<<

University of Calgary PRISM: University of Calgary's Digital Repository

Graduate Studies The Vault: Electronic Theses and Dissertations

2018-09-12 Provenance and Mineralogy of Sediments from the Early Bluesky Formation, Oil Sands, ,

McKinnon, Lynsey

McKinnon, L. (2018). Provenance and Mineralogy of Sediments from the Bluesky Formation, Peace River Oil Sands, Alberta, Canada (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/32927 http://hdl.handle.net/1880/107751 master thesis

University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY

Provenance and Mineralogy of Sediments from the Early Cretaceous Bluesky Formation, Peace River Oil Sands, Alberta, Canada

by

Lynsey McKinnon

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS

CALGARY, ALBERTA

SEPTEMBER, 2018

© Lynsey McKinnon 2018

Abstract

The provenance of sediment in the McMurray Formation of the Athabasca Oil Sands has been widely studied, while the Bluesky Formation of the Peace River Oil Sands which holds significant deposits of heavy oil, has not been studied to the same extent. Mineralogy of the Bluesky

Formation is also relatively poorly understood in the area and is important to evaluate due to steam-assisted gravity drainage methods used to optimize production. U-Pb geochronology ages from four samples were collected from the McMurray Formation and the Bluesky

Formation. McMurray samples yielded similar results of sediment provenance determined in past studies, while the Bluesky Formation showed similarities and new date populations in comparison to previous data. The lower PR-1-Lagoon facies yielded age ranges of detrital zircons distributed from east-southeast-to-northwest and northwest-to-southeast drainage systems, while the lower secondary PR-1-Wave facies resulted in age ranges that changed to a more local southeast-to-northwest drainage system and northwest-to-southeast system from the Western Cordillera to a reintegration of the east-southeast-to-northwest and northwest-to- southeast drainage systems in the upper secondary PR-1-Wave facies due to transgressions and regressions of the Boreal sea and basin partitioning between the Assiniboia and Edmonton channels.

Mineralogical assemblages of the Bluesky Formation was also studied using a combination of qualitative and quantitative analytical procedures including SEM, XRF and XRD, which determined that there is a complex mineralogy in comparison to the McMurray Formation.

Kaolinite was the largely dominant clay type that fills pore space due to its vermicular form, while dawsonite was also abundant in large clusters that limits porosity. Quantitative results of

ii

XRD and XRF should be used together to evaluate mineral weight percentage as XRF shows a more reliable yield in data that isn’t effected by surface area of grains as much as XRD.

Fractured framework grains and development of intragranular porosity suggests mechanical and chemical weathering and grain alteration, which are characteristic of faults in the area and hydrothermal fluid influx. Oil wells producing with the aid of steam assisted gravity drainage

(SAGD) techniques should be monitored as porosity-decreasing dawsonite and kaolinite can form at temperatures up to and over 200ᵒC, which will impact overall production and operation of the well.

iii

Acknowledgements

I would like to extend sincere gratitude to my supervisor, Dr. Ronald Spencer, for his mentorship. His insight and encouragement during the past 4 years has been invaluable. I would also like to thank members of the Department of Geoscience for the following assistance: Dr. Sytle Antao for her encouragement and education on analysis and procedures of mineralogy; William Matthews for his contributions to my work and multiple discussions about procedures and the history of North America; Steven Hubbard for his advice on how to improve my work on multiple occasions; Mickey Horvath for his assistance in preparing samples for SEM analysis; Jordan Curkan for her help in cleaning and organizing all of my samples; and

Christopher Debuhr for helping with SEM analysis.

This project would not have been possible without the generous financial aid provided by Shell

Canada and Suncor Energy. Thank you also to Mark Barton (Shell Canada), Victoria Walker

(Shell Canada/Canadian Natural Resources Limited), and Pierre Malhame (Shell

Canada/Canadian Natural Resources Limited) for their geological knowledge of the area, giving additional information to aid the project, and critiquing interpretations of data.

Finally I would like to thank my friends and family for their emotional support. Thank you to my father Douglas, my mother Eunice and my brother Tim for their continuous financial support and words of encouragement during this process in the best and worst of times.

iv

Table of Contents

ABSTRACT………………………………………………………………………………………………………………………………….ii ACKNOWLEDGEMENTS……………………………………………………………………………………………………………..iv TABLE OF CONTENTS………………………………………………………………………………………………………………….v LIST OF FIGURES……………………………………………………………………………………………………………………….vii CHAPTER ONE: INTRODUCTION…………………………………………………………………………………………………1 1.1 Statement of Contribution…………………………………………………………………………………………………..2 1.2 References…………………………………………………………………………………………………………………………..3 CHAPTER TWO: A COMPARISON OF SEDIMENT PROVENANCE OF THE BLUESKY FORMATION, PEACE RIVER OIL SANDS TO THE MCMURRAY FORMATION, ATHABASCA OIL SANDS IN , CANADA………………………………………………………………………………………………….5 2.1 Abstract……………………………………………………………………………………………………………………………….5 2.2 Introduction…………………………………………………………………………………………………………………………6 2.3 Geological History………………………………………………………………………………………………………………..7 2.4 Study area and Peace River Facies Differentiation……………………………………………………………..10 2.5 Analytical Methodology……………………………………………………………………………………………………..12 2.6 Provenance Sources of Detrital Zircons………………………………………………………………………………14 2.7 Results……………………………………………………………………………………………………………………………….16 2.8 Discussion………………………………………………………………………………………………………………………….18 2.8.1 AOS-1 Samples…………………………………………………………………………………………………….18 2.8.2 Bluesky Samples………………………………………………………………………………………………….19 2.9 Conclusion………………………………………………………………………………………………………………………….26 2.10 References……………………………………………………………………………………………………………………….38 CHAPTER THREE: THE PEACE RIVER OIL SANDS: A COMPLEX MINERALOGICAL EVALUATION OF THE BLUESKY FORMATION USING SEM, XRF AND XRD ANALYSIS……………………………………………..49 3.1 Abstract……………………………………………………………………………………………………………………………..49 3.2 Introduction……………………………………………………………………………………………………………………….50 3.3 SEM, XRF and XRD Technology…………………………………………………………………………………………..53 3.4 Dawsonite………………………………………………………………………………………………………………………….55

v

3.5 Peace River Study Area………………………………………………………………………………………………………56 3.6 Methodology……………………………………………………………………………………………………………………..56 3.7 Results……………………………………………………………………………………………………………………………….59 3.7.1 SEM……………………………………………………………………………………………………………………..59 3.7.2 XRF………………………………………………………………………………………………………………………62 3.7.3 XRD……………………………………………………………………………………………………………………..64 3.8 Discussion………………………………………………………………………………………………………………………….65 3.8.1 SEM Grain Analysis………………………………………………………………………………………………65 3.8.2 XRF………………………………………………………………………………………………………………………69 3.8.3 XRD……………………………………………………………………………………………………………………..71 3.9 Comparison to McMurray Formation…………………………………………………………………………………73 3.10 Drilling Implications………………………………………………………………………………………………………….74 3.11 Conclusion……………………………………………………………………………………………………………………….75 3.12 References……………………………………………………………………………………………………………………..128 CHAPTER FOUR: CONCLUSION……………………………………………………………………………………………….137 APPENDIX A: DATA TABLES…………………………………………………………………………………………………….140 APPENDIX B: BULK XRD GRAPHS FOR PR-1, PR-2 AND PR-4 WELLS….…………………………………….217 APPENDIX C: COPYRIGHT PERMISSION FROM CO-AUTHORS….………………………………………………235 BIBLIOGRAPHY……………………………………………………………………………………………………………………….237

vi

List of Figures

Figure 2-1: Study area and PR-1 well used for sampling.………………………………………………………….29

Figure 2-2: Sediment provenance map of North America………………………………………………………..30

Figure 2-3: Stratigraphic column of the Lower Cretaceous……………………………………………………….31

Figure 2-4: Well log for PR-1 well……………………..………………………………………………………………………32

Figure 2-5: Core photo of facies boundary in the Bluesky Formation of PR-1 well………..………….33

Figure 2-6: Heavy mineral beds in the McMurray Formation AOS-1 samples…………………………..34

Figure 2-7: Probability-density plot data compared to past studies……………………………….………..35

Figure 2-8: Map of hypothesized Alberta sediment drainage pathways during the Upper

McMurray Formation, PR-1-Lagoon and upper PR-1-Wave facies deposition…………………………..36

Figure 2-9: Map of hypothesized Alberta sediment drainage pathways during the lower PR-1-

Wave facies deposition…………………………………………………………………………………………………………….37

Figure 3-1: Study area and Peace River well locations………………………………………………………………77

Figure 3-2: Sediment provenance map of North America…………………………………………………………78

Figure 3-3: Stratigraphic column of the Lower Cretaceous……………………………………………………….79

Figures 3-4(a-d): Core photos of the four wells………………………………………………………………………..80

Figures 3-5(a, b): SEM EDX photos of framework grains…………………………………………………………..84

vii

Figures 3-6(a-c): SEM EDX and BSE photos of framework grain shape, intragranular porosity development, fluid inclusions, and weakness planes in grains…………………………………………………85

Figure 3-7: SEM EDX photo of quartz grains feldspar, apatite and dolomite inclusions…………....86

Figures 3-8(a, b): SEM EDX photos of quartz grains with inclusions of strontium-rich pyrite and iron-rimmed dolomite……………………………………………………………………………………………………………..87

Figure 3-9: SEM EDX photo of illite-altered feldspar grains………………………………………………………88

Figures 3-10(a-c): SEM EDX photos of carbonate framework grains…………………………………………89

Figures 3-11(a-c): SEM EDX photos micro-crystalline texture of chert with potassium and aluminum-rich feldspars and clays…………………………………………………………………………………………..90

Figures 3-12(a, b): SEM EDX photos showing inclusions in chert grains……………………………………91

Figures 3-13(a-c): SEM EDX photos of heavy mineral grains of zircon and apatite……………………92

Figure 3-14: SEM BSE photo of vermicular kaolinite booklets…………………………………………………..93

Figure 3-15: SEM EDX photo of illite in the matrix……………………………………………………………………94

Figure 3-16: SEM EDX photo of kaolinite in smaller booklets in the matrix………………………………95

Figure 3-17: SEM EDX photo of matrix in a shale bed………………………………………………………………96

Figures 3-18(a-c): SEM EDX photos of kaolinite positioning with respect to bitumen………………97

Figures 3-19 (a, b): SEM EDX photos of allogenic clays…………………………………………………………….98

Figure 3-20: SEM EDX photo of layers of illite and sodium-rich muscovite……………………………….99

viii

Figures 3-21(a, b): SEM EDX photos of kaolinite and illite sandwiches……………………………………100

Figure 3-22: SEM EDX photo of allogenic clay orientation with respect to the matrix…………….101

Figure 3-23: SEM EDX photo of a deformed detrital clay grain……………………………………………….102

Figures 3-24(a, b): SEM BSE photos of dawsonite form and texture……………………………………….103

Figure 3-25: SEM EDX photo of sodium and aluminum in dawsonite……………………………………..104

Figures 3-26 (a-c): SEM EDX photos showing dawsonite filling pore space between framework grains, within other grains, and in the matrix………………………………………………………………………...105

Figures 3-27(a-c): SEM EDX photos of matrix mineralogy……………………………………………………….106

Figures 3-28 (a, b): SEM BSE photos of sulfate and anhydrite precipitates……………………………..107

Figure 3-29: SEM EDX photo of inclusions fractured in framework quartz grains……………………108

Figure 3-30: SEM EDX photo of calcite and pyrite inclusions in quartz……………………………………109

Figure 3-31(a, b): SEM EDX photos of a feldspar relict altering to kaolinite and illite……………..110

Figures 3-32-39: XRF major elements and mineralogy weight percentages for wells PR-1, PR-2 and PR-4………………………………………………………………………………………………………………………………..111

Figure 3-40: Si-Al-Ca Ternary diagram of all XRF data for wells PR-1, PR-2 and PR-4………………119

Figure 3-41: XRD bulk sample peak data from well PR-1…………………………….………………………….120

Figure 3-42: XRD Clay separate peak data for sample PR-1-584.00m……………………………………..121

ix

Figure 3-43-45: XRF and XRD calculated mineralogy weight percentage data for wells PR-1, PR-2 and PR-4………………………………………………………………………………………………………………………………..122

Figure 3-46: Well log for PR-1 showing hypothesized facies boundary discernable from XRF data correlation……………………………………………………………………………………………………………………………..125

Figure 3-47: NW-SE cross section of six facies interpreted in the four Peace River wells………..126

Figure 3-48: Ternary diagram of XRF data from a reference McMurray Formation core in the

Athabasca Oil Sands……………………………………………………………………………………………………………….127

x

Chapter 1: Introduction

Canada’s Oil Sands, heavy oil deposits with reserves estimated at over 167 billion barrels of producible crude oil, are comprised of three separate deposits: the Athabasca, Peace River and

Cold Lake deposits (Alberta Energy Regulator, 2017). Two of the three major deposits that are targeted for oil production are the McMurray Formation in the Athabasca Oil Sands and the

Bluesky Formation in the Peace River Oil Sands. The McMurray Formation has already been thoroughly studied to determine history of sediment distribution using U-Pb geochronology via laser ablation of detrital zircon grains (Benyon et al. 2014, 2016; Blum and Pecha 2014). Detrital zircon grains that were age-dated revealed a complex drainage system sourcing grains from recycled sedimentary sources in the eolinites of the southeast United States and the

Western Cordillera (Benyon et al. 2014, 2016; Blum and Pecha 2014).The Bluesky Formation has been studied in the past, but these studies are generally concerned with biostratigraphy and determining depositional settings using sequence and core analysis (O’Connell

1988; Hubbard et al. 1999; Mackay 2014; Campbell et al. 2016). There is a lack of information to determine the provenance history of sediment in the Bluesky Formation, specifically in the

Peace River Oil Sands area. Early Cretaceous deposition of the McMurray Formation and the

Bluesky Formation was evolving through geologic time in Alberta (Jackson 1984; Smith 1994;

Zhou et al. 2008), which results in similarities and differences to how the Bluesky Formation was deposited in comparison to the McMurray Formation. This thesis aims to test this hypothesis and determine any changes in deposition in the Bluesky Formation linked to differences in drainage systems in the Peace River area.

1

In addition to determining sediment provenance, the Bluesky Formation must be analyzed by using a combination of qualitative and quantitative procedures to characterize the mineralogy of the sediment to help improve existing facies models (Hubbard et al. 1999; Mackay 2014;

Campbell et al. 2016). Scanning Electron Microscopy, X-Ray Fluorescence, and X-Ray Diffraction are all useful tools to conduct thorough qualitative and quantitative analysis on the mineralogy of the Bluesky Formation when data is combined together from all three procedures.

Mineralogical characteristics of the Bluesky Formation, such as clay content and other unique minerals due to geochemistry changes during and after deposition, can also outline challenges that companies should expect while drilling and using steam-assisted gravity drainage in completion of wells and overall improve production of heavy oil in the Peace River area.

1.1 Statement of Contribution

Besides the main author, two other authors contributed to the work in these manuscripts.

Ronald J. Spencer contributed X-Ray Fluorescence and X-Ray Diffraction sample processing through XRF Solutions in Calgary, Alberta. William Matthews contributed to data sampling, methodology refinement and overall editing for U-Pb geochronology procedures.

2

1.2 References

1. Alberta Energy Regulator. 2017. Alberta’s energy reserves & supply/demand outlook.

ST98: 1-12 Available from http://www.aer.ca/data-and-publications/statistical-

reports/st98 [accessed May 28, 2017].

2. Benyon, C., Leier A., Leckie D.A., Webb, A., Hubbard, S.M., Gehrels, G. 2014. Provenance

of the Cretaceous Athabasca Oil Sands, Canada: Implications for continental-scale

sediment transport. Journal of Sedimentary Research, v. 84, p.136-143.

3. Benyon, C., Leier, A.L., Leckie, D.A., Hubbard, S.M., Gehrels, G.E. 2016.

provenance and insights into the paleogeography of the McMurray Formation from

detrital zircon geochronology, Athabasca Oil Sands, Canada. American Association of

Petroleum Geologists Bulletin, v. 100, no. 2, p. 269-287.

4. Blum, M. and Pecha, M. 2014. Mid-Cretaceous to Paleocene North American drainage

reorganization from detrital zircons. Geology, v. 42, no.7, p. 607-610.

5. Campbell, S.G., Botterill, S.E., Gingras, M.K., MacEachern, J.A. 2016. Event

sedimentation, deposition rate, and paleoenvironment using crowded Rosselia

assemblages of the Bluesky Formation, Alberta, Canada. Journal of Sedimentary

Research, v. 86, p. 380-393.

6. Hubbard, S.M., Pemberton, S.G., Howard, E.A. 1999. Regional geology and

sedimentology of the basal Cretaceous Peace River Oil Sands deposit, north-central

Alberta. Bulletin of Canadian Petroleum Geology, v.47, no.3, p. 270-297.

