1996 provided large sample E-mail: [email protected] sizes; (2) we are unaware of any study that has ex- 3238 NOTES Ecology, Vol. 81, No. 11 TABLE 1. Site characteristics of cinder and sandy-loam sites For the high stress site, we sampled transects parallel and pinyon pine performance that re¯ect differences in de- gree of environmental stress. to the slope of southern exposed faces of seven cinder cones for a total of 21 transects. Length and number Sandy of transects per cone varied depending on cone size. Cinder loam We pooled transect data within each habitat to estimate Parameter² soils³ soils site-speci®c mortality. Mean air temperature (8C) 20.3 20.8 We collected tree cores to quantify growth; dead and Mean daily precipitation (mm) 1.56 1.66 live pinyons (diameter $ 8 cm) were paired by size Gravimetric soil water content (%) 3.2 5.6* Mean soil temperature (8C) 17.2 13.8* and proximity (5±50 m apart) to reduce variation in Extractable phosphate (mg/g) 4.45 12.20* growth due to differences in age, competition, and mi- Soil NO3 mineralization crosite. Due to logistics, we were limited to collecting (mg´g21´d21) 0.015 0.147* one core from each bole, as near to the base as possible Soil NH4 mineralization (mg´g21´d21) 20.012 0.062* for accurate aging; additional cores were collected if Mean number of female cones per the ®rst core was damaged or greatly missed the pith. tree 185.0 300.0* Mean xylem pressure (MPa) Trees on slopes were bored parallel to the slope to avoid Mean stem growth (length, mm) 22.83 22.38* reaction and tension wood so that growth was not over 33.36 46.32 or under estimated. We followed methods of Swetnam * Signi®cant site effect (P # 0.005). et al. (1988) for preparing cores. Cross dating was ac- ² Obtained from Christensen and Whitham (1991), Mopper complished by visually comparing skeleton plots with et al. (1991), Gehring and Whitham (1994), Cobb et al. master chronologies for nearby sites, downloaded from (1997), and Swaty et al. (1998). 2 ³ Data only available for ¯at terrain; south-facing slopes the International Tree Ring Data Bank (ITRDB). For of cinder cones were not investigated. recent years, we used 1989 as a marker year because it was characterized by a relatively severe drought and resulted in narrow rings. amined variability in growth as a predictor of drought- induced mortality; and (3) we sampled pinyons across Tree growth, climatic sensitivity, age, a wide range of ages to tease apart interactions between and drought tolerance age, sensitivity to climate, and drought tolerance. We We began by examining simple growth character- address this question: ``Can we use patterns of tree- istics of dead and live pinyon across the three different ring variation to predict who will live and die during sites. These included lifetime growth rate (mean ring a severe drought?'' Understanding how severe droughts width), recent (1986±1995) growth rate, and variance might act as bottleneck events and affect selection pres- in mean lifetime ring-width index. Ring-width indices sures is important for generating predictions of the po- were calculated to remove the inherent effect of tree tential impact of climate change on gene frequencies, age on growth. For each series, we modeled the age species composition, and ecosystem function. trend in the raw widths by ®tting linear and negative METHODS exponential functions to the data, and selected the ap- propriate model by comparing correlation coef®cients Sites, mortality transects, and tree cores and residuals. Indices were obtained by dividing the Trees were growing in three habitat types in the Co- raw widths for each series by the predicted width given conino National Forest in northern Arizona. Habitat by the model ®t. Growth attributes of dead and live types were operationally de®ned as ``high,'' ``medi- pinyon were compared in an ANOVA with site and um,'' and ``low'' stress based on slope, aspect, and soil mortality class as ®xed factors, and dead and live trees type. South-facing slopes of cinder cones within Sunset were blocked by pair number (random factor) (SAS Crater National Monument characterize the high stress 1990; mixed models procedure). habitat; the medium stress site consisted of cinder soil Our main objective was to model ring-width varia- ¯at terrain and occurred in this same area. The low tion as a function of age, climate, and habitat type to stress habitat was characterized by sandy loam soil investigate how climatic sensitivity differed between ;10±15 km to the south of the cinder soil sites. Our dead and live pinyon growing along an environmental justi®cation for these three stress classi®cations is stress gradient. We modeled growth as a function of based on previous studies at these same sites (Table 1). Palmer Drought Severity Indices (PDSIs, based on pre- From fall 1996 to spring 1997 we counted numbers cipitation, evapotranspiration, soil properties, and ac- of dead and live pinyon encountered in 40±50 m wide cumulated effects of past conditions on present weath- transects (;15 each in the low and medium stress sites). Transects were conducted away from roads, were 2±4 2 NOAA Paleoclimatology Program, Boulder, Colorado, km long, and ranged in elevation from 1740±2120 m. USA. URL: ^http://www.ngdc.noaa.gov/paleo/&. November 2000 NOTES 3239 er; see Palmer 1965); analyses showed that ring widths comparison, we also conducted an rANCOVA with were better correlated with PDSI than with rainfall ring-width indices.
