Climate Change, Water and Food Security

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change, Water and Food Security Cover picture: Irrawaddy Delta, Myanmar - September 2008 (© Swiatek Wojtkowiak) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org FAO WATER Climate change, water REPORTS and food security 36 by Hugh Turral FAO consultant Jacob Burke and Jean-Marc Faurès FAO Land and Water Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5- All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. © FAO 201 iii Preface Under the IPCC emissions scenarios, higher temperatures are projected to affect all aspects of the hydrological cycle. More frequent and severe droughts and floods are already apparent, and their impact increases as a growing population becomes more dependent upon a set of atmospheric and hydrological circulations. Climate change will impact the extent and productivity of both irrigated and rainfed agriculture across the globe. Reductions in river runoff and aquifer recharge are expected in the Mediterranean basin and in the semi-arid areas of the Americas, Australia and southern Africa, affecting water availability in regions that are already water-stressed. In Asia, the large contiguous areas of irrigated land that rely on snowmelt and high mountain glaciers for water will be affected by changes in runoff patterns, while highly populated deltas are at risk from a combination of reduced inflows, increased salinity and rising sea levels. Everywhere, rising temperatures will translate into increased crop water demand. Both the livelihoods of rural communities and the food security of a predominantly urban population are therefore at risk from water-related impacts linked primarily to climate variability. The rural poor, who are the most vulnerable, are likely to be disproportionately affected. Various adaptation measures that deal with climate variability and build upon improved land and water management practices have the potential to create resilience to climate change and to enhance water security. They imply a good understanding of the impact of climate change on available water resources and on agricultural systems, and a set of policy choices, and investments and managerial changes to address them. This report summarizes current knowledge of the anticipated impacts of climate change on water availability for agriculture. The implications for local and national food security are examined; and the methods and approaches to assess climate change impacts on water and agriculture are discussed. The report emphasizes the need for a closer alignment between water and agricultural policies and makes the case for immediate implementation of ‘no-regrets’ strategies which have both positive development outcomes and make agricultural systems resilient to future impacts. It is hoped that policy makers and planners will find in this report the elements of information and guidance that are needed to assess and respond to the challenge that climate change is expected to impose on agricultural water management and food security. Alexander Müller Assistant Director-General Natural Resources Management and Environment Department iv Acknowledgements This report was prepared by Hugh Turral, FAO consultant, in collaboration with Jacob Burke and Jean-Marc Faurès, from the FAO Land and Water Division. It has benefited substantially from inputs obtained during the Expert Consultation on Climate Change, Water and Food Security organized by FAO in February 2008, in preparation for the High-Level Conference on World Food Security: the Challenges of Climate Change and Bioenergy, held in Rome, Italy, in June 2008. Participants in the Expert Consultation were: Petra Döll (University of Frankfurt-Main), Rachid Doukkali (Morocco), Ashley Halls (Mekong River Commission), Bertjan Heij (The Netherlands), Erda Lin (China), Festus Luboyera (UN-FCCC), David Molden (IWMI), Claudia Ringler (IFPRI), Mahendra Shah (IIASA), Mark Svendsen (USA), Marja-Liisa Tapio-Biström (Finland), Francesco Tubiello (Columbia University), and Avinash Tyagi (WMO). FAO participants in the Expert Consultation were Abdelkader Allali, Rosalud Delarosa, Thierry Facon, Karen Frenken, Theodor Friedrich, Aruna Gujral, Thomas Hofer, Jippe Hoogeveen, John Jorgensen, Marketta