3

7. Mackay, D.A. 2014. A subsurface sedimentological analysis of tide-dominated deposits

in the Bluesky Formation (Early Cretaceous), Peace River Area, West-.

Unpublished Ph.D. thesis, Queen’s University, Kingston, Ontario, p. 1-392.

8. O’Connell, S.C. 1988. The distribution of the Bluesky facies in the region overlying the

Peace River Arch, northwestern Alberta. In: James, D.P. and Leckie, D.A., eds.,

Sequences, Stratigraphy, Sedimentology: Surface and Subsurface, Canadian Society of

Petroleum Geologists, Memoir 15, p. 387-400.

9. Jackson, P.C. 1984. Paleogeography of the Lower Cretaceous Manville Group of western

Canada. In: Masters, J.A., eds., Elmworth: Case Study of a Deep Basin Gas Field:

American Association of Petroleum Geologists Memoir 38, p. 49-77.

10. Smith, D.G. 1994. Paleogeographic evolution of the Western Canada Foreland Basin. In:

Mossop, G.D., and Shetsen, I., comps., Geological Atlas of the Western Canada

Sedimentary Basin, Canadian Society of Petroleum Geologists and Alberta Research

Council. Available from

http://ags.aer.ca/document/Geological%20Atlas%20of%20the%20Western%20Canada

%20Sedimentary%20Basin%20PDF%20Files/chapter_17.pdf [accessed May 28, 2017].

11. Zhou, S., Huang, H., Liu, Y. 2008. Biodegradation and origin of oil sands in the Western

Canada Sedimentary Basin. Petroleum Science, v.5, p. 87-94.

4

Chapter 2: A comparison of sediment provenance of the Bluesky Formation, Peace River Oil

Sands to the McMurray Formation, Athabasca Oil Sands in Northern Alberta, Canada

Lynsey L. McKinnon1, Ronald J. Spencer1, 2, William A. Matthews1

1: Department of Geoscience, University of Calgary, Calgary, Alberta

2: XRF Solutions, Calgary, Alberta

2.1 Abstract

Detrital zircon grains (DZ) are used to understand sediment provenance and drainage history of north-Central Alberta. U-Pb geochronology dates for two samples in the McMurray Formation in the Athabasca Oil Sands were chosen for comparison to two samples in the Bluesky

Formation of the Peace River Oil Sands. The McMurray Formation samples yielded zircon populations similar to previous studies: an east-southeast-to-northwest drainage system transporting sediment from recycled sedimentary sources from the Jurassic eolianites and Belt

Purcell Super Group sedimentary deposits in the southeastern United States, and northwest-to- southeast from the Western Cordillera to the Athabasca area. The Bluesky Formation samples were split into two facies based on a transgressive pebble lag deposit observed in core and changes in log signatures: a lower muddier facies containing both shale and sandstone typical of a lagoonal environment and an upper mud-depleted sandstone facies typical of a higher energy wave dominated environment that should be divided into two sub-facies for more accurate provenance interpretation. The lower PR-1-Lagoon sample contained recycled DZ that

5

derive from the same east-southeast-to-northwest drainage system seen in the Athabasca area.

The upper PR-1-Wave sample showed a strong presence of DZ coming from local drainage systems at the beginning of deposition and from the Western Cordillera due to erosion of sediments from a wedge-top depozone in Western Canada. This shifted back to east-southeast- to-northwest and northwest-to-southeast sediment drainage pathways as the Boreal Sea went from a phase of regression to transgression near the end of the PR-1-Wave facies deposition.

Northwest-to-southeast oriented basin partitioning during the -Aptian period, due to sediment distribution blockaded by the Red Earth Highlands, divided the Assiniboia and

Edmonton channels as the Bluesky Formation and age equivalent Wabiskaw/Lower Clearwater

Formations were being deposited. Transgressions and regressions of the Boreal Sea played a major role in changing sediment sources for both PR-1-Lagoon and PR-1-Wave facies of the

Bluesky Formation.

2.2 Introduction

The Athabasca, Peace River, and Cold Lake Oil Sands are part of the largest deposit of heavy oil in

Canada with total estimated reserves of approximately 167 billion barrels of producible crude oil

(Figure 1; Alberta Energy Regulator, 2017). The McMurray Formation is the major producing formation in the Athabasca Oil Sands and has been the target of a number of recent sediment provenance studies (Benyon et al. 2014, 2016; Blum and Pecha 2014). A continent-scale drainage system of sediment from across North America has been interpreted as the source of detrital zircon grains (DZ) in the McMurray Formation. Several studies have been conducted throughout

Alberta and British Columbia, such as at in Athabasca and Cold Lake, as well as regions near and within the Rocky Mountains (Blum and Pecha 2014; Leier and Gehrels 2011; Raines et al. 2013;

6

Pana and van der Pluijm 2015; Quinn et al. 2016); however, the Peace River area has not been evaluated as thoroughly. The Peace River Oil Sands is hosted within the Bluesky Formation, which is similar in age and heavy oil content of the McMurray Formation. Since the depositional characteristics of the Bluesky Formation are different from the McMurray Formation, U-Pb geochronology used for comparison of sediment provenance and partitioning of the Western

Canadian Sedimentary Basin during deposition of the is important to understand the process of foreland basin filling in Alberta.

2.3 Geological History

Accretion of terranes during the Mid-Jurassic on the western margin of North America initiated a period of foreland basin subsidence in western Canada (Monger and Price 1979; Jackson

1984; Price 1983; Cant and Stockmal 1989). The first major sedimentation record in the

Western Canadian Sedimentary Basin (WCSB) after the Jurassic is seen in the Mannville Group

(Hayes et al., 1994). The Mannville Group represents sedimentation during a major subsidence episode following the thrusting, uplift and erosion of older rocks in the Cordilleran orogeny to the west (Hayes et al. 1994; Smith 1994). Most of the sediment reaching Alberta was largely due to rivers that joined together to create a basin-wide axial drainage system in combination with other marine processes from the Boreal Sea in the northeastern part of Alberta (McLean

1977; Smith 1994).

The Mannville Group of the WCSB is classified as any sediment bounded at the base by the sub-

Cretaceous and at the top by an upper unconformity at the base of the Colorado

Shales (Jackson 1984, Cant 1996). The Mannville Group in the Athabasca Oil Sands is equivalent

7

to the Bullhead and Fort St. John Group in the Peace River Oil Sands (Figure 3; Jackson 1984;

Smith 1994). The Mannville Group was deposited due to a transgression of the Boreal Sea which changed to multiple regressive phases due to sediment erosion and transportation into the basin from the Cordilleran Orogeny in the west (Jackson 1984; Rottenfusser 1984; Hubbard et al. 1999). During foreland basin subsidence during the deposition of the Lower Mannville group, the block-faulted Peace River Arch (Figure 1) remained in a state of inversion with no reactivation of faulting in the area until post-Bluesky deposition (Williams 1958; Jackson 1984;

Cant 1988; Hubbard et al. 1999).

The McMurray Formation is the major producing unit in the Athabasca Oil Sands. The

McMurray Formation is a late-Barremian to Aptian age sandstone composed of complex stacked sequences of point bars, estuarine incised valleys and tidal channel sandstone packages

(Leckie and Smith 1992; Ranger and Pemberton 1997; Hein et al. 2001; Hubbard et al. 2011). It is split into three members based on lithology: Upper, Middle and Lower McMurray (Carrigy

1959). The Lower McMurray is a conglomeratic and coarse grained sandstone with siltstone, shale, clays and coal; the Middle McMurray is medium grained sandstone as well as siltstone and shale with coal and plant debris; and the Upper McMurray is fine grained, fossiliferous sandstone (Carrigy 1959). The McMurray Formation unconformably overlies carbonates and is bounded above by the Wabiskaw Member and the

(Figure 3; Carrigy 1959; Cant 1996; Hein et al. 2001; Smith 1994).

The Bluesky Formation is one of the major hosts of bitumen in the Peace River Oil Sands.

Equivalent to the Wabiskaw member in the Athabasca Oil Sands, the Bluesky Formation is

Aptian to Albian age and a member of the lower Upper Mannville Group (Figure 3; Jackson

8

1984; Rottenfusser 1984; Hubbard et al. 1999). Bound by the overlying marine Wilrich Shale and the underlying fluvial , the mudstone-rich intervals between sandstone intervals observed in the Bluesky Formation lead to an interpreted depositional environment of a progradational fluvial-deltaic and estuarine setting (Jackson 1984; O’Connell 1988; Smith

1994; Hubbard et al. 1999) or as a tide-dominated deltaic depositional setting (Mackay 2014).

The Bluesky Formation is lithologically characterized as containing fine-to-medium grained quartz, chert and carbonate-rich interbedded with siltstones and mudstones

(O’Connell 1988, Hubbard et al. 1999). Plant and coal debris, shell fragments, and local reworking of sediment via bioturbation in the lower Ostracod Zone are also commonly observed in cored intervals of the Bluesky Formation (O’Connell 1988, Hubbard et al. 1999,

Campbell et al. 2016).

Provenance of McMurray Formation sediment using U-Pb geochronology has led to a few theories that will be used for comparison to Bluesky Formation sediment provenance (Benyon et al. 2014, 2016; Blum and Pecha 2014). Based on date populations from detrital zircons in the

McMurray Formation in the Athabasca Oil Sands, eastern-sourced sediment from erosion of original igneous sources is thought to have been transported and stored in younger sedimentary units, with the Jurassic eolianites of the Colorado Plateau in the southwestern

United States or the Appalachian-Ouachita Mountains being possible sources (Figure 2; Benyon et al. 2014, 2016; Blum and Pecha 2014; Dickinson and Gehrels 2009). Alternatively, sediment sourced from eastern North America could have been deposited somewhere in northeastern

Alberta prior to the deposition of the McMurray Formation in an southeast-northwest oriented drainage system that then reversed to a northwest-southeast pathway during McMurray

9

Formation deposition (Blum and Pecha 2014). The Western Cordillera is also considered to be another major source contributing to the McMurray Formation since it houses sediment from erosion of Paleozoic-aged sources (Hein et al. 2013).

2.4 Study area and Peace River Facies Differentiation

The main study area is located near Peace River, Alberta, from Townships 84 to 85 and Ranges

16 to 18 west of the 5th Meridian (Figure 1). Only one Shell Canada well in the Peace River Oil

Sands, called PR-1 in this study, was chosen for detrital zircon extraction for uranium-lead (U-

Pb) geochronology because of availability of Dean Stark retain samples which have significantly less bitumen saturation than regular core samples (Figure 1). Another cored well of the Upper

McMurray Formation in the Athabasca Oil Sands, called AOS-1 in this study, in Township 84

Range 11 west of the 4th Meridian was included in this study because of the presence of “hot sand” intervals that have an increase in radioactive readings due to an abundance of heavy mineral beds (Figure 1, 6). The AOS-1 samples will be used to compare the results of Benyon et al. (2014/2016) and Blum and Pecha (2014) to determine if there are any observed U-Pb changes in these heavy mineral beds.

There are up to 11 facies recognized in the Peace River area by Hubbard et al. (1999), but in the chosen PR-1 well two interpreted facies were interpreted based on previous geochemical and stratigraphic comparisons made between wells in the area: a stratigraphically lower, low- energy lagoonal facies and a stratigraphically upper flood tidal deltaic facies (Hubbard et al.

1999; Figure 4). There is a significant grain size shift observed in the core from the low energy lagoonal sediment (very fine to fine grained sandstone interbedded with shale) to the upper flood tidal deltaic sediment (fine to medium grained sandstone). There was lower depositional

10

energy for the lower lagoonal facies based on these observations which then increased during the deposition of the upper flood tidal delta facies. The upper flood tidal deltaic facies could also be further subdivided into two separate facies based on facies analysis from Hubbard et al.

(1999), with the lower portion being rich in chert grains which would indicate a restricted environment sourcing sediment from local sources, and the upper portion having much less chert which would indicate a change to an environment with an increase in open marine, high wave energy (Figure 4). A slight increase in the Gamma Ray log and decrease in the Density-

Porosity log is seen where the deltaic facies can be split into two separate facies (Figure 4).

Although there are likely three separate facies in the PR-1 core, the core was only split into two groups based on simpler, lithological observances between the muddier, lagoonal facies and a lumped, higher wave energy sandstone facies. Samples in the PR-1 well were split at the major change in the log signature between these two facies (Figure 4) a sharp boundary in the core at

583.0 m with a pebble-sized clast deposit present between them (Figure 5). Samples were taken from the Dean Stark retains every meter for both the lower lagoonal facies from 583.0 m to 590.5 m depth and for the upper tidal deltaic facies from 559.0 m to 583.0 m depth.

The purpose of this study is to compare the analysis of DZ between the two facies in the PR-1 well to determine if there is a difference in provenance in the Bluesky formation as a whole in the Peace River area. AOS-1 U-Pb geochronology results will be used as a comparison between the Bluesky Formation in the Peace River area and the McMurray Formation in Athabasca area.

This will determine any changes or similarities in how the WCSB was filling with sediment in the

Edmonton (Peace River) and Assiniboia (McMurray) channels (Williams 1963; Jackson 1984;

Hayes et al. 1994).

11

2.5 Analytical Methodology

The Bluesky Formation PR-1 well had 117 Dean Stark retains available which was advantageous as these samples were not as saturated with bitumen in comparison to samples taken directly from the core.

The Upper McMurray Formation AOS-1 core samples were selected using the results of X Ray

Fluorescence (XRF) readings on the core. Zones high in uranium were selected as they were likely to yield abundant heavy mineral phases ((i.e. zircon, monazite, rutile, titanite, etc.) which concentrates this element. Two scanning electron microscope (SEM) stubs were made to take a closer look at the core sample areas with higher readings and it was discovered that several heavy minerals were present as uniform heavy mineral beds that were only a few centimeters wide. AOS-1A and AOS-1B heavy mineral beds were both well lineated (Figure 6).

For the PR-1 samples, a random sample of approximately 12 grams was taken from each 50 gram sample jar of Dean Stark retains to ensure no bias was used in sample preparation. Each sample was then crushed by hand using an agate mortar and pestle to break up irregular pieces of shale among the remaining sand in the jar. The samples from 583.0 m to 590.5 m in the lagoonal facies were grouped as one larger sample and samples from 559.0 m to 583.0 m in the flood tidal deltaic facies were grouped together in a second larger sample. The two larger samples were labelled as PR-1-Lagoon and PR-1-Wave, and further references of these two larger, grouped samples will be referred to by these names. The bitumen was removed from the two samples by flushing them with 30% hydrogen peroxide solution.

12

Two samples, AOS-1A and AOS-1B, were also collected from the AOS-1 well that were each approximately 10 cm long, 5cm wide and 5 cm thick. These samples were taken around 1-2 cm thick uniform heavy mineral beds that read high in uranium content from an X-Ray

Fluorescence gun in past research done by XRF Solutions in Calgary, Canada. The samples were cleaned with the same method of rinsing with 30% hydrogen peroxide solution.

All samples were processed at the Centre for Pure and Applied Tectonics and

Thermochronology at the University of Calgary in Calgary, Alberta, Canada by the methods outlined in Matthews and Guest (2016). Crushed and pulverized samples passed over a MD

Gemini GoldharvesterTM shaking water table to separate clay sized material and low-density minerals (i.e. quartz, micas, feldspars and calcite) from higher density minerals (i.e. apatite and zircon). A hand magnet was used to remove any wear metal or paramagnetic minerals such as magnetite and ilmenite from the water table separate. Methylene iodide (3.33 g/cm3) was used to further concentrate the dense mineral fraction. A FrantzTM isodynamic separator operating at

1.8A with a 5ᵒ sideslope and 15ᵒ foreward slope was used to remove any paramagnetic zircon grains that are likely to yield discordant dates (Silver 1963).

Final zircon fractions for all four samples were cast in epoxy and ground and polished using silicon carbide and diamond lapping films. This process produced a very uniform surface with less than 1 μm of relief ensuring consistent laser focus throughout the mount and eliminating the effect variable focus could have on measured U-Pb isotope ratios (Marillo-Sialer et al.

2014).

On each mount 300 detrital zircon grains were chosen at random for ablation. A sample- standard bracketing procedure was employed with 16 measurements of the calibration

13

reference material FC1 (Paces and Miller 1993) and 8 measurements of each of three validation reference materials (Temora, FCT, and TRD; Black et al. 2003, Schmitz and Bowring 2001, Fitch and Hurford 1977) were used to validate the results and for uncertainty propagation. Zircons were ablated in a Laurin Technic M-50TM dual-volume cell using an ASI ResochronTM 193 nm excimer laser ablation system. An ablation pit diameter of 30 μm was used for the ablation sequence. U and Pb isotope signal intensities were measured using an Agilent 7700 Laser

Ablation Quadrupole Inductively Coupled Plasma Mass Spectrometer. Data reduction was handled in the commercially available IoliteTM software (V. 2.5; Paton et al, 2010) using the

VisualAge data reduction scheme (Petrus and Kamber, 2012). Final uncertainty propagation was handled in a custom VBA macro (ARS4.0). Discordant dates were eliminated from the dataset using the probability of fit parameter from the Concordia age algorithm in Isoplot (Ludwig,

1998). Measurements with a probability of fit < 1% were eliminated. Final dates presented here are Pb206/U238 dates for grains < 1.5 Ga and Pb207/Pb206 for dates > 1.5 Ga. The DZstats v. 2.2 tool (Saylor and Sundell 2016) was used to create Probability Density plots (PDPs) for all age- date comparisons (Figure 7).