Recommended publications
  • A Single Tree Model to Consistently Simulate Cooling, Shading, and Pollution Uptake of Urban Trees
    International Journal of Biometeorology https://doi.org/10.1007/s00484-020-02030-8 ORIGINAL PAPER A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees Rocco Pace1,2 & Francesco De Fino3 & Mohammad A. Rahman4 & Stephan Pauleit4 & David J. Nowak5 & Rüdiger Grote1 Received: 3 April 2020 /Revised: 24 September 2020 /Accepted: 6 October 2020 # The Author(s) 2020 Abstract Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone).
    [Show full text]
  • The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States
    Global Change Biology (2016) 22, 2329–2352, doi: 10.1111/gcb.13160 SPECIAL FEATURE The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States JAMES S. CLARK1 , LOUIS IVERSON2 , CHRISTOPHER W. WOODALL3 ,CRAIGD.ALLEN4 , DAVID M. BELL5 , DON C. BRAGG6 , ANTHONY W. D’AMATO7 ,FRANKW.DAVIS8 , MICHELLE H. HERSH9 , INES IBANEZ10, STEPHEN T. JACKSON11, STEPHEN MATTHEWS12, NEIL PEDERSON13, MATTHEW PETERS14,MARKW.SCHWARTZ15, KRISTEN M. WARING16 andNIKLAUS E. ZIMMERMANN17 1Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, 2Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, 3Forest Service 1992 Folwell Avenue,Saint Paul, MN 55108, USA, 4U.S. Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, 5Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, 6Forest Service, Southern Research Station, Monticello, AR 71656, USA, 7Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, 8Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, 9Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, 10School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, 11U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell
    [Show full text]
  • Comparing Water-Related Plant Functional Traits Among Dominant Grasses of the Colorado Plateau: Implications for Drought Resistance
    Plant Soil https://doi.org/10.1007/s11104-019-04107-9 REGULAR ARTICLE Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau: Implications for drought resistance David L. Hoover & Kelly Koriakin & Johanne Albrigtsen & Troy Ocheltree Received: 7 September 2018 /Accepted: 24 April 2019 # This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019 Abstract above- and belowground biomass, and morphology, Background and aims Water is the primary limiting then assessed how these traits varied by species, and factor for plants in drylands, which are projected to photosynthetic pathway. become even drier with climate change. Plant functional Results Individual water-related traits varied widely, but traits related to water influences individual performance, did not consistently vary by photosynthetic pathway. community composition, and can provide insight into We identified three unique functional trait syndromes which species will be most vulnerable to drought. that could be classified as either conservative or non- Methods Here, we used a trait-based approach to exam- conservative with regard to water use. ine key water-related traits of five perennial grasses of Conclusions Variation in water-related traits may be the Colorado Plateau, with the goals of identifying func- key to the coexistence of species in drylands, but there tional trait syndromes, and assessing vulnerability to is uncertainty as which traits or functional trait syn- drought. We examined 14 traits including hydraulic, dromes will be most vulnerable to changes in climate. Based on the traits examined here, and forecast changes Responsible Editor: Ian Dodd.