Juppi, Amir Kassam, Sasha Koo-Oshima, Parviz Koohafkan, Johan Kuylenstierna, Nadia Scialabba, Reuben Sessa and Pasquale Steduto. v Contents Preface iii Acknowledgements iv List of figures ix List of tables x List of boxes x List of acronyms and abbreviations xi Executive summary xv 1. Introduction 1 1.1. Overview 1 1.2. Trends versus predictions 3 2. Setting the scene 5 2.1. Water, food security and environment 5 2.2. IPCC 4th Assessment and the Stern Review 6 2.2.1. The IPCC 4th Assessment and associated analysis 6 2.2.2. Climate versus weather – the downscaling problem 10 2.2.3. The agricultural implications of the IPCC Working Group I report (Physical Science) 12 2.2.4. Broad regional impacts – food security and climate change 16 2.2.5. The agricultural implications of the IPCC Working Group II report (Adaptation) 18 2.2.6. The agricultural implications of the IPCC Working Group III report (Mitigation) 19 2.2.7. The Stern Review 19 2.3. Agricultural systems dependent on water management 20 2.3.1. Rainfed agriculture 20 2.3.2. Irrigated agriculture 23 2.3.3. Inland fisheries and aquaculture 25 2.3.4. Livestock grazing and fodder production 26 2.3.5. Forested land 27 2.4. Economic competition for water, climate change and the challenge for water allocation 28 vi 2.5. The pace of agricultural change and climate change projections 29 3. The baseline and trends in agricultural water demand 31 3.1. Agricultural projections to 2030 and the associated demand for water 31 3.1.1. Global analysis 31 3.1.2. Regional analysis 32 3.2. Emerging trends in agricultural water management 36 3.3. Anticipated trends in agricultural water management 40 3.3.1 Trends without climate change 40 3.3.2 Analysis of economic drivers and future investments 41 4. Specific climate change impacts related to agricultural water management 45 4.1. Introduction 45 4.1.1. Predictive modeling and its limitations in determining agricultural impact 45 4.1.2. Impacts on nations or river basins? 46 4.2. Principal climate change drivers in agriculture 47 4.3. Overall impacts on crop production 47 4.3.1. Direct effects of temperature and changes in precipitation 47 4.3.2. Carbon dioxide ‘fertilization’ of crops 50 4.3.3. Pests and diseases 54 4.4. Impacts on water supply and demand – a global picture 54 4.4.1. Overall water supply impacts 54 4.4.2. Groundwater 55 4.4.3. Implications for water institutions 57 4.5. Regional impacts 58 4.6. Impacts at river basin level: systemic considerations 61 4.6.1. Introduction 61 4.6.2. Glaciers and runoff 63 4.6.3. Arid basins 65 4.6.4. Recycling water 68 4.6.5. Land-use change in river basins – afforestation and sediment management 68 4.6.6. Basins with increasing runoff – managing deltas 69 4.6.7. The susceptibility of wetlands to climate change 70 4.6.8. A basin example 70 4.7. Food security and environment linkages 70 4.8. Climate change impact typology 72 4.9. Summary: the combined impacts – positive and negative 75 5. Prospects for adaptation 77 5.1. Introduction 77 vii 5.2. On-farm adaptation 83 5.2.1. Crop selection and crop calendar 85 5.2.2. Farm and crop management – fertilizer management 90 5.2.3. Water management on farm 91 5.2.4. Irrigation technologies on farm 93 5.2.5. Depletion accounting 94 5.2.6. Flood protection and erosion 96 5.2.7. Commercial agriculture 97 5.3. Adaptation at irrigation system level 98 5.3.1. Introduction 98 5.3.2. Water allocation 99 5.3.3. System performance 99 5.3.4. Cropping patterns and calendars 100 5.3.5. Conjunctive use of surface water and groundwater 101 5.3.6. Irrigation policy measures 102 5.4. Adaptation at river basin and national levels 105 5.4.1. Irrigation sector policy 105 5.4.2. Coping with droughts 106 5.4.3. Coping with flooding; structural and non-structural interventions 107 5.4.4. Managing aquifer recharge 109 5.4.5. Assessment of adaptation options to ensure irrigation supply security 111 5.5. Adaptive capacity in agricultural water management – policies, institutions and the structure of the sub-sector 112 5.5.1. Mechanisms for allocation 112 5.5.2. National food policy issues 113 5.6. Institutions 114 5.7. Long-term investment implications for agricultural water management 115 6.
Recommended publications
  • Coping with Water Scarcity: What Role for Biotechnologies?