2.6 Provenance Sources of Detrital Zircons

There are two types of sources that can yield detrital zircon grains: ultimate crystalline sources where grains originally came from, and a sedimentary source that houses recycled grains. Due to the durability of zircon grains, older crystalline source rock zircon grains commonly end up recycled multiple times come from original “ultimate” crystalline sources, such as igneous intrusions, nearby (Fedo et al. 2003; Hadlari et al. 2015; Matthews et al. 2017). For the

Athabasca area, sediment comes from a combination of ultimate crystalline sources all over

14

North America ranging from Archean to Cretaceous aged grains, but were housed in either the

Appalachian foreland in eastern North America or Jurassic-aged eolianites in southwestern

United States (Figure 2; Dickinson and Gehrels 2003, 2009; Blum and Pecha 2014; Benyon et al.

2014, 2016; Quinn et al. 2016).

Ultimate crystalline source rocks come from a variety of areas in North America. Archean (>

2500 Ma) grains derive from the , with possible sources in the Slave, Wyoming-

Hearne-Rae, and Superior provinces (Hoffman 1988, Ross et al. 1991; Villeneuve et al. 1993).

Paleoproterozoic aged grains between 1600 Ma to 2500 Ma come from a variety of sources, including orogenic belts that stitch together the Laurentian craton core (Hoffman 1988). 2000

Ma to 2400 Ma age ranges likely derive from the Wopmay province (Bowring and Podosek

1989), 1800 Ma to 2000 Ma age range are from either Trans-Hudson orogeny or the orogenic belts holding the Laurentian craton core together in the Slave/Rae/Wopmay provinces

(Hoffman 1988; Bowring and Podosek 1989; Ross et al. 1991; Dickinson 2008; Dickinson and

Gehrels 2003, 2009). The Yavapai and Mazatzal orogenies that developed from juvenile arcs accreting on the south margin of Laurentia fed sediment with age ranges from 1600 Ma to 1800

Ma (Whitmeyer and Karlstrom 2007, Gehrels et al. 2011).

Zircon grain ages that fill in the North American Magmatic Gap period of time from 1300 Ma to

1490 Ma and span up to 1600 Ma likely derive from both recycled sedimentary sources in the

Belt-Purcell Supergroup and the ultimate crystalline source of the Mid-Continent granite- rhyolite province (Hoy 1993; Whitmeyer and Karlstrom 2007; Dickinson 2008; Box et al. 2014;

Jones et al. 2015). The Grenville orogeny is a major source of grains between 1000 Ma to 1300

Ma, but these could also be sourced from the tectonothermal event in the North American

15

Cordillera of the same age (Johnston 2008; Mildragovic et al. 2011; Matthews et al. 2017).

Grains of age ca. 285-850 Ma are sourced from the Appalachians-Ouachita region (Dickinson and Gehrels 2009; Park et al. 2010; Benyon et al. 2014, 2016; Blum and Pecha 2014) while grains of age ca. 340-420 Ma could be sourced from the recycled sedimentary source of the

Mississippian Red Earth Highlands located near the Peace River area (Hubbard et al. 1999).

Zircon grains yielding ages younger than 250 Ma may be sourced from the Western Cordillera, the Ominica Belt and/or from the Jurassic eolinites in southwestern United States (Archibald et al. 1983, Armstrong 1988, Dickinson and Gehrels 2003, 2009). The Western Cordillera also houses recycled sediment from the Archean, Paleoproterozoic, and Mesoproterozoic Eras which includes Grenville-aged sediment (Rainbird et al. 1992, 1997; Dickinson and Gehrels

2009).

2.7 Results

The four dated samples yielded 982 concordant dates that are presented as PDPs (Figure 7).

Details of the isotopic measurements can be found in Tables 1-8.

The McMurray AOS-1 samples contain prominent populations with dates of ca. 1000-1300 Ma and 285-850 Ma. Smaller populations of zircons at dates of ca. 1300-1600 Ma, ca. 1600-1800

Ma, and ca. 1800-2000 Ma are also present. There is a very small population of 1-2% grains in both AOS-1 samples that are dated younger than 250 Ma, but no significant mode is observed.

Overall the date signatures in these two samples are very similar to past studies of the

McMurray Formation (Benyon et al. 2014, 2016; Blum and Pecha 2014).

16

There is a distinct difference in zircon populations from the PR-1 Bluesky Formation samples.

The PR-1-Lagoon sample shares the date ranges of ca. 285-850 Ma, ca. 1300-1600 Ma seen in the AOS-1 samples, but contains a major population of ca. 1600-1800 Ma that is not seen in the

AOS-1 samples. It is also lacking any significant population in the Western Cordilleran age range. In comparison to the Wave sample, it shares the same ca. 1800-2000 Ma population that may derive from the Trans-Hudson orogeny, but some grains are slightly older than 2000 Ma. A slightly smaller Grenville mode is present that is not as bimodal as the McMurray Formation samples, but is larger and more bimodal than the Wave sample. On the other hand, the Lagoon sample does have a noticeable mode at the Yavapai-Mazatzal age range that is absent in the

Wave sample and is more defined than the McMurray Formation samples.

The PR-1-Wave sample shows the most significant change with the large mode of Western

Cordilleran-age DZ at approximately 115 Ma. There is also a larger population at ca. 1800-2000

Ma compared to the McMurray Formation samples that may derive from the Trans-Hudson orogeny but again is extending past the end of the orogeny at 2000 Ma. The characteristic pronounced modes in the McMurray Formation of Appalachians-Ouachita and Grenville trends mentioned previously are lacking, but not absent, in the Wave sample. The Appalachians-

Ouachita mode is also slightly skewed compared to the other samples with a small, split population of DZ centered in the -Devonian age range of ca. 340-420 Ma.

All four samples show Archean ages of greater than 2500 Ma typical of the Canadian Shield. The

Wave and Lagoon samples do show a small population of grains ca. 2000-2400 Ma that may be from the Proterozoic orogens that stitch together the northwestern Archean cratons in one of

17

the Slave/Wopmay/Rae Provinces. These populations are missing in the McMurray Formation samples.

The maximum depositional age (MDA) was calculated for the Bluesky Formation of 110.6 Ma from the PR-1-Wave sample following criteria of using a minimum of 3 youngest dates that overlapped at the 2-sigma level within uncertainty (Dickinson and Gehrels 2009b). This dates the Bluesky Formation as Albian in age and not Aptian as previous studies have described. No suitable MDAs were calculated for the other AOS-1 and PR-1-Lagoon samples because there were limited young grains (less than n=3) that would meet the criteria.

2.8 Discussion

2.8.1 AOS-1 Samples

Although AOS-1 Sample 1 is stratigraphically higher than Sample 2 by approximately 50 centimeters, there is no major differences in interpreted provenance. Both samples contain nearly identical age signatures to past studies of the McMurray Formation (Figure 7; Benyon et al. 2014, 2016; Blum and Pecha 2014). Strong Grenville and Appalachians-Ouachita modes with smaller Trans-Hudson, Mid-Continent granite-rhyolite, Yavapai-Mazatzal, and

Superior/Canadian Shield province modes signal east-southeast derivation from ultimate crystalline sources recycled and stored in sedimentary sources of either the Appalachian foreland, the Belt Purcell Super Group or the Jurassic eolianites. This sediment could also be recycled and stored in the Western Cordillera. Ultimately, the system is composed of heavily recycled material that would feed into drainage systems flowing south to north and/or east- southeast to west-northwest (Figure 8). This recycled sediment would then reach the Boreal

18

Sea as it transgressed towards and the United States throughout the deposition of the McMurray Formation.

Because of the similarities in zircon grain ages to past studies, the presence of uniform heavy minerals beds in the AOS-1 core is not due to different sediment provenance. Heavy minerals usually concentrated at the base of sandy lithofacies (Komar 2007; Pisarska-Jamroży et al.

2015), and erosional currents preferentially remove lighter grains like quartz and feldspars which allows heavy mineral grains to be preserved in these “hot sand” heavy mineral bands.

2.8.2 Bluesky Samples

The Bluesky Formation samples have some similarities and differences in drainage systems than the one in the Upper McMurray Formation samples. Since the depositional environment is different for each sample, this is not a surprise (Figure 8, 9). Movement of the sediment from recycled sedimentary sources, which were housing eastern sourced sediment, into the

Athabasca area as seen in the AOS-1 samples are lacking in the PR-1-Lagoon sample and missing in the PR-1-Wave sample.

The Grenville, Appalachians-Ouachita, and Superior/Canadian Shield province signatures in the

PR-1-Lagoon sample support that east-southeast derived sediment was being transported from nearby sedimentary sources such as the Belt Purcell Super Group or the Jurassic eolianites

(Figure 6, 8). Sediment of Archean to Mesoproterozoic age range could also be sourced from the Western Cordillera. Since the PR-1-Lagoon sediment was deposited shortly after the

Gething Formation, the Boreal Sea was still receding to the northwest (Figure 9). The Boreal Sea likely acted as a conduit for sediment flow to the Peace River location and connected to the

19

recycled sedimentary sources. As mentioned previously, there were populations of DZ of similar age to the Trans-Hudson province of ca. 1800-2000 Ma. However, the population has dates from ca. 2000-2400 Ma, which could be from Archean cratons and rifts in the northwest hosted by the Slave, Wopmay and Rae provinces (Figure 7; Hoffman 1988; Bowring and Podosek 1989;

Ross et al. 1991; Whitmeyer and Karlstrom 2007). It is common to have DZ ages ranging from ca. 1800-2400 Ma from these northwestern provinces because of a combination of younger

Wopmay orogenic age grains and older Archean crust age grains (Bowring and Podosek 1989).

Some of the ca. 1800-2000 Ma DZ may be from the Trans-Hudson orogeny, but it is more plausible that the majority of these grains were originally sourced in the northwest, eroded transported and stored in recycled sedimentary sources such as the Western Cordillera. The presence of Mid-Continent granite-rhyolite and Yavapai-Mazatzal province modes in the PR-1-

Lagoon sample were likely sourced from southern recycled sedimentary sources in the Belt

Purcell Super Group and/or Appalachians area. The Mid-Continent granite-rhyolite province DZ are also close in age to the Belt Purcell Super Group sediments of age ca. 1400-1600 Ma (Figure

7; Hoy 1993; Ross and Villeneuve 2003; Box et al. 2014). This supports that there was a significant south-north drainage system feeding sediment to the Peace River area during the deposition of the PR-1-Lagoon facies as hypothesized by Blum and Pecha (2014).

No Mid-Continent granite-rhyolite/Belt Purcell Super Group province or Yavapai-Mazatzal modes are evident in the PR-1-Wave sample (Figure 7). The loss of grains from the southern recycled sedimentary system shows that prograding coastal plains and alluvial deposits forming post-regression of the Boreal Sea, during deposition of the Gething Formation, isolated the

Peace River area (Figure 9). There are very small populations of Grenville, Appalachians-

20

Ouachita, and Superior/Canadian Shield ages in the PR-1-Wave sample (Figure 7) that are likely being sourced from the recycling of grains in the Western Cordillera. This switch to a dominant western-sourced drainage system while the PR-1-Wave facies is being deposited suggests a change to more local fluvial systems moving recycled sediment to the Peace River area (Figure

9). The same population of ca. 1800-2000 Ma grains are in the PR-1-Wave sample that may be

Trans-Hudson orogeny grains (Figure 7). Since the ca. 2000-2400 Ma group of DZ is seen again in the PR-1-Wave sample, these must come from the northwestern Archean provinces (Figure

7).

These eastern-sourced sediments could also be coming from movement, via ocean currents, of recycled grains from shelf sand and deltaic deposits in the northeast, post-McMurray

Formation deposition, into the northwest to the Peace River area during Bluesky Formation deposition. Considering that the PR-1-Wave facies comes from a higher energy depositional environment, it would be easy for tides and waves to move recycled sediment from the neighboring Assiniboia channel to the Edmonton channel. However, cycles of regression of the

Boreal Sea would also limit the amount of sediment coming from the east because of the blockade from the Red Earth Highlands splitting the Edmonton channel from direct sediment access to the Assiniboia channel (Figure 9). Because there is a limited population of these eastern-sourced recycled grains that are thought to be sourced from the Appalachians or

Jurassic eolianites, the Edmonton channel must have been filling with preferentially western- sourced sediment from the Western Cordillera.

Populations of Mississippian-Devonian grains ca. 340-420 Ma that fit the Appalachians-Ouachita ages may be coming from recycled sediment within the Red Earth Highlands (Figure 7, 9). The

21

Red Earth Highlands are paleotopographic highs of Mississippian carbonates (Debolt and

Pekisko Formations) that were part of Paleozoic island chains formed from topographic variability due to differential erosion on the sub-Cretaceous unconformity (Rudkin 1964;

Hubbard et al. 1999). Hubbard et al. (1999) interpreted that local longshore currents and fluvial channels draining off the Red Earth Highlands were responsible for sediment distribution in the

Ostracod Member prior to the wave-dominated estuarine deposits of the Bluesky Formation.

Based on the presence of these Mississippian-Devonian ages in the PR-1-Wave sample, material from the Red Earth Highlands must have still been making its way to the Peace River location.

This is due to a combination of higher-energy currents washing sediment off flanks of the Red

Earth Highlands and connecting sediment to local fluvial systems during transgressions (Figure

10).

Overall, the PR-1-Wave sample is strongly supported by systems sourcing sediment from the

Western Cordillera rather than south-based sediment that houses eastern-sourced recycled sediment that is characteristic of the PR-1-Lagoon facies and AOS-1 samples. The large mode in the Western Cordilleran age range of less than ca. 250 Ma is proof of this (Figure 7). Not only are these DZ younger than 250 Ma, but almost all of them are ca. 100-120 Ma. These DZ are also the most abundant of any date population in the PR-1-Wave sample. These DZ dates strongly support that these Western Cordilleran age grains are coming from ash deposits of the

Omineca Belt (Archibald et al. 1983, Armstrong 1988). These western-sourced grains from reworked ash falls are being directly transported into the Peace River area as the Bluesky

Formation is being deposited during regressional and transgressional phases. But considering the 20 Ma age range it is likely that many of these grains are being stored within barrier island

22

sand bars nearby which are being cannibalized repeatedly by shorefaces during transgressional periods, which is not uncommon (Dalrymple et al. 1992; Hubbard et al. 1999, 2002). This shows that wave energy is playing a very important role in controlling sediment sourcing and distribution in the Peace River area as the upper PR-1-Wave facies is being deposited. Local fluvial systems must also be assisting the wave-dominated system by sourcing material from groups of sand bars trending northwest to southeast throughout the Edmonton channel and possibly as far as the larger barrier island complex near the Edmonton area (Figure 10).

The change in DZ ages in the PR-1-Wave facies to a predominantly western-sourced signal from grains recycled in the Cordillera and loss of eastern-sourced sediments thought to be stored in southern recycled sedimentary sources seen in the PR-1-Lagoon facies signifies that sediment is filling the Western Canadian Sedimentary Basin differently through the Albian-Aptian time range. Data from the Wabiskaw Formation in the Athabasca area (CB-KE4; Benyon et. al 2016) and the Lower Clearwater in the Cold Lake area (BP-XOM-AOS-14; Blum and Pecha 2014), both of which are Bluesky Formation equivalents, had youngest grains of ages within the and the Jurassic, respectively, and do not contain any Albian-Aptian aged grains. These grains are likely to be sourced mainly from the southern recycled sources of the Jurassic eolinites and

Appalachians with some input from the Cordillera (Figure 8). Both of these samples also contained populations originating from the Grenville and Appalachians-Ouachita provinces, which supports that they have sediment coming from east-southeast recycled sedimentary sources. One Cold Lake area Lower Clearwater sample BP-XOM-AOS-6 (Figure 7; Blum and

Pecha 2014) did however contain 18% of total grains dated within the Albian-Aptian range along with the east-southeast recycled grains, which would be similar to the Early Cretaceous

23

ages seen in the PR-1-Wave sample coming from the ash deposits of the Omineca Belt in the

Cordillera (Figure 9).

Considering these samples along with both of the PR-1 facies indicates that there is partitioning in the basin during the Albian-Aptian period, which is also seen in data collected by Quinn et al.