    [Show full text]
  • Responses and Differences in Tolerance to Water Shortage Under
    Article Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations Bonoso San-Eufrasio 1, Rosa Sánchez-Lucas 1,2, Cristina López-Hidalgo 1,3 , Victor M. Guerrero-Sánchez 1 , María Ángeles Castillejo 1 , Ana María Maldonado-Alconada 1, Jesús V. Jorrín-Novo 1 and María-Dolores Rey 1,* 1 Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain; [email protected] (B.S.-E.); [email protected] (R.S.-L.); [email protected] (C.L.-H.); [email protected] (V.M.G.-S.); [email protected] (M.Á.C.); [email protected] (A.M.M.-A.); [email protected] (J.V.J.-N.) 2 School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK 3 Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain * Correspondence: [email protected] Received: 27 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Analyzing differences in tolerance to drought in Quercus spp., and the characterization of these responses at the species and individual population level, are imperative for the selection of resilient elite genotypes in reforestation programs. The main objective of this work was to evaluate differences in the response and tolerance to water shortage under in five Quercus spp. and five Andalusian Q. ilex populations at the inter- and intraspecies level. Six-month-old seedlings grown in perlite were subjected to drought treatments by withholding water for 28 days under mean 37 ◦C 2 temperature, 28 W m− solar irradiance, and 41% humidity.
    [Show full text]
  • Differential Drought Responses Between Saplings and Adult Trees in Four Co-Occurring Species of New England
    Trees (2005) 19: 442–450 DOI 10.1007/s00468-004-0403-2 ORIGINAL ARTICLE Jin-Sheng He · Qi-Bin Zhang · F. A. Bazzaz Differential drought responses between saplings and adult trees in four co-occurring species of New England Received: 25 March 2004 / Accepted: 18 November 2004 / Published online: 6 January 2005 C Springer-Verlag 2005 Abstract Tree-ring characteristics in four species were ex- mature trees of red maple and paper birch differed signifi- amined to address whether co-occurring mature trees of dif- cantly in drought responses, but this was not true in sugar ferent successional status respond differently to drought, maple and yellow birch. Our results do not support a gen- and whether saplings of these species have a greater re- erally greater response in saplings than in mature trees, sponse to drought than mature trees. We examined saplings nor an early- versus late successional difference in drought and mature trees of paper birch, yellow birch, red maple and responses. sugar maple, which varied in successional status (shade- tolerance) and co-occurred at Harvard Forest, Petersham, Keywords Drought . Dendrochronology . Ontogeny . Mass., USA. Three drought events in 1964–1966, 1981 and Temperate forest . Harvard Forest 1995 were identified using climate data. For mature trees, there was no significant interspecific difference in relative changes in ring-width index (RWI) during the 1964–1966 Introduction and 1995 drought events. However, the interspecific differ- ence was significant in the 1981 drought event. Response In ecology, experimental results from tree seedlings function analysis for mature trees showed that the radial and saplings are widely used to extrapolate to possible growth of sugar maple was mainly controlled by spring responses of mature individuals (Ehleringer and Field and summer precipitation, red maple by spring and sum- 1993).
    [Show full text]
  • Global Diversity of Drought Tolerance and Grassland Climate-Change Resilience
    LETTERS PUBLISHED ONLINE: 5 AUGUST 2012 | DOI: 10.1038/NCLIMATE1634 Global diversity of drought tolerance and grassland climate-change resilience Joseph M. Craine1*, Troy W. Ocheltree1, Jesse B. Nippert1, E. Gene Towne1, Adam M. Skibbe1, Steven W. Kembel2 and Joseph E. Fargione3 Drought reduces plant productivity, induces widespread plant However, present functional trait data are insufficient to predict mortality and limits the geographic distribution of plant how drought may alter the functional composition of grasslands. species1–7. As climates warm and precipitation patterns shift To better understand drought tolerance in grasslands, we in the future8,9, understanding the distribution of the diver- assessed physiological drought tolerance and a number of other sity of plant drought tolerance is central to predicting future leaf functional traits for 426 grass species. Plants can tolerate ecosystem function and resilience to climate change10–12. These environmental drought by accessing stable or stored water questions are especially pressing for the world’s 11,000 grass sources or even speeding reproduction to precede drought-induced species13, which dominate a large fraction of the terrestrial mortality. Because grasses store too little water or carbon to biosphere14, yet are poorly characterized with respect to re- maintain shoots during extended droughts, long-term resistance sponses to drought. Here, we show that physiological drought for grasses to low water potentials is probably first approximated tolerance, which varied tenfold among 426 grass species, is by their physiological tolerance of drought. Here, physiological well distributed both climatically and phylogenetically, sug- drought tolerance was assessed as the critical leaf water potential gesting most native grasslands are likely to contain a high (Ψcrit) at which stomatal conductance fell below an ecological diversity of drought tolerance.