    ISSN 1729-0554 LAND AND WATER DISCUSSION 7 PAPER LAND AND WATER DISCUSSION PAPER 7 Coping with water scarcity: What role for biotechnologies? As one of its initiatives to mark World Water Day 2007, whose theme was "Coping with water scarcity", FAO organized a moderated e-mail conference entitled "Coping with water scarcity in developing countries: What role for agricultural biotechnologies?". Its main focus was on the use of biotechnologies to increase the efficiency of water use in agriculture, while a secondary focus was on two specific water-related applications of micro-organisms, in wastewater treatment and in inoculation of crops and forest trees with mycorrhizal fungi. This publication brings together the background paper and the summary report from the e-mail conference. Coping with water scarcity: What role for biotechnologies? ISBN 978-92-5-106150-3 ISSN 1729-0554 9 7 8 9 2 5 1 0 6 1 5 0 3 TC/M/I0487E/1/11.08/2000 LAND AND WATER Coping with Water DISCUSSION PAPER Scarcity: What Role for 7 Biotechnologies? By John Ruane FAO Working Group on Biotechnology Rome, Italy Andrea Sonnino FAO Research and Extension Division Rome, Italy Pasquale Steduto FAO Land and Water Division Rome, Italy and Christine Deane Faculty of Law University of Technology, Sydney Australia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The views expressed in this publication are those of the authors and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • A Single Tree Model to Consistently Simulate Cooling, Shading, and Pollution Uptake of Urban Trees
    International Journal of Biometeorology https://doi.org/10.1007/s00484-020-02030-8 ORIGINAL PAPER A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees Rocco Pace1,2 & Francesco De Fino3 & Mohammad A. Rahman4 & Stephan Pauleit4 & David J. Nowak5 & Rüdiger Grote1 Received: 3 April 2020 /Revised: 24 September 2020 /Accepted: 6 October 2020 # The Author(s) 2020 Abstract Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone).
    [Show full text]
  • The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States
    Global Change Biology (2016) 22, 2329–2352, doi: 10.1111/gcb.13160 SPECIAL FEATURE The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States JAMES S. CLARK1 , LOUIS IVERSON2 , CHRISTOPHER W. WOODALL3 ,CRAIGD.ALLEN4 , DAVID M. BELL5 , DON C. BRAGG6 , ANTHONY W. D’AMATO7 ,FRANKW.DAVIS8 , MICHELLE H. HERSH9 , INES IBANEZ10, STEPHEN T. JACKSON11, STEPHEN MATTHEWS12, NEIL PEDERSON13, MATTHEW PETERS14,MARKW.SCHWARTZ15, KRISTEN M. WARING16 andNIKLAUS E. ZIMMERMANN17 1Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, 2Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, 3Forest Service 1992 Folwell Avenue,Saint Paul, MN 55108, USA, 4U.S. Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, 5Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, 6Forest Service, Southern Research Station, Monticello, AR 71656, USA, 7Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, 8Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, 9Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, 10School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, 11U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell
    [Show full text]
  • Improving On-Farm Water Management - a Neverending Challenge P
    Improving On-farm Water Management - A Neverending Challenge P. Wolff and T.-M. Stein 2003 Journal of Agriculture and Rural Development in the Tropics and Subtropics Volume 104, No. 1, 2003, pages 31-40. Improving On-farm Water Management - A Never-ending Challenge P. Wolff *1 and T.-M. Stein 2 Abstract Most on-farm water management (OFWM) problems are not new. They have been a threat to agriculture in many countries around the globe in the last few decades. However, these problems have now grown larger and there is increasing public demand for the development and management of land and water to be ecologically sustainable as well as economic. As there is a close interrelationship between land use and water resources, farmers need to be aware of this interrelationship and adjust their OFWM efforts in order to address the issues. In their management efforts, they need to consider both the on-site and the off-site effects. This paper highlights holistic approaches in water management as being indispensable in the future. Present and future water-utilisation problems can only be solved on the basis of an intersectoral participatory approach to water management conducted at the level of the respective catchment area. In the context of this approach, farmers need to realise that they are part of an integral whole. The paper also lists a range of present and future challenges facing farmers, extension-ists, researchers, etc. in relation to OFWM efforts. Among the challenges are: the effects of the increasing competition for freshwater resources; the increasing influence of non-agricultural factors on farmers' land use decisions; the fragmentation of the labour process and its effects on farming skills; the information requirements of farmers; the participatory dissemination of information on OFWM; the process of changing permanently the agrarian structure; and the establishment of criteria of good and bad OFWM.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • Four Billion People Affected by Severe Water Scarcity