(2018). They suggest that Jurassic-Early Cretaceous wedge-top basin deposits are being substantially eroded and deposited on top of the orogenic wedge in the west due to thrusting, and the majority of sediment being deposited in west-central Alberta during the Aptian is sourced primarily from these erosional deposits. They also noted that younger sediment in

Albian-age samples lost the strong Cordilleran signals and started to regain the recycled sedimentary sources, which are similar to the observations of sediment in the PR-1-Lagoon facies. Therefore, this indicates that the significant population of Cretaceous-aged 100-120 Ma grains and some of the Archean to Mesoproterozoic grains may actually be coming from the lower secondary facies that Hubbard et al. (1999) subdivided the PR-1-Wave facies into (Figure

4). This lower secondary facies would be slightly older than the upper secondary facies and likely lies within the Albian-Aptian time frame when sediment would be sourced more from the

Cordillera before basin partitioning happened in the Aptian to re-access the east-southeast recycled sedimentary sources observed in the PR-1-Lagoon facies (Figure 9). The upper secondary facies which would be deposited at the end of Bluesky Formation deposition during the Aptian likely houses most of the sediment that is Archean to Mesoproterozoic in age as well as the Appalachian-Ouachita aged-grains (Figure 8). The upper secondary facies would have access to the reintegration of the east-southeast recycled drainage system and lose the dominant western sourced Cordillera-aged sediment.

24

This shows the importance of splitting facies when determining provenance history, since if the samples were divided more explicitly based on additional log data and other facies studies there may have been a clearer indication of the differences in DZ ages subject to basin partitioning. Based on the observations by other studies (Hubbard et al. 1999, Quinn et al.

2018), it is very likely that the beginning of Bluesky Formation deposition integrated both east- southeast-to-northwest and northwest-to-southeast recycled sedimentary systems during the

PR-1-Lagoon facies deposition (Figure 8). This changed to primarily northwest-to-southeast sediment distribution predominantly sourced from the Western Cordillera in the lower part of the PR-1-Wave facies due to basin partitioning from erosion and excessive sedimentation seen in a wedge-top depozone model and subsequent basin-axial sediment transportation (Figure 9;

Quinn et al. 2018). This pattern was reversed as the Bluesky Formation entered final stages of deposition in the upper PR-1-Wave facies as transgression in the Boreal Sea once again flooded over the highlands and linked the east-southeast-to-northwest recycled sedimentary system to the Peace River area (Figure 8). With respect to the samples from the Wabiskaw Formation and

Lower Clearwater Formation (Benyon et al. 2016, Blum and Pecha 2014), since this pattern is only fully seen in one of the Lower Clearwater Formation samples in the Cold Lake area and not the other samples, the basin may have been partitioned along an axis running directly through the Cold Lake Oil Sands (Figure 9). This would have split the Assiniboia channel from the

Edmonton channel during the Albian-Aptian time frame until the Boreal Sea transgressed enough in the late Albian to link recycled sedimentary sources throughout the basin as it had in early Bluesky Formation deposition.

25

Fault complexes that form from thrusting episodes in the west would also affect where sediment would move in the basin. In the Peace River area, several regional scale fault zones have been interpreted (Hubbard et al. 1999). Although faulting is predominantly interpreted to take place post-Bluesky Formation, thorough analysis of fault data was not conducted and faulting could take place during Bluesky Formation deposition. If these faults were also active during sediment distribution, they would act as effective sediment pathway barriers and aid in basin partitioning. The role that faulting plays on sediment distribution in the Peace River area needs to be researched further, but it does have the potential to contribute to changing sediment drainage pathways.

2.9 Conclusion

Overall, U-Pb geochronology of detrital zircon grains is very useful for comparing sediment provenance in the McMurray Formation to the Bluesky Formation and determining how the

Assiniboia and Edmonton channels filled. Due to increased erosion and sedimentation from a wedge-top depozone which led to basin partitioning, the observed differences in date signatures in the Bluesky Formation indicates that the depositional system in the Peace River area was very dynamic and actively changing throughout the Early Cretaceous.

Recycled sediment from ultimate crystalline provinces all over North America was stored in the

Western Cordillera and southeastern United States sources in the Belt Purcell Super Group and the Jurassic eolianite deposits. Access to the Athabasca, Peace River and Cold Lake Oil Sands areas was facilitated by the transgression of the Boreal Sea and connection to fluvial drainage systems throughout southern Alberta and western Saskatchewan.

26

The AOS-1 McMurray Formation samples conform to past studies on provenance history in the

Athabasca area. Uniform laminations of heavy mineral beds yielded no changes in dates and age distributions of detrital zircon grains. Heavy mineral beds indicate preferential deposition and sediment sorting due to grains with higher densities sinking to the base of deposits and being shielded from wave energy by lighter sediments, such as quartz and feldspars, being deposited on top of them.

The Bluesky Formation is host to evolving sedimentary depositional pathways and is divided due to basin partitioning from the Athabasca area as the Wabiskaw Formation was being deposited post-McMurray Formation deposition. Transgressional phases of the Boreal Sea allowed the Peace River area to connect to the east-southeast-to-northwest drainage pathways that connected to recycled sedimentary systems during the deposition of the PR-1-Lagoon facies. There was also a northwest-to-southeast source of recycled sediment coming from the

Western Cordillera.

The PR-1-Wave facies should be divided into a lower and upper secondary facies as other studies (Hubbard et al. 1999, 2002) determined that the lower facies is dominated by locally sourced sediment and the upper facies is dominated by regionally sourced sediment due to increasing wave energy. The switch to more local drainage systems and a dominance of younger population of 100-120Ma DZ in the PR-1-Wave facies signals the east-southeast-to- northwest sediment drainage system being cut off sometime within the Albian-Aptian period, likely due to the regressional phase of the Boreal Sea and large barrier island systems blockading sediment pathways in the southeast near Edmonton. Barrier island sand bars that extend southeast to northwest throughout Alberta, which are being cannibalized repeatedly by

27

shoreface transgressional periods, would also be recycled sedimentary sources for these younger Cretaceous-aged grains.

Since these trends were only observed in one of two sample of the Lower Clearwater Formation in the Cold Lake Oil Sands area and not in a Wabiskaw Formation sample in the Athabasca area, both of which are equivalent in age to the Bluesky Formation, indicates that basin partitioning along an axis running through the Cold Lake Oil Sands to separate the Edmonton and Assiniboia channels. The Red Earth Highlands also served as a blockade for sediment moving between these two locations due to regression of the Boreal Sea. Fault systems may also be culprits for reorganization of east-southeast-to-northwest drainage, but further studies of fault zones and seismic needs to be conducted in the area.

Near the end of the Albian period, the presence of eastern ultimate crystalline province ages in

PR-1-Wave samples signifies that another transgressional phase of the Boreal Sea linked recycled sedimentary sources in the United States to the east-southeast-to-northwest drainage pathways to the Peace River and Athabasca areas once again. Transgressional and regressional phases of the Boreal Sea played an important role in not only connecting drainage systems throughout the Peace River area, but also to Alberta as a whole.

Splitting facies when conducting studies on provenance is also important to avoid missing changes in these drainage systems through depositional time. Using detrital zircon grain age data to distinguish changes in provenance will play an important part in determining the evolving sediment pathways due to basin partitioning.

28

AOS-1

Figure 1: Study area in Peace River Oil Sands highlighting the two wells considered, with chosen well for detrital zircon dating at 85-18W5. Two samples from a well in 84-11W4 in the Athabasca Oil Sands is also highlighted. Oil Sands outlines were taken from the Government of Alberta (2017).

29

Figure 2: Detrital zircon grain provenance map with respect to Alberta, modified from Ross and Villeneuve (2003) and Dickinson and Gehrels (2009). The date populations of detrital zircon grains in the AOS-1 and PR-1 samples will be correlated to age ranges of 8 ultimate crystalline provinces from across North American: (1) = Western Cordillera; (2) = Appalachians-Ouachita; (3) = Grenville; (4a) = Mid-Continent; (4b) = Belt Purcell; (5) = Yavapai-Mazatzal; (6) Trans-Hudson; (7) Wopmay; and Canadian Shield provinces of (8a) = Slave Craton; (8b) = Wyoming-Hearne-Rae; and (8c) = Superior. The southeastern USA Jurassic eolinites are sedimentary deposits that act as a storage bin for these 30 detrital zircon grains that are sourced from these crystalline provinces.

Figure 3: Lower Cretaceous Stratigraphic column in the Peace River and Athabasca Oil

Sands (modified from Smith 1994).

31

facies

od tidal deltaic tidal od

Wave facies Wave

Wave facies Wave

-

-

1

1

-

-

Upper secondary PR secondary Upper

Lower secondary PR secondary Lower

well showing break between breakflo upper showingwell

1 1

-

PR

for

based on a pebble lag deposit in core. The upper facies could also be subdivided be also faciesupper subdivided could core. deposit in The lag pebble based a on

facies

from cored interval from cored

agoonal agoonal

: Well log : Well

further into two facies based on changes in Gamma Ray and Density logs. Density and Ray Gamma in changes based on facies two into further Figure 4 Figure and l lower

32

Facies Boundary

Figure 5: Core photo showing Bluesky Formation facies boundary of a pebble lag deposit at 583.0 mTVD between upper flood tidal deltaic facies and lower lagoonal facies in the chosen well (Courtesy of Shell Canada 2014). 33

500 μm

Figure 6: Example of uniform heavy mineral beds seen in both AOS-1 samples. Photo was taken on the FEI Quanta 250 FEG scanning electron microscope in the IFFAEM at the University of Calgary.

34

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 a b

Figure 7: Probability-density plots of detrital zircon data compared to samples in the McMurray

Formation (a; Benyon et al. 2014/2016; Blum and Pecha 2014) and age-equivalent Lower Clearwater/Wabiskaw and Bluesky Formations (b; Benyon et al. 2014/2016; Blum and Pecha 2014; Quinn et al. 2016). Highlighted intervals show age populations comparable throughout North 35 America for DZ ultimate crystalline source provinces provided in Figure 2.

Figure 8: Sediment drainage pathways during the deposition of the Upper McMurray Formation (modified from Jackson 1984 and Benyon et al. 2014, 2016). The Bluesky Formation PR-1-Lagoon and upper PR-1-Wave facies both showed similarities in sediment distribution due to 36 transgressional phase of the Boreal Sea linking the Assiniboia and Edmonton channels.

Figure 9: Sediment drainage pathways during the deposition of the lower PR-1-Wave facies of the Bluesky Formation (modified from Jackson 1984, Hubbard et al. 1999 and Benyon et al. 2014, 37 2016). The Assiniboia and Edmonton channels are divided by the NW-SE Red Earth Highlands and sediment distribution changes due to the regression of the Boreal Sea.

2.10 References

1. Alberta Energy Regulator. 2017. Alberta’s energy reserves & supply/demand outlook.

ST98: 1-12 Available from http://www.aer.ca/data-and-publications/statistical-

reports/st98 [accessed May 28, 2017]

2. Archibald, D.A., Glover, J.K., Price, R.A., Farrarr, E., Carmichael, D.M. 1983.

Geochronology and tectonic implications of magmatism and metamorphism, southern

Kootenay arc and neighboring regions, southeastern British Columbia: Part I. Jurassic to

mid-Cretaceous: Canadian Journal of Earth Sciences, v. 20, p. 1891-1913.

3. Armstrong, R.L. 1988. Mesozoic and early Cenozoic magmatic evolution of the Canadian

Cordillera, in Clark, S.P., Burchfiel, B.C., and Suppe, J., eds, Processes in Continental

Lithospheric Deformation: Geological Society of America Special Paper 219, p. 55-91.

4. Benyon, C., Leier A., Leckie D.A., Webb, A., Hubbard, S.M., Gehrels, G. 2014. Provenance

of the Cretaceous Athabasca Oil Sands, Canada: Implications for continental-scale

sediment transport. Journal of Sedimentary Research, v. 84, p.136-143.

5. Benyon, C., Leier, A.L., Leckie, D.A., Hubbard, S.M., Gehrels, G.E. 2016. Sandstone

provenance and insights into the paleogeography of the McMurray Formation from

detrital zircon geochronology, Athabasca Oil Sands, Canada. American Association of

Petroleum Geologists Bulletin, v. 100, no. 2, p. 269-287.

6. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis,

C.F. 2003. Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology.

Chemical Geology, v. 200, 155-170.

38

7. Blum, M. and Pecha, M. 2014. Mid-Cretaceous to Paleocene North American drainage

reorganization from detrital zircons. Geology, v. 42, no.7, p. 607-610.

8. Bowring, S.A. and Podosek, F.A. 1989. Nd isotopic evidence from Wopmay Orogen for

2.0-2.4 Ga crust in western North America. Earth and Planetary Science Letters, v. 94, p.

217-230.

9. Box, S.E., Bookstrom, A.A., Anderson, R.G. 2014. Origins of mineral deposits, Belt-Purcell

Basin, United States and Canada: an introduction. Economic Geology, v. 107, no. 6, p.

1081-1088.

10. Campbell, S.G., Botterill, S.E., Gingras, M.K., MacEachern, J.A. 2016. Event

sedimentation, deposition rate, and paleoenvironment using crowded Rosselia

assemblages of the Bluesky Formation, Alberta, Canada. Journal of Sedimentary

Research, v. 86, p. 380-393.

11. Cant, D.J. 1988. Regional structure and development of the Peace River Arch, Alberta: A

Paleozoic failed-rift system? Bulletin of Canadian Petroleum Geology, v. 36, no. 3, p.

284-295.

12. Cant, D.J. and Stockmal, G.S. 1989. The Alberta foreland basin: Relationship between

stratigraphy and Cordilleran terrane-accretion events. Canadian Journal of Earth

Sciences, v. 26, 1964-1975.

13. Cant, D.J. 1996. Sedimentological and sequence stratigraphic organization of a foreland

clastic wedge, Mannville Group, Western Canada Basin. Journal of Sedimentary

Research, v. 66, no. 6, p. 1137-1147.

39

14. Carrigy, M.A. 1959. Geology of the McMurray Formation, Part 3, General geology of the

McMurray Area. Alberta Research Council, Memoir 1, p. 1-141. Available from

http://ags.aer.ca/publications/MEM_01.html [accessed May 28, 2017].

15. Dalrymple, R.W., Zaitlin, B.A., Boyd, R. 1992. Estuarine facies models: conceptual basis

and stratigraphic implications. Journal of Sedimentary Petrology, v. 62, p. 1130-1146.

16. Dean, E.W., and Stark, D.D. 1920. A convenient method for the determination of water

in petroleum and other organic emulsions. The Journal of Industrial and Engineering

Chemistry, v.12, no. 5, p. 486-490.

17. Deer, W.A., Howie, R.A., Zussman, J. 1992. An Introduction to the Rock Forming

Minerals, 2nd ed., Longman, London, p. 12.

18. Dickinson, W.R. and Gehrels, G.E. 2003. U-Pb ages of detrital zircons from Permian and

Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications.

Sedimentary Geology, v. 163, p. 29-66.

19. Dickinson, W.R. 2008. Impact of differential zircon fertility of granitoid basement rocks

in North America on age populations of detrital zircons and implications for granite

petrogenesis. Earth and Planetary Science Letters, v. 275, p. 80-92.

20. Dickinson, W.R. and Gehrels, G.E. 2009. U-Pb ages of detrital zircons in Jurassic eolian

and associated sandstones of the Colorado Plateau: evidence for transcontinental

dispersal and intraregional recycling of sediment. Geological Society of America Bulletin,

v. 121, no. 3-4, 408-433.

40

21. Dickinson, W.R. and Gehrels, G.E. 2009b. Use of U-Pb ages of detrital zircons to infer

maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic

database. Earth and Planetary Science Letters, v. 288, 115-125.

22. Fedo, C.M., Sircombe, K.N., Rainbird, R.H. 2003. Detrital zircon analysis of the

sedimentary record. Reviews in Mineralogy and Geochemistry, v. 53, i. 1, p. 277-303.

23. Fitch, F.J. and Hurford, A.J. 1977. Fission track dating of the Tardree Rhyolite, Co.

Antrim. Proceedings of the Geologists’ Association, v. 88, no. 4, p. 267-274.

24. Gehrels, G.E., Blakey, R., Karlstrom, K.E., Timmons, J.M., Dickinson, B., Pecha, M. 2011.

Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona.

Lithosphere, v. 3, no. 3, p. 183-200.

25. Hadlari, T., Swindles, G.T., Galloway, J.M., Bell, K.M., Sulphur, K.C., Heaman, L.M.,

Beranek, L.P., Fallas, K.M. 2015. 1.8 billion years of detrital zircon recycling calibrates a

refractory part of Earth’s sedimentary cycle. PLoS ONE, 10(12), e0144727.

26. Hayes, B.J.R., Christopher, J.E., Rosenthal, L., Los, G., McKercher, B., Minken, D.,

Tremblay, Y.M., Fennell, J., Smith, D.G. 1994. Cretaceous Mannville Group of the

Western Canada Sedimentary Basin. In: Mossop, G.D., and Shetsen, I., comps.,

Geological Atlas of the Western Canada Sedimentary Basin, Canadian Society of

Petroleum Geologists and Alberta Research Council. Available from

https://ags.aer.ca/publications/chapter-19-cretaceous-mannville-group.htm [Accessed

August 19, 2018].