    [Show full text]
  • Paleoclimate and Current Climate Collectively Shape the Phylogenetic And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.128975; this version posted June 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Paleoclimate and current climate collectively shape the phylogenetic and 2 functional diversity of trees worldwide 3 Wen-Yong Guo1,2 *, Josep M. Serra-Diaz3, Franziska Schrodt4, Wolf L. Eiserhardt2, Brian S. 4 Maitner5, Cory Merow6, Cyrille Violle7, Anne Blach-Overgaard1,2, Jian Zhang8, Madhur Anand9, 5 Michaël Belluau10, Hans Henrik Bruun11, Chaeho Byun12, Jane A. Catford13, Bruno E. L. 6 Cerabolini14, Eduardo Chacón-Madrigal15, Daniela Ciccarelli16, Johannes H. C. Cornelissen17, Anh 7 Tuan Dang-Le18, Angel de Frutos19, Arildo S. Dias20, Aelton B. Giroldo21, Alvaro G. Gutiérrez22, 8 Wesley Hattingh23, Tianhua He24,25, Peter Hietz26, Nate Hough-Snee27, Steven Jansen28, Jens 9 Kattge19,29, Tamir Klein30, Benjamin Komac31, Nathan Kraft32, Koen Kramer33, Sandra Lavorel34, 10 Christopher H. Lusk35, Adam R. Martin36, Maurizio Mencuccini37,38, Sean T. Michaletz39, Vanessa 11 Minden40,41, Akira S. Mori42, Ülo Niinemets43, Yusuke Onoda44, Renske E. Onstein19, Josep 12 Peñuelas38,45, Valério D. Pillar46, Jan Pisek47, Matthew J. Pound48, Bjorn J.M. Robroek49, Brandon 13 Schamp50, Martijn Slot51, Ênio Sosinski52, Nadejda A. Soudzilovskaia53, Nelson Thiffault54, Peter 14 van Bodegom53, Fons van der Plas55, Ian
    [Show full text]
  • Climate Change, Water and Food Security
    Cover picture: Irrawaddy Delta, Myanmar - September 2008 (© Swiatek Wojtkowiak) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org FAO WATER Climate change, water REPORTS and food security 36 by Hugh Turral FAO consultant Jacob Burke and Jean-Marc Faurès FAO Land and Water Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5- All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.
    [Show full text]
  • Tilia Cordata Mill.) and Black Locust (Robinia Pseudoacacia L.)
    Article The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.) Astrid Moser 1,*, Thomas Rötzer 1, Stephan Pauleit 2 and Hans Pretzsch 1 1 Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, Freising 85354, Germany; [email protected] (T.R.); [email protected] (H.P.) 2 Strategic Landscape Planning and Management, School of Life Sciences Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, Freising 85354, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-8161-71-4719 Academic Editors: Francisco Escobedo, Stephen John Livesley and Justin Morgenroth Received: 8 January 2016; Accepted: 11 March 2016; Published: 17 March 2016 Abstract: The urban environment characterized by various stresses poses challenges to trees. In particular, water deficits and high temperatures can cause immense drought stress to urban trees, resulting in reduced growth and die-off. Drought-tolerant species are expected to be resilient to these conditions and are therefore advantageous over other, more susceptible species. However, the drought tolerance of urban trees in relation to the specific growth conditions in urban areas remains poorly researched. This study aimed to analyze the annual growth and drought tolerance of two common urban tree species, namely small-leaved lime (Tilia cordata Mill. (T. cordata)) and black locust (Robinia pseudoacacia L. (R. pseudoacacia)), in two cities in southern Germany in relation to their urban growing conditions. Marked growth reductions during drought periods and subsequent fast recovery were found for R.