    Briefing paper Four billion people affected by severe water scarcity Number of people living in water scarce areas Research published in Science Advances on water scarcity by Prof. Hoekstra and Dr. Mesfin Mekonnen, researchers from University of Twente, reveals that as many as four billion people worldwide live under water scarcity for at least one month of the year. Their research shows that the earlier estimates did not capture the monthly variability of water scarcity and that the number of people affected by severe water scarcity are much higher. For example, the entire population of 37 countries and more than half of the population of 97 countries live under severe water scarcity during at least one month per year (Figure 1). This information is key in addressing Sustainable Development Goal 6.4 which aims to substantially reduce the number of people suffering from water scarcity. Blue water scarcity is a result of the cumulative impact of the blue water footprint of agriculture, domestic water supply and industry. In areas where blue water scarcity is greater than 1 – moderate, significant and severe water scarcity – environmental flow requirements are not met, which can lead to degradation of natural ecosystems, loss of valuable ecosystem services and negative impacts on subsistence uses, such as access to drinking and other household water and loss of local fisheries. Figure 1: Percentage of population experiencing severe water scarcity at least one month of a year. Source: Water Footprint Network Data from M.M. Mekonnen & A.Y. Hoekstra, University of Twente Trade risk and water scarcity As nations work toward securing food, water, energy and other essential inputs for people’s well being, livelihoods and the country’s economic development, most countries rely on imports as well as exports of goods and services.
    [Show full text]
  • Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: from Conventional to Emerging Technologies
    environments Article Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies Andi Mehmeti 1,* ID , Athanasios Angelis-Dimakis 2 ID , George Arampatzis 3 ID , Stephen J. McPhail 4 and Sergio Ulgiati 5 1 Department of Science and Technology, Parthenope University of Naples, 80143 Naples, Italy 2 School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; [email protected] 3 School of Production Engineering and Management, Technical University of Crete, 731 00 Chania, Greece; [email protected] 4 DTE-PCU-SPCT, ENEA C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy; [email protected] 5 Department of Science and Technology, Parthenope University of Naples, 80134 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-327-556-3659 Received: 26 December 2017; Accepted: 2 February 2018; Published: 6 February 2018 Abstract: A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2) economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA) of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented) and endpoint (3 damage-oriented) levels using the state-of-the-art impact assessment method ReCiPe 2016.
    [Show full text]
  • Comparing Water-Related Plant Functional Traits Among Dominant Grasses of the Colorado Plateau: Implications for Drought Resistance
    Plant Soil https://doi.org/10.1007/s11104-019-04107-9 REGULAR ARTICLE Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau: Implications for drought resistance David L. Hoover & Kelly Koriakin & Johanne Albrigtsen & Troy Ocheltree Received: 7 September 2018 /Accepted: 24 April 2019 # This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019 Abstract above- and belowground biomass, and morphology, Background and aims Water is the primary limiting then assessed how these traits varied by species, and factor for plants in drylands, which are projected to photosynthetic pathway. become even drier with climate change. Plant functional Results Individual water-related traits varied widely, but traits related to water influences individual performance, did not consistently vary by photosynthetic pathway. community composition, and can provide insight into We identified three unique functional trait syndromes which species will be most vulnerable to drought. that could be classified as either conservative or non- Methods Here, we used a trait-based approach to exam- conservative with regard to water use. ine key water-related traits of five perennial grasses of Conclusions Variation in water-related traits may be the Colorado Plateau, with the goals of identifying func- key to the coexistence of species in drylands, but there tional trait syndromes, and assessing vulnerability to is uncertainty as which traits or functional trait syn- drought. We examined 14 traits including hydraulic, dromes will be most vulnerable to changes in climate. Based on the traits examined here, and forecast changes Responsible Editor: Ian Dodd.
    [Show full text]
  • Freshwater Resources
    3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ...........................................................................................................................................................