41

27. Hein, F.J., Langenberg, W., Kidston, C. 2001. A comprehensive field guide for facies

characterization of the Athabasca Oil Sands, Northeast Alberta. Alberta Geological

Survey, Alberta Energy Regulator, p. 1-11.

28. Hoffman, P.F. 1988. United plates of America, the birth of a craton: Early Proterozoic

assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, v. 16,

p. 543-603.

29. Hoy, T. 1993. Geology of the Purcell Supergroup in the Fernie west-half map area,

Southeastern British Columbia. British Columbia Geological Survey Bulletin, v. 84, p. 1-

161.

30. Hubbard, S.M., Pemberton, S.G., Howard, E.A. 1999. Regional geology and

sedimentology of the basal Cretaceous Peace River Oil Sands deposit, north-central

Alberta. Bulletin of Canadian Petroleum Geology, v.47, no.3, p. 270-297.

31. Hubbard, S.M., Gingras, M.K., Pemberton, S.G., Thomas, M.B. 2002. Variability in wave-

dominated estuary sandstones: implications on subsurface reservoir development.

Bulletin of Canadian Petroleum Geology, v. 50, no. 1, 118-137.

32. Hubbard, S.M., Smith, D.G., Nielsen, H., Leckie, D.A., Fustic, M., Spencer, R.J., Bloom, L.

2011. Seismic geomorphology and sedimentology of a tidally influenced river deposit,

Lower Cretaceous Athabasca oil sands, Alberta, Canada. American Association of

Petroleum Geologists Bulletin, v. 95, no. 7, 1123-1145.

33. Jackson, P.C. 1984. Paleogeography of the Lower Cretaceous Manville Group of western

Canada. In: Masters, J.A., eds., Elmworth: Case Study of a Deep Basin Gas Field:

American Association of Petroleum Geologists Memoir 38, p. 49-77.

42

34. Johnston, S.T. 2008. The Cordilleran ribbon continent of North America. Annual Review

of Earth and Planetary Sciences, v. 36, p. 495-530.

35. Jones III, J.V., Daniel, C.G., Doe, M.F. 2015. Tectonic and sedimentary linkages between

the Belt-Purcell basin and southwestern Laurentia during the Mesoproterozoic, ca. 1.60-

1.40 Ga. Lithosphere, v. 7, no. 4, p. 465-472.

36. Komar, P.D. 2007. The entrainment, transport and sorting of heavy minerals by waves

and currents. In: Mange, M.A. and Wright, D.T., eds., Heavy Minerals in Use.

Developments in Sedimentology, Elsevier, Amsterdam, v. 58, p. 3-48.

37. Leckie, D.A., and Smith, D.G. 1992. Regional setting, evolution and depositional cycles of

the Western Canada foreland basin. In: Macqueen, R.W., and Leckie, D.A., eds., Foreland

basins and Fold belts: American Association of Petroleum Geologists Memoir 55, p. 9-

46.

38. Leier, A. and Gehrels, G. 2011. Continental-scale detrital zircon provenance signatures in

Lower Cretaceous strata, western North America. Geology, v. 39, no. 4, p. 399-402.

39. Ludwig, K.R. 1998. On treatment of concordant Uranium-Lead ages. Geochemica et

Cosmochimica Acta, v. 62, p. 665-676.

40. Mackay, D.A. 2014. A subsurface sedimentological analysis of tide-dominated deposits

in the Bluesky Formation (Early Cretaceous), Peace River Area, West-Central Alberta.

Unpublished Ph.D. thesis, Queen’s University, Kingston, Ontario, p. 1-392.

41. Marillo-Sialer, E., Woodhead, J., Hergt, J., Greig, A., Guillong, M., Gleadow, A., Evans, N.,

Paton, C. 2014. The zircon ‘matrix effect’: evidence for an ablation rate control on the

43

accuracy of U-Pb age determinations by LA-ICP-MS. Journal of Analytical Atomic

Spectrometry, v. 29, p. 981-989.

42. Matthews, W.A., and Guest, B. 2016. A practical approach for collecting large-n detrital

zircon U-Pb data sets by Quadrupole LA-ICP-MS. Geostandards and Geoanalytical

Research, v. 41, no. 2, p. 161-180.

43. Matthews, W.A., Guest, B., Coutts, D., Bain, H., Hubbard, S. 2017. Detrital zircons from

the Nanaimo basin, Vancouver Island, British Columbia: An independent test of Late

Cretaceous to Cenezoic northward translation. Tectonics, American Geophysical Union,

v. 36, i. 5, p. 854-876.

44. McLean, J.R. 1977. The : stratigraphy, sedimentology and tectonic

implications. Bulletin of Canadian Petroleum Geology, v. 25, 792-827.

45. Mildragovic, D., Thorkelson, D.J., Davis, W.J., Marshall, D.D., Gibson, H.D. 2011. Evidence

for late Mesoproterozoic tectonism in northern Yukon and the identification of

Grenville-age tectonothermal belt in western Laurentia. Terra Nova, v. 23, p. 307-313.

46. Monger, J.W.H., and Price, R.A. 1979. The geodynamic evolution of the Canadian

Cordillera: Progress and problems. Canadian Journal of Earth Sciences, v. 16, 770-791.

47. O’Connell, S.C. 1988. The distribution of the Bluesky facies in the region overlying the

Peace River Arch, northwestern Alberta. In: James, D.P. and Leckie, D.A., eds.,

Sequences, Stratigraphy, Sedimentology: Surface and Subsurface, Canadian Society of

Petroleum Geologists, Memoir 15, p. 387-400.

48. Paces, J.B. and Miller, Jr., J.D. 1993. Precise U-Pb ages of Duluth Complex and related

mafic intrusions, Northeastern Minnesota: Geochronological insights to physical,

44

petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1

Ga Midcontinent Rift System. Journal of Geophysical Research, v. 98, no. B8, p. 13997-

14013.

49. Pana, D.I. and van der Pluijm, B.A. 2015. Orogenic pulses in the Alberta Rocky

Mountains: Radiometric dating of major faults and comparison with the regional

tectono-stratigraphic record. Geological Society of America Bulletin, v.127, no. 3-4, p.

480-502.

50. Park, H., Barbeau, D.L., Jr., Rickenbacker, A., Bachmann-Krug, D., Gehrels, G. 2010.

Application of foreland basin detrital-zircon geochronology to the reconstruction of the

southern and central Appalachian orogen. The Journal of Geology, v. 118, 23-44.

51. Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R. 2010.

Improved laser ablation U-Pb zircon geochronology through robust downhole

fractionation correction. Geochemistry Geophysics Geosystems, v. 11, p. 1-36.

52. Petrus, J.A., and Kamber, B.S. 2012. VizualAge: A novel approach to laser ablation ICP-

MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, v.

36, p. 247-270.

53. Pisarska-Jamroży, M., van Loon, A.J., Woronko B. 2015. Sorting of heavy minerals in

sediments deposited at a high accumulation rate, with examples from sandurs and an

ice-marginal valley in NW Poland. GFF, v. 137, no. 2, p. 126-140.

54. Price, R.A. 1983. The Rocky Mountain Belt of Canada: Thrust faulting, tectonic wedging,

and delamination of the lithosphere. Geological Association of Canada, Programs with

Abstracts, v. 8, 55.

45

55. Price, R.A. 1986. The southeastern Canadian Cordillera: thrust faulting, tectonic

wedging, and delamination of the lithosphere. Journal of Structural Geology, v. 8, no. 3-

4, 239-254.

56. Quinn, G.M., Hubbard, S.M., Putnam, P.E., Matthews, W.A., Daniels, B.G., Guest, B.

2018. A Late Jurassic to Early Cretaceous record of orogenic wedge evolution in the

Western Interior basin, USA and Canada. Geosphere, v. 14, no. 3, 1187-1206.

57. Rainbird, R.H., Hearnan, L.M., Young, G. 1992. Sampling Laurentia: Detrital zircon

geochronology offers evidence for an extensive Neoproterozoic river system

originationg from the Grenville orogen. Geology, v. 20, no. 4, 351-354.

58. Rainbird, R.H., McNicoll, V.J., Thériault, R.J., Heaman, L.M., Abbott, J.G., Long, D.G.F.,

Thorkelson, D.J. 1997. Pan-continental river system draining Grenville orogen recorded

by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks,

northwestern Canada. The Journal of Geology, v. 105, 1-17.

59. Raines, M.K., Hubbard, S.M., Kukulski, R.D., Leier, A.L., Gehrels, G.E. 2013. Sediment

dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and

lowermost Cretaceous strata, Alberta Basin, Canada. Geological Society of America

Bulletin, v. 125, no. 5/6, p. 741-755.

60. Ranger, M.J., and Pemberton, S.G. 1997. Elements of a stratigraphic framework for the

McMurray Formation in South Athabasca, Alberta. In: Pemberton, S.G., and James, D.P.,

eds., Petroleum Geology of the Cretaceous Mannville Group, Western Canada, Canadian

Society of Petroleum Geologists, Memoir 18, p. 263-291.

46

61. Rosenblum, S. 1958. Magnetic susceptibilities of minerals in the Frantz Isodynamic

Magnetic Separator. The American Mineralogist, v. 43, p. 170-173.

62. Ross, G.M., Parrish, R.R., Villeneuve, M.E., Bowring, S.A. 1991. Geophysics and

geochronology of the crystalline basement of the Alberta Basin, western Canada.

Canadian Journal of Earth Science, v. 28, p. 512-522.

63. Ross, G.M. and Villeneuve, M. 2003. Provenance of the Mesoproterozoic (1.45 Ga) Belt

basin (western North America): Another piece in the pre-Rodinia paleogeographic

puzzle. Geological Society of America Bulletin, v. 115, no. 10, p. 1191-1217.

64. Rottenfusser, B.A. 1984. Sedimentation in the Lower Cretaceous Gething Basin, Alberta.

Abstract in: Stott, D.F., and Glass, D.J., eds., The Mesozoic of Middle North America:

Canadian Society of Petroleum Geologists, Memoir 9, p. 562.

65. Rudkin, R.A. 1964. Lower Cretaceous. In: McCrossan, R.G. and Glaister, R.P., eds.,

Geologic History of Western Canada, Alberta Society of Petroleum Geologists, p. 156-

168.

66. Saylor, J.E. and Sundell, K.E. 2016. Quantifying comparison of large detrital

geochronology data sets. Geosphere, v. 12, no. 1, 203-220.

http://easd.geosc.uh.edu/saylor/dzstats.php [accessed May 28, 2017].

67. Schmitz, M.D. and Bowring, S.A. 2001. U-Pb zircon and titanite systematics of the Fish

Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to

young volcanic rocks. Geochimica et Cosmochimica Acta, v. 65, no. 15, p. 2571-2587.

47

68. Silver, L. 1963. The relation between radioactivity and discordance in zircons. Nuclear

Geophysics, Nuclear Science Series, National Academy of Sciences-National Research

Council, pub. 1075, no.38, p.34-52.

69. Smith, D.G. 1994. Paleogeographic evolution of the Western Canada Foreland Basin. In:

Mossop, G.D., and Shetsen, I., comps., Geological Atlas of the Western Canada

Sedimentary Basin, Canadian Society of Petroleum Geologists and Alberta Research

Council. Available from

http://ags.aer.ca/document/Geological%20Atlas%20of%20the%20Western%20Canada

%20Sedimentary%20Basin%20PDF%20Files/chapter_17.pdf [accessed May 28, 2017].

70. Villeneuve, M.E., Ross, G.M., Thériault, R.J., Miles, W., Parrish, R.R., Broome, J. 1993.

Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta

Basin, Western Canada. Geological Survey of Canada Bulletin, v. 447, p. 1-95.

71. Whitmeyer, S.J. and Karlstrom, K.E. 2007. Tectonic model for the Proterozoic growth of

North America. Geosphere, v. 3, no. 4, p. 220-259.

72. Williams, G.K. 1958. Influence of the Peace River Arch on Mesozoic Strata. In: Scott, J.C.,

eds., Symposium on the Peace River Arch, Alberta Society of Petroleum Geologists

Journal, v. 6, no. 8, p. 74-81.

73. Williams, G.D. 1963. The Mannville Group (Lower Cretaceous) of Central Alberta.

Bulletin of Canadian Petroleum Geology, v. 11, no. 4, 350-368.

74. Zhou, S., Huang, H., Liu, Y. 2008. Biodegradation and origin of oil sands in the Western

Canada Sedimentary Basin. Petroleum Science, v.5, p. 87-94.

48

Chapter 3: The Peace River Oil Sands: a complex mineralogical evaluation of the Bluesky

Formation using SEM, XRF and XRD analysis

Lynsey L. McKinnon1, Ronald J. Spencer1, 2

1: Department of Geoscience, University of Calgary, Calgary, Alberta

2: XRF Solutions, Calgary, Alberta

3.1 Abstract

Despite many past studies on sediment of the Canadian Oil Sands to develop depositional models, in particular the Athabasca Oil Sands region, mineralogical assemblage variability between the Lower Cretaceous Bluesky and McMurray Formations in Alberta, Canada has yet to be compared. Qualitative and quantitative analyses using SEM, XRF and XRD, have provided a detailed analysis on the mineralogy of the Bluesky Formation in the Peace River Oil Sands area. Qualitative analysis conducted by SEM and XRD was combined with quantitative mineral weight percentages to determine that the Bluesky Formation was composed of a diverse mineralogical assemblage in comparison to the McMurray Formation. Quantitative data calculated from extrapolations in XRD peak data shows fluctuations in the lower Bluesky

Formation due to the presence of a dominant vermicular kaolinite clay component and grain sizes variations in powdered samples. Although XRD qualitative data can be useful for quantitative evaluations when converted properly, these variables and inconsistencies in data calculated in this study from XRD proves that XRF analysis is more accurate to measure mineral

49

weight percentage from elemental analysis and subsequent evaluation. Framework grains of quartz and feldspar were observed that were fractured and developed intragranular porosity that are both qualities of mechanical and chemical alteration due to faulting in the area post-

Bluesky deposition and subsequent hydrothermal fluid infiltration into the formation. Presence of large vermicular kaolinite floccules the size of fine grain sand in combination with large clusters of dawsonite and inclusions in quartz grains confirm that hydrothermal fluids altered the mineralogy of the Bluesky Formation. Dawsonite and kaolinite decrease porosity and should be considered when drilling SAGD-produced wells as they have the potential to form at temperatures up to and over 200ᵒC.

3.2 Introduction

The Peace River Oil Sands are part of the Oil Sands region in Canada with total estimated reserves of producible crude oil tallied at approximately 167 billion barrels (see Figure 1; Alberta Energy

Regulator, 2017). Several studies on the Athabasca Oil Sands deposits have been conducted but the Peace River area has not been studied as much especially with respect to mineral assemblages (Blum and Pecha 2014; Leier and Gehrels 2011; Raines et al. 2013; Pana and van der

Pluijm 2015; Quinn et al. 2016). The Peace River Oil Sands produces out of the Bluesky Formation, which is similar in heavy oil content and age to the McMurray Formation. Since the depositional characteristics of the Bluesky Formation are different from the McMurray Formation, it is expected that the mineralogy of the Bluesky Formation will also be different.

A study of detrital zircon grain ages determined that the Bluesky Formation was deposited under dynamic conditions with sediment sourcing from all over North America. An east-southeast-to-

50

northwest drainage system brought grains from recycled sedimentary deposits in the southeastern United States, as well as a combination of recycled grains from the Western

Cordillera in a northwest-to-southeast oriented drainage system. Other local signatures were also derived from the Omineca belt to the West and the carbonate-rich Red Earth Highlands, which would have been at a high during deposition of the Bluesky Formation (see Figure 2; Rudkin 1964;

Hubbard et al. 1999). This ever-changing cycle of sediment deposition in the Peace River area shows that the marine and fluvial settings were not just actively controlling the distribution of sediment, but also playing a part in the major framework mineral assemblages seen in the

Bluesky Formation.

During the Mid-Jurassic period, western Canada was undergoing subsidence due to the development of a foreland basin which is known today as the Western Canadian Sedimentary

Basin (Jackson 1984; Zhou et al. 2008; Campbell et al. 2016). Due to extensive erosional processes, the sub-Cretaceous unconformity marks the base of the Cretaceous sediment that was deposited and is known as the Mannville Group. The Mannville Group is also bounded by a second unconformity at its top which is overlain by the Colorado Shales (Jackson 1984, Cant

1996). Periods of transgression and regression of the Boreal Sea caused the deposition of the

Mannville group, which was also facilitated by erosion and transportation of sediment into the foreland basin from the western Cordilleran Orogeny (Jackson 1984; Rottenfusser 1984;

Hubbard et al. 1999). In the Peace River Oil Sands area, the Mannville Group is equivalent to the Bullhead and Fort St. John Group (Figure 3; Jackson 1984; Smith 1994).