    [Show full text]
  • Drought Tolerant Corn Report
    High and Dry Why Genetic Engineering Is Not Solving Agriculture’s Drought Problem in a Thirsty World ii High and Dry Why Genetic Engineering Is Not Solving Agriculture’s Drought Problem in a Thirsty World Doug Gurian-Sherman June 2012 © 2012 Union of Concerned Scientists All rights reserved Doug Gurian-Sherman is a senior scientist in the Food and Environment Program of the Union of Concerned Scientists. The Union of Concerned Scientists (UCS) is the leading science-based nonprofit working for a healthy environment and a safer world. UCS combines independent scientific research and citizen action to develop innovative, practical solutions and secure responsible changes in government policy, corporate practices, and consumer choices. The goal of the UCS Food and Environment Program is a food system that encourages innovative and environmentally sustainable ways to produce high-quality, safe, and affordable food while ensuring that citizens have a voice in how their food is grown. More information is available on the UCS website at www.ucsusa.org/food_and_agriculture. This report is available on the UCS website (www.ucsusa.org/publications) or may be obtained from: UCS Publications 2 Brattle Square Cambridge, MA 02238-9105 Or, email [email protected] or call (617) 547-5552. Cover photo: © iStockphoto.com/Drbouz ii Contents Figures iii Acknowledgments iv Executive Summary 1 Chapter 1. Introduction 6 Roadmap to the Report 6 Chapter 2. The Complexity of Drought and Efforts to Address It 7 Major Approaches to Reducing the Impact of Drought 8 The Challenges of Measuring Drought and Comparing Drought Tolerance 11 Drought Tolerance and Water-Use Efficiency 12 Summary: The Complexity of Drought and Solutions to It 12 Chapter 3.
    [Show full text]
  • Water-Use Strategies of Trees in a Secondary Successional Tropical Dry Forest
    Tree Physiology 36, 208–217 doi:10.1093/treephys/tpv124 Research paper Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest Fernando Pineda-García1,5, Horacio Paz2, Frederick C. Meinzer3 and Guillermo Angeles4 Downloaded from 1Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México Unidad Morelia, Antigua Carretera a Patzcuaro 8701, CP 58190, Morelia, Mexico; 2Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México Campus Morelia, 58190 Morelia, Mexico; 3USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; 4Red de Ecología Funcional, Instituto de Ecología A.C., 91070 Xalapa, Mexico; 5Corresponding author ([email protected]) http://treephys.oxfordjournals.org/ Received July 15, 2015; accepted November 4, 2015; published online December 18, 2015; handling Editor Guillermo Goldstein In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different
    [Show full text]
  • Are Northeastern U.S. Forests Vulnerable to Extreme Drought? Adam P
    Coble et al. Ecological Processes (2017) 6:34 DOI 10.1186/s13717-017-0100-x REVIEW Open Access Are Northeastern U.S. forests vulnerable to extreme drought? Adam P. Coble1*, Matthew A. Vadeboncoeur2, Z. Carter Berry1, Katie A. Jennings2, Cameron D. McIntire1, John L. Campbell3, Lindsey E. Rustad3, Pamela H. Templer4 and Heidi Asbjornsen1,2 Abstract In the Northeastern U.S., drought is expected to increase in frequency over the next century, and therefore, the responses of trees to drought are important to understand. There is recent debate about whether land-use change or moisture availability is the primary driver of changes in forest species composition in this region. Some argue that fire suppression from the early twentieth century to present has resulted in an increase in shade-tolerant and pyrophobic tree species that are drought intolerant, while others suggest precipitation variability as a major driver of species composition. From this debate, an emerging hypothesis is that mesophication and increases in the abundance of mesophytic genera (e.g., Acer, Betula,andFagus) resulted in forests that are more vulnerable to drought. This review examines the published literature and factors that contribute to drought vulnerability of Northeastern U.S. forests. We assessed two key concepts related to drought vulnerability, including drought tolerance (ability to survive drought) and sensitivity (short-term responses to drought),withafocusonNortheasternU.S. species. We assessed drought-tolerance classifications for species, which revealed both consistencies and inconsistencies, as well as contradictions when compared to actual observations, such as higher mortality for drought-tolerant species. Related to drought sensitivity, recent work has focused on isohydric/ anisohydric regulation of leaf water potential.
    [Show full text]