    [Show full text]
  • Water Allocation Rules in Afghanistan for Improved Food Security Frank A
    Water allocation rules in Afghanistan for improved food security Frank A. Ward, Saud A. Amer & Fahimullah Ziaee Food Security The Science, Sociology and Economics of Food Production and Access to Food ISSN 1876-4517 Food Sec. DOI 10.1007/s12571-012-0224-x 1 23 Author's personal copy Food Sec. DOI 10.1007/s12571-012-0224-x ORIGINAL PAPER Water allocation rules in Afghanistan for improved food security Frank A. Ward & Saud A. Amer & Fahimullah Ziaee Received: 17 February 2012 /Accepted: 28 October 2012 # Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2012 Abstract In many arid countries, rules for the allocation of flexibility of irrigated agriculture in dealing with water irrigation water when shortages occur are poorly defined. shortages are analyzed for their impacts on farm profit- These weaknesses present a critical constraint to food secu- ability and food security. Findings show that a propor- rity and can be a major cause of poverty and hunger. The tional sharing of water shortages, in which each canal search for flexible rules for the allocation of irrigation water bears an equal proportion of overall shortages, is the is especially important in dry regions of the developing most flexible rule among those analyzed for limiting world where drought and climate change compound the threats to food security and farm income. This water challenges faced by farmers, extension advisers, water man- sharing arrangement is also seen as fair in many cultures agers and governments. Afghanistan is one country in which and is simple to administer. In the developing world, the inflexible arrangements for allocating irrigation water when design and practical implementation of flexible rules for drought occurs continue to undermine its food security.
    [Show full text]
  • Linking Environment and Conflict Prevention the Role of the United Nations
    FULL REPORT LINKING ENVIRONMENT AND CONFLICT PREVENTION THE ROLE OF THE UNITED NATIONS CSS peace ETH Zurich © CSS and swisspeace 2008 Center for Security Studies (CSS) ETH Zurich Seilergraben 45-49 - SEI CH – 8092 Zürich Tel.: +41-44-632 40 25 Fax: +41-44-632 19 41 [email protected] www.css.ethz.ch swisspeace Sonnenbergstrasse 17 P.O. Box CH - 3000 Bern 7 Tel.: +41-31-330 12 12 Fax: +41-31-330 12 13 [email protected] www.swisspeace.ch A report by Simon A. Mason, Adrian Muller Center for Security Studies (CSS), ETH Zürich Albrecht Schnabel, Rina Alluri, Christian Schmid swisspeace, Bern Supervised by Andreas Wenger (CSS), Victor Mauer (CSS), and Laurent Goetschel (swisspeace) This is the full report, which can be accessed at <www.css.ethz.ch> and <www.swisspeace.ch> as well as in the “CSS Environment and Conflict Transformation” Series (www.isn.ethz.ch > “Publishing House” > “Publication Series”). An 18-page summary of this full report can be accessed at the same websites. Cover photo Paul Klee, Rosenwind 1922,39 Ölfarbe auf Grundierung auf Papier auf Karton 38,2 x 41,8 cm Zentrum Paul Klee, Bern, Schenkung Livia Klee Contents Foreword..................................................................................................................................... 4 Acronyms and Abbreviations ....................................................................................................... 5 List of Figures and Tables...........................................................................................................
    [Show full text]
  • Water Theft in Rural Contexts Abstract
    Water theft in rural contexts Rob White Distinguished Professor of Criminology School of Social Sciences University of Tasmania AUSTRALIA Contact author – Rob White: [email protected]; +61 3 6226 2877 Abstract Water theft is a phenomenon that is set to grow in the light of climate change, chronic drought, freshwater scarcity, and conflicts over natural resources. Drawing upon recent developments pertaining to poor regulation and the stealing of water from the Murray- Darling river system in Australia, this paper explores the cultural and political economic dimensions of water theft in the context of rurality and criminality. Framed within the overarching perspective of green criminology, the article examines water theft through the lens of rural folk crime as well as failures of regulation and environmental law enforcement. It raises issues relating to the social construction of victims of water theft, human (such as Indigenous people) and non-human (such as ecosystems). This article argues that the geographical location of water theft is integral to the dynamics of the harms committed, and the response of both governments and residents to the crime. Key words: water theft; green criminology; rural folk crime; Murray-Darling river; environmental regulation © 2019 White. This article is published under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) Water theft in rural contexts – White Introduction In July 2017, an Australian Broadcasting Corporation Four Corners investigation revealed a series of improper conducts pertaining to the Murray-Darling Basin, the largest fresh-water system in Australia (ABC, 2017). Four Corners is a long-running investigative current affairs television program produced by the national public broadcaster (the ABC).
    [Show full text]