The Bluesky Formation of the Mannville Group is the major focus of this study as it is a major source of bitumen production. The Bluesky Formation is Aptian to Albian in age within the

51

Lower Upper Mannville interval and is age equivalent to the Wabiskaw Member of the Lower

Clearwater Formation in the neighboring Athabasca Oil Sands region (Figure 3; Jackson 1984;

Rottenfusser 1984; Hubbard et al. 1999). It is topped by a marine shale, the Wilrich Formation, and underlain by a dominantly fluvial sediment known as the Gething Formation or the

Mississippian Debolt Formation in areas where erosion has removed the Gething Formation due to the formation of the sub-Cretaceous unconformity (Jackson 1984; O’Connell 1988, Smith

1994, Hubbard et al. 1999). Depositional environment interpretations for the Bluesky

Formation have presented the possibility that it is either a progradational combination of fluvial-deltaic and estuarine sandstone with mudstone-rich intervals (Jackson 1984; O’Connell

1988; Smith 1994; Hubbard et al. 1999) or a due to a tide-dominated deltaic depositional setting because of the repeated layers of muddy laminations in cores studied throughout the

Peace River area (Mackay 2014). Previous mineralogical studies using thin section petrography show that it is composed of a combination of fine-to-medium grained quartz, chert and carbonate-rich sandstones interbedded with layers of siltstone and mudstone (O’Connell 1988,

Hubbard et al. 1999). Bioturbation in the Bluesky Formation has been studied well and local reworking is common due to organisms (Hubbard et al. 1999, Campbell et al. 2016). Organic matter in the form of plant and coal pieces is also present along with shell fragments that are observed in the lower Ostracod Zone of the Bluesky Formation (O’Connell 1988, Hubbard et al.

1999, Campbell et al. 2016). Studies of the Peace River Arch hypothesize that there was a consistent state of inversion with no reactivation of faulting until after the Bluesky Formation was deposited, so major structural changes due to the Peace River Arch should not be expected during deposition (Williams 1958; Jackson 1984; Cant 1988; Hubbard et al. 1999).

52

3.3 SEM, XRF and XRD Technology

X-Rays are used in different analytical techniques to determine unknown mineralogical content in samples. Three techniques that are non-destructive to samples are X-Ray Diffraction (XRD),

X-Ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM). XRD and SEM provide qualitative information on mineralogy, while XRF provides quantitative measurements of mineralogy.

SEM uses a focused beam of electrons on mineral surfaces to excite secondary electrons, backscattered electrons and corresponding x-rays (Wells 1974). The reflected x-rays are measured and can be related back to chemical composition of the unknown mineral which can be used for identification purposes, similar to the XRD. The beam of electrons can be focused on one point for analysis or scanned across the surface of the mineral creating a raster map image of a larger area of the mineral (Wells 1974). The SEM is a useful tool to identify minerals and create images of microscopic particles, and is especially important for analysis of clay minerals. Bitumen saturation on samples should be relatively low to prevent vaporization of bitumen from the sample, which can be redeposited on the instrument camera and surrounding surfaces which is very difficult to clean.

XRF uses a primary X-Ray beam to excite secondary X-Ray photons in atoms of minerals. This causes minerals to fluoresce with a certain spectrum which is measured by the XRF machine using a detector (Jenkins 1988; Potts 2008). In particular for this experiment, a hand-held XRF gun was used for ease of data collection on bitumen-saturated Oil Sands core. This technique

53

saves time and costs as samples do not have to be cleaned to remove bitumen saturation to determine mineralogy as with XRD.

XRD uses the fundamentals of Bragg’s Law [1] and determines unknown mineral composition by measuring refraction angles of X-Ray wavelengths on mineral surfaces in powdered samples

(Bragg 1913; James 1965; Jenkins 1989).

[1] nλ = 2dsinθ

Samples must be as clean as possible of bitumen saturation as mineral surfaces must be free to refract x-rays, so procedures can become expensive to conduct using XRD. XRD can also be used to calculate quantitative weight percentages of minerals by using methods outlined by Snyder and Bish (1989) that were developed based on a series of quantitative analysis procedures using XRD (Navias 1925; Copeland and Bragg 1958; Klug and Alexander 1974; Chung 1974;

Brindley 1980)

Beds with a higher shale content in Oil Sands cores are easier to analyze using XRD and SEM analysis simply for their decreased saturation compared to sandstone beds, and can be targeted for projects with cost limitations.

Because of the effectiveness in determining mineralogies of samples from Oil Sands cores, a combination of XRD, XRF, and SEM evaluations were used for evaluation of the Bluesky formation in the Peace River Oil Sands area of north-Central Alberta, Canada. Provenance data showing continually changing sediment distribution pathways from complex depositional settings across Alberta supports that a completely different system was responsible for controlling the deposition of the Bluesky Formation compared to the McMurray Formation

54

deposited in the Athabasca Oil Sands to the east (see Chapter 2). From framework grains down to the clays in the matrix, the complex mineralogy of the Bluesky Formation is extremely different from the McMurray Formation. The purpose of this study is to define these changes, hypothesize connections in mineralogy to depositional settings, and to determine challenges from drilling oil wells in the Peace River area in the Bluesky Formation due to mineralogy.

3.4 Dawsonite

One of the unique properties of the Bluesky Formation in the Peace River area is the presence of the authigenic rare mineral dawsonite, which was observed in the Bluesky Formation in 1982

(Rottenfusser 1982). Dawsonite was discovered in Montreal at the McGill University campus by

William Dawson in 1875 and was analyzed and named for him (Harrington 1875; Stevenson and

Stevenson 1964). It has two main forms: “veinlets” of needle-like blades and clusters of coarser, fan-like deposits (Stevenson and Stevenson 1964). Studies have shown that it forms from lower temperature hydrothermal influences via precipitation or chemical alteration and diagenesis of aluminosilicates from sodium carbonate-rich hydrothermal water in several types of rock and as fluid inclusions in quartz (Palache et al. 1951; Hay 1963; Stevenson and Stevenson 1964;

Loughnan and See 1967; Coveney and Kelly 1971; Baker et al. 1995; Sirbescu and Nabelek 2003;

Moore et al. 2005; Gao et al. 2009) It is common to find large clusters of kaolinite with dawsonite that also forms from hydrothermal influences (Stevenson and Stevenson 1964). The presence of dawsonite signals important changes in fluid types in the Bluesky Formation which will be the groundwork for a hypothesis on why the mineralogical assemblages are so diverse and how this could negatively impact oil production in the area.

55

3.5 Peace River Study Area

Four wells, labelled PR-1-to-4, drilled and cored by Shell Canada located near Peace River,

Alberta, were chosen within Townships 84 to 85 and Ranges 16 to 18 west of the 5th Meridian

(Figure 1). Geochronology was used to determine detrital zircon grain ages in one well, PR-1, which led to a hypothesis of provenance history of sediment for the Peace River area coming from all over North America (see Chapter 2). As facies analysis of the Bluesky Formation has already been well studied (O’Connell 1988; Hubbard et al. 1999; Mackay 2014; Campbell et al.

2016), the focus of this study will incorporate provenance history of the Peace River Oil Sands region with mineralogical analysis throughout the area to determine reasons for similarities and changes in mineralogy between the four wells.

3.6 Methodology

All four wells have cores available from the Core Research Centre in Calgary, Alberta, Canada

(see Figures 4a-d). Cores were first analyzed with a handheld XRF gun, which took measurements from placing the instrument directly on the core. XRF data collection and processing was conducted by XRF Solutions, a consulting company in Calgary. Measurement intervals varied but were at least once per meter on sandstone intervals (see Table 2).

Measurements were also taken every shale or mud-rich bed with more measurement points taken for beds with greater thicknesses. Core intervals with significant visual differences, such as pebble lag deposits, higher mud content for tens of centimeters, or grain size changes, were also analyzed every few centimeters. Parts of the core with these differences were also taken for sampling for XRD and SEM analysis. Two machines were used from the University of

56

Calgary’s Department of Geoscience: a Rigaku Multiflex 2kW X Ray Diffractometer was used for

XRD measurement; and the scanning electron microscope in the Instrumentation Facility for

Analytical Electron Microscopy (IFFAEM) was also used for SEM analysis. Standards for comparison of peak data to identify minerals were sourced from the XRD machine that come from the American Mineralogical Society.

61 samples in total, of sizes approximately 1” wide x 2” long x 1” thick slabs, of core were taken from the 4 wells (see Table 1). Samples were chosen at random every meter on sandstone intervals, on an area with unusual XRF readings, on shale beds, and where there was an unusual visual difference such as those mentioned above. All 61 samples had SEM slabs made for analysis, and SEM was used to determine grain sizes, grain composition and changes in composition that were unusual, and identifying clay types.

Not all samples were analyzed with XRD due to high saturation of bitumen in the core. Only wells PR-1, PR-2 and PR-4 have XRD data analysis done on them as there was a higher number of shales in these wells that were thick enough to sample with little bitumen content, and PR-3 was mostly bitumen-saturated sandstone which would need to be cleaned thoroughly to have samples eligible for XRD testing. Due to the cost and time commitment that would be needed to achieve this, the wells with more shale beds were chosen for analysis. As the SEM was an important tool for qualitative analysis, the XRD was treated as supplementary analysis when appropriate. Since this is a calculation based on normalization and is not a direct quantitative analysis like XRF, there are some discrepancies to be expected.

57

Powdered samples that were relatively clean of bitumen to the naked eye by being very light brown/grey in color, usually shale beds, were individually analyzed with XRD and a table-top

XRF to compare mineralogy contents and determine if there were variations in single sample

XRD and XRF results. XRD qualitative results were also converted to quantitative results using the methods outlined by Snyder and Bish (1989) to compare weight percentages to XRF data.

For the PR-1 well, Dean Stark retains were available and contained very little bitumen, so they were cleaned with a solution of 30% hydrogen peroxide and deionized water to get rid of as much bitumen residue as possible. These samples were analyzed with XRF using the powdered single sample analysis technique.

A clay separate of powdered samples that were free of high bitumen content was also prepared to determine what kind of clays are present and the proportional percentage measured of these clays in the total bulk clay by using XRD. To do this, samples must have as much of the bulk framework grains and any grains bigger than 2.0 μm removed as possible, where silt grains may be the biggest grain remaining in the leftover sample. An ultrasonic horn of 400W was used at 50% power setting to disaggregate a slurry of sediment and deionized water for approximately 1 minute and 30 seconds. After the sample was allowed to settle for approximately 50 minutes, a plastic pipette was used to skim the top of the surface of the settled slurry for clay particles. The slurry was dispersed on a glass slide to dry for 24 hours and samples were analyzed by XRD. This method of preparation was done so that the samples would contain as much random orientation as possible as clay minerals have a preferred orientation which needs to be avoided as best as possible to avoid inconsistencies in peak diffraction angle measurements (Snyder and Bish 1989). Processes to assist with specific clay

58

analysis of kaolinite, illite, and any swelling clays present were followed using a technique derived from a variety of sources (MacKenzie 1970; Mosser-Ruck et al. 2005; Gualtieri and

Ferrari 2006; Cheng et al. 2010). This technique involved testing the samples with after being subjected to three different environments and subsequently analyzed with XRD to measure these changes. First they were placed in an ethylene glycol environment for 24 hours to determine if swelling clays are present in the sample and would react. After the ethylene glycol, samples were dried in an oven at 400ᵒC for approximately one hour to analyze dehydration and collapse of any swelling clays present in the sample. After testing, the samples were again dried for another hour at 550ᵒC to allow for dehydroxylation of kaolinite and analysis of the illite component of the clays.

3.7 Results

3.7.1 SEM

Several thousand photos in total were taken for SEM analysis of samples, and only select photos will be shown in this paper that summarize the general mineralogy of each well. All photos were submitted to the Core Research Centre which are accessible for the public domain of information for each core.

Framework grain composition varies from quartz to feldspars to carbonates (calcite and dolomite) throughout all four wells (see Figures 5a, b) Quartz is estimated at 60-70%, feldspars

5-10%, carbonates 5-10%, chert and miscellaneous minerals (heavy minerals, detrital clays, etc.) at 10-20%. The majority of quartz grains have jagged, angular to sub-angular edges, with approximately 10% quartz grains that are sub-rounded to rounded. Some quartz grains also

59

show some porosity development and are fractured or show lines of weakness and shearing in the grain (Figures 6a to c). Because of this, many quartz grains also have inclusions of several different minerals within them, such as apatite, calcite, dolomite, and pyrite (Figures 6b, 7a).

These inclusion minerals commonly have barium or pyrite rims and are usually square in shape

(Figures 8a, b). Feldspars are typically rich in potassium and have surfaces that look chewed up and altered, with clay minerals usually made up of kaolinite replacing these voids. Feldspar relicts are also visible in altered grains rich in illite (Figure 9). Carbonate framework grains are mostly calcite and dolomite (Figure 10a, b, c). Chert grains are also present and can be identified as silica rich minerals with a micro-crystalline texture, sometimes containing a mix of potassium and aluminum rich minerals (clay, feldspar) that fill any intraporosity in the grain

(Figures 11 a, b, c). Some of the chert grains also have similar inclusions as the quartz grains that are cube in shape, many of which are phosphates or carbonates rich in strontium, barium, and/or pyrite (Figure 12 a, b). Heavy mineral grains such as zircon, rutile, apatite, ilmenite and monazite are also present in the wells but are a relatively small portion of the total framework grains (Figure 13 a, b, c).

There are two main types of authigenic clays in each well: kaolinite and illite. Kaolinite is typically in vermicular booklet form (see Figure 14) that vary in size of approximately 10-40 μm, but can also be seen in much smaller sizes in the matrix. Kaolinite booklets are typically found in a larger clay floccule, roughly the same size as a fine grain sand particle. These booklets also fill a significant amount of pore space in many samples. Authigenic illite is usually seen as microparticles (≤1 μm) filling pore space (Fig 15) and is much smaller than kaolinite due to the kaolinite booklet form dominating most of the samples (Figure 16). In shale beds, the matrix of

60

the sample is typically microparticles (<< 1 μm) of a mixture of illite and kaolinite (Figure 17).

Clays seem to grow prior to bitumen saturation as the boundaries are rimmed with bitumen.

Large kaolinite pore-filling booklets also do not contain bitumen and are rimmed with it, showing that the authigenic clay component formed to fill as much pore space as possible before bitumen migration and influx filled remaining pore space (Figure 18 a, b, c).

Allogenic clays are also present, with illite and muscovite being the majority contribution

(Figure 19 a, b). Illite and muscovite are sometimes seen together where foliation layers are cloudy and not as visible in the muscovite, suggesting illite is altering to muscovite (Figure 20).

Allogenic clays are also present as sandwiches of kaolinite and illite and take the shape of a grain (Figure 21 a, b) similar in size to a very fine sand grain (~100 μm). The biggest visible difference between allogenic and authigenic illite is that allogenic illite grains are much larger in size. The timing of deposition of allogenic illite is offset in comparison to the rest of the authigenic illite in the matrix and usually, but not always, at a different orientation in the sample (Figure 22). Allogenic clays are often deformed significantly due to compaction and differential timing in deposition compared to other framework grains as they are much softer

(Figure 23).

When first spotted in samples, the composition of dawsonite was not completely verified using

SEM because element maps only determined that the mineral contained sodium and aluminum with a lack of silica, which led to the hypothesis that the mineral was dawsonite. This was verified with XRD as well, and was also observed by Rottenfusser (1982) with little elaboration on the shape or timing of deposition details of dawsonite. Dawsonite was found in all wells and was easy to spot due to its fan-like shape, darker grey color compared to quartz, and needle-

61

like texture on backscatter imaging (Figure 24 a, b). Element mapping was useful to identify dawsonite by isolating for minerals that have high concentrations of sodium and aluminum but lacking silica (Figure 25). Dawsonite seems to be authigenic as it fills void pore space between framework grains similar to authigenic kaolinite in the samples (Figure 26 a, b, c). Dawsonite is also extremely soft and could be easily manipulated with the SEM, which indicates that it is not allogenic as it could not withstand transport.

The matrix of these samples was for the most part a mash up of silt-sized quartz and feldspar grains, clays (kaolinite and illite), and a wide variety of miscellaneous minerals such as pyrite, dolomite and ilmenite (Figure 27 a, b, c). Because of the difficulty of preparation of slabs for

SEM analysis, sandstone samples were more difficult to analyze matrix components compared to shale samples. Cement composition was not a concern for this study for the Bluesky

Formation interval in the four wells. Well PR-2 had some unusual precipitates, namely a large amount of pyrite, and sulfates rich in sodium and calcium that are likely anhydrite (Figure 28 a, b).

3.7.2 XRF

Since SEM was the initial phase in characterization of the mineralogy of the Bluesky Formation, elements measured by XRF yielded calculations of mineralogy that matched the estimate and observations that were made in the SEM analysis. The handheld XRF analysis conducted for the four wells can be seen in Figures 32 to 39. Two main sets of data were collected by XRF

Solutions: major elements (Mg, Ca, Si, Al, K, Fe, and S) and mineralogy based on major elements

(quartz, feldspar, calcite, clays, etc.). Processed data can be seen in Table 2 (Appendix A). There

62

is a proportional relationship between Si (quartz) and K (feldspar, sometimes illite) where if one is measured at lower levels that are decreasing, the other mineral is measured as increasing or grater content. The same relationship is seen between kaolinite (Al rich) and illite (K rich), but kaolinite is a significantly greater percentage in all four wells compared to illite. There is a ratio of approximately 2:1 kaolinite to illite on average throughout the four wells, but this varies throughout the core depth with a dominance of kaolinite. Other minerals are also detected such as chlorite, siderite, and calcite. The thicker the Bluesky Formation is, the greater the variance in the mineralogy that was analyzed by XRF. The higher levels of kaolinite calculated compared to illite confirm that kaolinite is the major clay. The levels of illite are much lower in

PR-2 in comparison the other wells, which is due to the core being almost all sandstone with very few shale beds that are less than 1 centimeter thick when they are present. An increase in shale beds in PR-1, PR-3 and PR-4 correspond to higher, more sporadic readings of illite and kaolinite, especially in PR-3. In wells containing the Bluesky/Gething contact (PR-4), a higher reading of organics (carbon (C)) was seen as the Gething is rich in coal and organic materials.

Bulk XRF data for all four wells was also plotted in a ternary diagram to help visualize the overall distribution of mineralogy (see Figure 40). Here it is easier to see that the wells have more silica and aluminum rich minerals and are lacking in potassium rich minerals, but do see some potassium in analysis especially within the shale samples that were taken in each well due to the presence of clay minerals like illite. A few of the readings were also taken at transitional boundaries between the Wilrich/Bluesky (top core) and Bluesky/Debolt (bottom core), and this also skews readings towards specific minerals such as calcite, siderite, illite, and feldspar readings as the Wilrich Formation is a marine shale and the Debolt Formation is a carbonate

63

formation. The Debolt and Gething were not the major focus of this study and no results will be compared between the wells, but formation tops will be present to define the boundaries between the top and base of the Bluesky Formation.

3.7.3 XRD

XRD analysis was run on samples that were low in bitumen so not all samples tested with XRF were tested with XRD, which excluded any samples in PR-3 (see Table 3, Appendix A). Plots of peak data for the Bluesky Formation can be seen in Appendix B. XRD measurements were used to calculate mineral percentages based on peak data (see Table 3, Appendix A).In bulk samples of sandstone beds, quartz, feldspars, calcite, and dolomite were detected for framework grains.

Kaolinite, illite and dawsonite were also detected, with the dawsonite peak being quite small compared to the clay components. This is likely due to the majority of dawsonite being lost in the cleaning process for sandstones. In shale beds, there was still detection of all of these minerals, but the clay peaks for illite and kaolinite were much stronger which is of no surprise.

Dawsonite peaks were slightly stronger in shale samples due to little to no cleaning processes.

Pyrite was also detected in most samples. In clay separate samples, kaolinite and illite were the major clays detected, with very small peaks of smectite being present in most samples. An example of a clay separate XRD peak signature can be seen in Figure 42. As all other clay separate samples yielded the same signature, only one example of this will be shown.

XRD quantitative results from core samples, and PR-1 Dean Stark retains, are plotted next to the XRF results on their respective well to show a comparison (see Figure 43 to 45). Overall, the

XRD calculations match the trends seen in the XRF with the exception of Kaolinite weight

64

percentage in PR-2, which is almost double the amount measured by the XRF. Quartz weight percentage is also off in this well and is lower than the XRF measured values, specifically between 576.0 and 582.50 meters.

3.8 Discussion

3.8.1 SEM Grain Analysis

The SEM results show that there is a diverse mineralogy in the Bluesky Formation. The presence of framework grains, mostly quartz, that have angular to sub-angular edges suggests that these grains came from a nearby source (Wadell 1932; Powers 1953, Hubbard et al. 1999).

Framework grains that have sub-rounded to rounded edges must have been transported from longer distances (Wadell 1932; Powers 1953). This is not unexpected as geochronology results from dating detrital zircon grains in the Bluesky Formation shows multiple different ages meaning that sediment was transported from all over North America and deposited in the

Peace River area (see Chapter 2). The angular to sub-angular grains likely came from erosion of grains closer to Western Canada, whereas more rounded grains being transported longer distances are likely sourced from ultimate crystalline provinces (Grenville, Canadian Shield, etc.) and stored in recycled sedimentary sources (Belt Purcell Super Group, Jurassic eolinites, etc.) near the study area.

Many of the quartz grains show sheared or fractured grains, which indicates that something is exerting a force on these grains in order cause these weaknesses (Figures 6a, c). Porosity developing in these quartz grains allowing space for inclusions to grow on the grain surface also indicates that these quartz grains are being altered both mechanically and chemically. In order

65

for these changes to occur in the quartz grains, an intense amount of shearing and friction must happen for the quartz to break/crack and have surfaces resorbed or undergo pressure dissolution. These signs are typical of fault gouge zones, where faults shear grains in different directions causing enough pressure differential to crack the grains or create microcracks and defects within them (Lin and Nadiv 1979; den Hartog et al. 2013; Jiménez-Millán et al. 2015).

Chemical changes due to hydrothermal fluids that move along fault surfaces can also alter grain and water chemistry, which causes a change in surface reactions on grains as well as surface corrosion (Lin and Nadiv 1979).

These quartz grain characteristics in the Bluesky Formation samples are a key indicator that faults must be present directly next to or close by the four wells. Other studies done in the area have established the existence of faulting pre-and-post deposition of the Bluesky Formation due to reactivation of faults in the Peace River Arch area (Williams 1958; Cant 1988; Dix 1990;

Hart and Plint 1990; O’Connell et al. 1990; Hubbard et al. 1999). But the formation of mineral inclusions in the quartz grains indicates there may have been some local faulting in the area during the time of Bluesky Formation deposition or right after grains were deposited. As the timing of these inclusions precipitating in voids in quartz seems to vary as either forming before or after the fracturing of quartz grains, as some inclusions are also being fractured and some are not, the timing of precipitation and formation of these inclusions must be both prior-and- post-fault gouging of grains (Figures 6c, 18a, 29). Some of the inclusions also seem to be growing in planes of weakness of the quartz grains and could have precipitated after pressure from faulting, but also may be from weaknesses caused from erosion due to grain transport.

Pressure from polishing the samples could have also induced further fracturing in grains leading

66

to some ambiguity on when these inclusions formed, but overall faulting is responsible for sacrificing the structural integrity of these framework grains, especially quartz. Regardless of this, there is still major evidence seen in the quartz framework grains to support faulting which is likely due to changes in structure of the Peace River Arch from reactivation of fault zones.

Carbonate grains of calcite and dolomite are authigenic as they are not rounded at all and have maintained the original cubic form of crystal growth, with a few grains having somewhat abraded edges due to sediment compaction and burial. The source of the carbonates is likely from erosion of the Red Earth Highlands, which are paleotopographic highs of the Mississippian

Debolt and Pekisko Formations that were formed from tectonism in the Peace River Arch and part of Paleozoic island chains (see Chapter 2; Rudkin 1964; Hubbard et al 1999). A combination of local fluvial channels and longshore currents eroding sediment from the Red Earth Highlands was responsible for sediment distribution in the Ostracod Member prior to deposition of sediment in the Bluesky Formation (Hubbard et al. 1999). The Debolt Formation is in direct contact with the Bluesky Formation via the sub-Cretaceous unconformity in at least two of the wells (PR-1 and PR-2), and present in a third below with a few meters of Gething Formation in between (PR-4). The Bluesky Formation was also deposited while there were a number of barrier bar and tidal inlet sand deposits forming nearby that are not preserved well in the rock record (Jackson 1984; Hubbard et al. 1999). The cannibalization of these sands is typical in transgressive deposits because of the shoreface retreating towards land (Dalrymple et al.

1992). If these sands were also depositing directly on top of the sub-Cretaceous unconformity and in contact with the Debolt Formation, carbonate grains from the Debolt would be eroded along with sand bars during transgressional phases. High wave energy would assist in breaking

67

carbonate grains down and result in higher concentrations of dissolved calcite and dolomite within sea water that would precipitate out in the right conditions between other framework grains (Figure 5a, 7, 29) and within void spaces in the framework grains themselves (Figure 30).

The presence of dawsonite within the four wells indicates that there must be some hydrothermal alteration occurring. Fault activation post-Bluesky deposition in the Peace River area (Hubbard et al. 1999) and the subsidence of the Peace River Arch during the Cretaceous

(O’Connell et al. 1990; O’Connell 1994) that reactivated old Jurassic faults would be a major component to source hydrothermal fluids. Hubbard et al. (1999) also mapped potential fault zone propagation based on existing faults that run through the Peace River study area. While

Rottenfusser (1982) did not delve into the timing of precipitation of dawsonite, the fact that dawsonite is filling pore space in the samples, and is rimmed with and contains minor amounts of bitumen between needle spaces (Figure 24a, b) indicates that dawsonite formed mostly post-deposition of sediment but prior to oil migration and bitumen saturation invasion in the

Bluesky Formation.

Another possible source of the dawsonite comes from alteration of Feldspars. Feldspar grains are a very low contribution to framework grains at 5-10%. There are large relicts of grains that have been altered to contain mostly kaolinite, but still also show some remnant potassium in K-

Feldspar grains in SEM photos (Figure 31 a, b). This suggests that the degradation of feldspar grains could be contributing to a higher level of sodium and aluminum content in the Bluesky

Formation due to hydrothermal alteration which would in turn produce an increase in dawsonite content. Increased aluminum from degradation would also aid in the formation of authigenic kaolinite in large bundles. This explains why kaolinite is the dominate clay, especially

68

in sandstones where there are massive kaolinite booklet floccules filling pore space in all four wells. Although feldspar degradation is a source that must contribute to a portion of kaolinite and dawsonite formation, the majority kaolinite booklets are so large in size along with the clusters of dawsonite spread out through a vast area of pore spaces in all directions that formation of both minerals must be dominantly influenced by hydrothermal fluids.

3.8.2 XRF

XRF measurements show that there is a major variation in mineralogy of the Bluesky Formation.

Since the handheld XRF was used to take a number of measurements along each of the four cores, this technique has shown that the ability of XRF to pick up on small variations in both sandstone and shale beds. All four wells show quite a bit of change in mineralogy in depth, with much of this due to the change in how interbedded a well is with shale. For example, PR-3 and

PR-4 are thicker cores and have more intervals of interbedded sandstone and shales in comparison to PR-1 and PR-2 (Figures 4a-d). The boundaries of the overlying Wilrich Formation and underlying Gething and Debolt Formations are very sharply defined by the XRF, showing that it can be a useful tool to define surfaces that may be somewhat ambiguous due to interbedded intervals of sandstone and shale by using sharp changes in mineralogy instead of visual assumptions.

The XRF results are also useful for interpretations of logs and core. Although the purpose of this study did not include facies interpretation, it is quite obvious that there are intervals on the XRF results that correspond with changes on the log and cores. This is because of different facies being deposited throughout the area, which change in thickness through each well due to

69

transgressive periods interrupted by short periods of regression. If the XRF results were to be split into different segments based on only trends seen in the data, there are up to five similar intervals. If these intervals are compared to core, they are extremely close to where there are distinct visual changes in sediment type i.e. sandstone, interbedded shale and sandstone, pebble-rich intervals, etc. For example, in PR-1 at approximately 582.5 meters depth there is a sharp decrease in the amount of all minerals except for quartz (Figures 32, 33, 43). Looking at the log for this well (Figure 46), there is a sharp increase in gamma ray signature followed by a zig-zag back and forth, as well as decrease and zig-zag signatures in porosity and resistivity significantly. Compared to the core photos at this boundary, this is where there is a pebble lag deposit in the formation (Figure 4a). This explains the increase in Si and relative quartz values for the XRF data as the pebbles must be primarily composed of quartz and chert clasts. In this case, it is relatively easy to see a change, but thicker Bluesky intervals that contain interbedded and visually variable sediment intervals in PR-3 and PR-4 make for a more complicated comparison. This is another reason why XRF is so important to use to help increase the accuracy of choosing boundaries in core that will aid with depositional facies interpretation hypotheses.

Using a combination of logs and changes in XRF mineralogy data signatures, facies boundaries were estimated for the four wells in a northwest-southeast oriented cross-section (Figure 47).

Past facies and trace fossil studies of the area (Hubbard et al. 1999; Mackay 2014) can be used in conjunction with new XRF mineralogical results and qualitative SEM analyses in future studies to build a complete mineralogical model for the Bluesky Formation.

70

3.8.3 XRD

XRD calculated quantitative results shown with the XRF comparison (Figures 43 to 45) are very similar. Despite expected small variances that would occur in converting qualitative peak data to mineral weight percentage, the results are close enough to determine that XRF is a very accurate tool to calculate mineralogy. The exception is at 576.0 to 583.0 meters on well PR-2 where almost double the amount of kaolinite is being calculated with XRD data which corresponds with high peak levels. At this interval there is an increase in clay content and kaolinite, as well as dawsonite. Dawsonite clusters and large kaolinite booklet bundles are forming as authigenic minerals due to hydrothermal fluids altering chemistry and subsequent mineralogy of the Bluesky Formation. Since kaolinite crystals are seen to be very large in comparison to the usual size of a couple microns, the XRD is reading them stronger in analysis.

Since XRD bases its calculations off of Bragg’s Law, the larger the surface area of a mineral is the higher the resulting peak intensity and the broader the peak shape. These large crystals of kaolinite are essentially altering the XRD results due to their large surface area and when the data is converted to an estimated quantitative value it produces a significantly larger weight percentage. Also, since kaolinite has a preferred orientation because it is a clay mineral, it’s possible that the disaggregation of the sample to ensure random orientation of minerals was not effective enough for samples that had an excessive content of kaolinite in this interval of core (Jenkins 1989; Bish and Reynolds 1989).

Quartz weight percentage calculated from XRD data is also off in this well and is lower than the

XRF measured values in this interval. A suggestion for this may be because in this interview coarser grains are seen in comparison to other samples in this core. Most quartz grains are

71

measured to be on average the size of a fine grain sand particle i.e. up to 250 micrometers.

However, samples in the interval of fluctuation are measuring up to 400 micrometers, which shows a change from fine sand to medium sand sized particles. This grain size change may have caused these fluctuations as the larger quartz grains are harder to crush and achieve a consistent grain size in powdered samples. As stated above, changes in surface area of a grain from inconsistent grain size distribution can cause fluctuations in peak shape that are very skinny with intense reflections and would cause inaccurate results when converted to quantitative values for comparison with XRF.

These results show that the method of converting XRD qualitative results to a quantitative result can be faulty especially when crystal sizes, especially of clay minerals, grow much larger due to influences of hydrothermal fluids. For other minerals such quartz and feldspar, which are not manipulated in size by these fluids, this method can be useful as a general comparison. If this method is used, samples containing a wider range of grain sizes should be ground as equally as possible to ensure XRD analysis is as accurate as possible and avoid peak width and intensity fluctuations. Ultimately, XRD is a good tool to aid in qualitative analysis in combination with SEM to confirm mineral assemblages. Calculating quantitative results from XRD to compare to XRF mineralogy data should be done carefully to avoid skewing data too much when samples contain a high level of platy/clay minerals with large surface areas or variations in framework grain sizes.

72

3.9 Comparison to McMurray Formation

As there is little publicly available data for a comparison in SEM, XRF and XRD as detailed as this study for the Bluesky Formation in the Peace River area, an assortment of XRF data collected from wells in the McMurray Formation of the Athabasca Oil Sands was available for comparison from XRF Solutions. The McMurray Formation is targeted for its high saturation of bitumen and is drilled using SAGD methods similar to the Bluesky Formation in the Peace River Oil Sands. A ternary diagram of the McMurray Formation was made to compare to the Bluesky Formation to determine if Bluesky wells should be drilled differently (Figure 40, 48). Elements that are not silica/quartz rich are multiplied by a coefficient to equalize the results relevant to mineral equations and normalize them relevant to Si (Al, Ca, and K).

The biggest difference is the assemblage of framework grains seen in the Bluesky Formation.

The McMurray Formation contains mostly quartz grains with some feldspars also present and very little to no carbonates. In contrast, the Bluesky Formation contains a wide variety of grains including quartz, feldspars, carbonates, and other minerals explained in the results section of this paper. For clays, the McMurray sees a good split between kaolinite and illite at about a 1:1 ratio. The Bluesky Formation sees a greater spread in clay type between kaolinite and illite of approximately a 2:1 ratio which was also verified in SEM photos. It should be noted that the some of the data on the chart includes boundaries with the Wilrich Formation which contains a greater percentage of illite than kaolinite and skews some of the data towards the potassium percentage. The spread seen in the Bluesky Formation also includes micas that were commonly seen, so overall the clay assemblage is quite different from the McMurray Formation.

73

Dawsonite has also never been reported in the McMurray Formation. Together with kaolinite, these two minerals are an important difference between the two formations.

3.10 Drilling Implications

Since there is little to no presence of swelling clays (smectite) in the Bluesky Formation, there is no danger of loss of borehole quality that is usually caused by these clays. However, the large booklets sizes of kaolinite and the extensive pore-filling clusters of dawsonite should be considered when drilling wells in the Bluesky Formation. Since the kaolinite can flocculate into aggregates that are almost the equivalent of very fine to fine grained framework grains, this will cause a decrease in overall porosity and permeability of the Bluesky Formation. Dawsonite also creates the same issues and the fact that it is a product of hydrothermal minerals indicates that production processes of SAGD could influence further precipitation post-deposition. The appearance of kaolinite with dawsonite also suggests that kaolinite will also respond to an increase in hydrothermal fluids and grow in size. As SAGD uses water and steam at temperatures starting at 70ᵒC and go up to and over 200ᵒC (Butler et al. 1981; Butler 1991;

Yuan et al. 2011; Voskov et al. 2016) for a period anywhere between one to five months.

Considering that dawsonite has been synthesized at temperatures at a range of 70ᵒC to 200ᵒC

(Jackson et al. 1972) and does not dissolve at temperatures up to approximately 430ᵒC

(Coveney and Kelly 1971; Sirbescu and Nabelek 2003), the potential of further dawsonite formation under SAGD conditions is possible.

The porosity of the Bluesky Formation sandstone intervals is relatively high at its current state

(25-30%) with these minerals based on correspondence with Shell Canada and a rough estimate

74

using SEM photos of samples in this study. Although this includes both pore-filling dawsonite and kaolinite in sandstone samples, there is a good chance that continual SAGD production and the use of high-temperature steam and fluids will have an effect on the growth of these minerals which would effectively decrease porosity. Companies should take core samples before and after SAGD processes to see if these minerals have changed in size and further analysis of SEM, XRF and XRD should be followed similar to that done in this study to ensure proper knowledge of the production hazards of these minerals.

3.11 Conclusion

Due to constantly changing depositional settings and drainage pathways distributing sediment from sources all over North America, the variability between the Bluesky Formation and the

McMurray Formation can be seen in the mineralogical assemblages. By using a combination of qualitative and quantitative analysis with SEM, XRF and XRD, a detailed mineralogical analysis of the Bluesky Formation in the Peace River Oil Sands area was accomplished. SEM was extremely important in establishing mineral types and qualities which was confirmed using

XRD. XRF determined mineral weight percentages using elemental analysis and was used in comparison with XRD data converted to weight percentages to see if this method is appropriate in such a diverse mineralogical assemblage. Overall, quantitative XRD data calculated by XRF

Solutions showed fluctuations that were likely due to changes in grain sizes in the lower Bluesky

Formation. Although it is a good general comparison to test if the XRD is useful for quantitative evaluations, XRF analysis was far superior in accuracy of mineral weight percentage measurement.

75

Framework grains vary from quartz to feldspars to carbonates in the Bluesky Formation in comparison to the McMurray Formation which is dominantly quartz sandstone with some feldspars. Clays in the Bluesky Formation are primarily kaolinite and illite at a 2:1 ratio compared to the 1:1 ratio observed in the McMurray Formation. The Bluesky Formation contains a unique mineral assemblage including fractured, inclusion-rich quartz grains, dawsonite clusters, and kaolinite booklet aggregates that can form floccules the size of fine grained sand. Alteration of framework grains is also seen where feldspar surfaces are altered to kaolinite and illite bands.

Fractured minerals that contain inclusions from chemical alteration and intragranular porosity development from grinding and corrosion are a product of faults in the Peace River area. Faults in the area have been studied by Hubbard et al. (1999) that were active during flexure of the basin due to the Peace River Arch which occurred before and after the deposition of the

Bluesky Formation. These faults must be responsible for introduction of hydrothermal fluids that encouraged the formation of dawsonite and vermicular kaolinite. The formation of these minerals must have happened prior to hydrocarbon migration due to the boundary relationships between bitumen and these minerals. Dawsonite and vermicular kaolinite are pore filling minerals that decrease porosity in the Bluesky Formation. Companies producing wells from the Bluesky Formation in the Peace River Oil Sands that are using SAGD procedures should be cautious as dawsonite can form in temperatures over 200ᵒC which is similar to temperatures of steam that are used in the SAGD process. Further study of the effects of dawsonite and vermicular kaolinite in the Bluesky Formation should be conducted on core both prior to and after SAGD processes are used in bitumen extraction.

76

Figure 1: Study area of the Peace River Oil Sands highlighting the four wells, PR-1-to-4 that were sampled. Oil Sands outlines are from the Government of Alberta (2017).

77

Figure 2 : Provenance map of distribution of detrital zircon grains from all over North America sourcing into the Bluesky Formation in Peace River (red star) modified from Ross and Villeneuve (2003) and Dickinson and Gehrels (2009). (1) = Western Cordillera; (2) = Appalachians-Ouachita; (3) = Grenville; (4a) = Mid-Continent; (4b) = Belt Purcell; (5) = Yavapai-Mazatzal; (6) Trans-Hudson; (7) Wopmay; and Canadian Shield provinces of (8a) = Slave Craton; (8b) = Wyoming-Hearne-Rae; and (8c) = Superior. The southeastern USA Jurassic eolinites are sedimentary deposits that act as a storage bin for these detrital zircon grains that are sourced from these crystalline provinces. 78

Figure 3: Lower Cretaceous Stratigraphic column of the Mannville Group showing the Bluesky Formation, with age equivalencies to the Athabasca Oil Sands (modified from Smith 1994).

79

Base Bluesky: Base 590.60 m

1 courtesy of Shell Canada. The blue dashed line indicates the top Bluesky/base Wilrich and the red dashed line indicates indicates line dashed the red and Wilrich topBluesky/base the indicates line dashed blue The Canada. of Shell courtesy 1

-

Core photos of well PR well of photos Core

80

TopBluesky: 559.03 m the base Bluesky/Debolt boundary. Bluesky/Debolt base the 4a: Figure

Base Bluesky: Base 545.25 m

2 courtesy of Shell Canada. The red dashed line indicates the Bluesky/Debolt boundary. Bluesky/Debolt the indicates line dashed red The Canada. of Shell courtesy 2

-

ll PR ll

81

Top Core (Bluesky) TopCore 527.0 m we of photos 4b:Core Figure

m

625.12

:

)

Bluesky

Core ( Core

Base Base

2 courtesy of Shell Canada. The core is entirely of the Bluesky Formation. Bluesky ofthe entirely is core The Canada. Shell of 2courtesy

-

m

590.02

82

Figure 4c: Core photos of well PR ofwell photos Core 4c: Figure (Bluesky) TopCore

m

706.00

:

Core

4 courtesy of Shell Canada. The dashed green line indicates the base Bluesky/top Gething boundary. Gething Bluesky/top base the indicates line green dashed The Canada. of Shell courtesy 4

-

Base Base

m

648.20

Core: 83

Figure 4d: Core photos of well PR well of photos 4d:Core Figure Top

a

b

Figure 5a, b: SEM EDX photos showing framework grains in the Bluesky 84 Formation. Quartz, dolomite, calcite, feldspar and chert are pictured. Photo taken by McKinnon (2015).

a b

c

Figure 6a, b, c: SEM EDX and BSE photos showing framework grain shapes and variation of edge roundness in the Bluesky Formation. Quartz with porosity development in (a) and inclusions of sulfur and phosphorus-rich minerals in (b). Lines of weakness are highlighted in (a) and a grain with multiple fracture planes is shown in (c). Photo taken by McKinnon (2015).

85

Figure 7: SEM EDX photo showing quartz grains with inclusions of feldspars, apatite and dolomite. A previously void inclusion is now filled with bitumen, shown by the arrow in the neighboring quartz grain to the left. Photo taken by McKinnon (2015).

86

a

b

Figure 8a, b: SEM EDX photos showing quartz grains with inclusions. Photo (a) has strontium-rich pyrite inclusions and photo (b) has iron-rimmed dolomite 87 with some phosphorus-rich rims as well. Photo taken by McKinnon (2015).

Figure 9: SEM EDX photo showing illite-altered feldspar grains. The potassium-rich feldspars are a source for authigenic illite to form under replacement conditions. Photo taken by McKinnon (2015).

88

a b

c

Figure 10 a, b, c: SEM EDX photos showing carbonate framework grains of calcite and dolomite. P hoto taken by McKinnon (2015).

89

a b

c

Figure 11 a, b, c: SEM EDX photos showing the micro-crystalline texture of chert grains containing potassium and aluminum-rich feldspars and clays. Photo taken by McKinnon (2015).

90

a

Dol

b

Dol

Figure 12 a, b: SEM EDX photos showing chert grains with inclusions. Similar to 91 quartz grains, inclusions are commonly dolomite rimmed with pyrite. Photo taken by McKinnon (2015).

a b

c

Figure 13 a, b, c: SEM EDX photos showing heavy mineral framework grains of Zircon and Apatite. Photo taken by McKinnon (2015).

92

Figure 14: SEM BSE photo showing vermicular form of kaolinite in large booklets. The white bracket outlines an example of a booklet shape. Photo taken by McKinnon (2015).

93

Figure 15: SEM EDX photo showing illite in the matrix highlighted by the white arrows that is rich in potassium. Photo taken by McKinnon (2015).

94

Figure 16: SEM EDX photo showing dominant kaolinite in smaller booklets in the matrix highlighted by the white arrows, with some illite as flecks of purple for potassium. Photo taken by McKinnon (2015).

95

Figure 17: SEM EDX photo showing the matrix of a shale bed with mixed compositions of kaolinite (light purple) and illite (dark bluish purple). Photo taken by McKinnon (2015).

96

a b

c

Figure 18 a, b, c: SEM EDX photos showing the relationship of kaolinite (light purple) to bitumen (black). Photo (a) shows pore-filling kaolinite and (b) shows the lack of bitumen within the kaolinite.

Photo (c) also shows how the bitumen rims the kaolinite in the bottom right corner, proving oil migration occurred after clay minerals formed and filled porosity. Photo taken by McKinnon (2015).

97

a

b

Figure 19 a, b: SEM EDX photos showing allogenic clays. Photo (a) has broken up pieces of illite-muscovite 98 and photo (b) shows a large clay grain similar in size to framework quartz grains, likely biotite, that has interlayered potassium (reddish pink) and magnesium (grey) rich layers. Photo taken by McKinnon (2015).

Figure 20: SEM EDX photo showing layers of illite (purple) and sodium-rich muscovite (blue). Illite may be altering to muscovite as some illite has interbedded muscovite within it. Photo taken by McKinnon (2015).

99

a

b

Figure 21 a, b: SEM EDX photos showing sandwiches of kaolinite (light purple in (a), grey in (b)) and illite (bluish purple in (a) and (b)). Photo taken by McKinnon (2015). 100

Figure 22: SEM EDX photo showing allogenic clays (purple) that are randomly oriented similar to other framework grains and not aligned with the matrix clays. Photo taken by McKinnon (2015).

101

Figure 23: SEM EDX photo showing a detrital clay that is being deformed, likely from compaction between other framework grains. Photo taken by McKinnon (2015).

102

a

b

Figure 24 a, b: SEM BSE photos showing dawsonite’s fan-like form (a) with needle-like texture (b). Bitumen is rimming the clusters in (a) and contains a 103 small amount within needle spacing indicated by the white arrows in (b). Photo taken by McKinnon (2015).

Figure 25: SEM EDX photo showing sodium and aluminum in a cluster of dawsonite which was used to identify it. Photo taken by McKinnon (2015).

104

a b

c

Figure 26 a, b, c: SEM EDX photos showing dawsonite filling void pore space between framework grains similar to authigenic kaolinite. Photo (a) also shows dawsonite filling space in detrital illite. Photo (c) has dawsonite spreading through the matrix, almost in a cement-like form. Photo taken by McKinnon (2015).

105

a b

a

c

Figure 27 a, b, c: SEM EDX photos showing the matrix of silt-sized quartz and feldspar grains, clays (kaolinite and illite), and miscellaneous minerals. Photos (a) and (b) show and example of matrix in sandstone samples. Photo (c) is a close up of the matrix which shows the mash-up of a variety of silt- to-clay sized particles. Photo taken by McKinnon (2015).

106

a

b

Figure 28 a, b: SEM BSE photos showing sulfate and anhydrite precipitates in well PR-2 that were unique to the area. Photo taken by McKinnon (2015). 107

Dol

Cal

Figure 29: SEM EDX photo showing (white arrows) an example of inclusions being fractured in framework quartz grains. Photo taken by McKinnon (2015).

108

Figure 30: SEM EDX photo showing an example of calcite (pink) and iron/pyrite (green) inclusions in framework quartz grains. Void spaces in cubic shapes are also visible (white arrows). Photo taken by McKinnon

(2015).

109

a

b

Figure 31 a, b: SEM EDX photos showing an example of a feldspar relict grain (a) that is altering on the surface (b) to bands of kaolinite (pink) and illite (blue). Photo taken by McKinnon (2015). 110

1. Analysis was run on core as well as as as run was well core on 1. Analysis

-

Figure 32: XRF data of major element weight percentage for PR percentage weight element ofmajor XRF 32: Figure data by XRF (2014). Solutions and calibration Data available. collection were that the retains Dean Stark

111

1. Analysis was run on core as well well run was core on Analysis as 1.

-

ght percentage data for for PR data ght percentage

Figure 33: XRF calculated wei mineralogy XRF 33: Figurecalculated andby XRF calibration collection, calculations Data available. that were as Stark the retains Dean Solutions (2014).

112

collection and calibration by XRF and calibration collection

2 core. Data 2 core.

-

Solutions (2014). for PR percentage weight element ofmajor XRF 34: Figure data

113

2 core. Data collection, calculations and calibration calibration and calculations Data collection, core. 2

-

Figure 35: XRF calculated mineralogy weight percentage data for PR for data percentage weight mineralogy calculated XRF 35: Figure by XRF (2014). Solutions

114

3 core. Data collection and calibration by XRF and calibration Data 3 collection core.

-

Solutions (2014). for PR percentage weight element ofmajor XRF 36: Figure data

115

3 core. Data collection, calculations and calibration calculations Data collection, core. 3

-

Solutions (2014). Solutions by XRF by XRF for PR data percentage weight mineralogy XRF 37: Figurecalculated

116

4 core. Data collection and calibration by and calibration Data 4 collection core.

-

Figure 38: XRF data of major element weight percentage for PR percentage weight element ofmajor XRF 38: Figure data XRF Solutions (2014).

117

calibration calibration

4 core. Data collection, calculations and calculations Data collection, core. 4

-

by XRF (2014). Solutions for PR data percentage weight mineralogy XRF 39: Figurecalculated

118

1. Data collection, calculations and calculations 1. Data collection,

-

calibration bycalibration XRF (2014). Solutions PR from retains available Dean fourStark and wells for all XRF 40: Figure data

119

PR-1-584.0m XRD Mineralogy

Figure 41: Example of XRD bulk sample peak data for PR-1 at 584.0 m depth. Sample data for the PR-1, PR-2 and PR-4 wells can be found in Appendix B.

120

Figure 42: An example of XRD clay separate peak data for a sample from PR-1 at 584.00 m depth. All clay separates yielded similar signatures of illite and kaolinite peaks, which verifies little to no smectite or other swelling clays in the PR wells.

121

Lagoon Lagoon Facies

Bluesky Bluesky

Top

Top Bluesky Formation Top Bluesky

n core as well as n as as well core

1. Analysis was run was o 1. Analysis

-

Figure 43: XRF and XRD calculated mineralogy weight percentage data forPR data percentage XRF 43: Figure calculated and weight mineralogy XRD data. Data collection, processes. XRF bothcore are Solid lines for available analytical were that the retains Dean Stark for(2014). by calculations XRF and Solutions XRF calibration

122

TopFm Debolt

Top Bluesky Fm Top Bluesky

2. Solid lines are XRF core core data XRF 2. are lines Solid

-

calculated mineralogy weight percentage data forPR data percentage calculated weight mineralogy

Figure 44: XRF 44: Figure and XRD XRF for (2014). Solutions calibration XRF by and calculations data. Data XRD andcollection, arediamonds

123

Top Bluesky Fm Top Bluesky

4. Solid lines are XRF core core data XRF 4. are lines Solid

-

ight percentage data forPR data percentage ight

Figure 45: XRF 45: Figure calculated and we mineralogy XRD XRF for (2014). Solutions calibration XRF by and calculations data. Data XRD andcollection, arediamonds

124

and a pebble and a

Wave facies Wave

Wave facies Wave

-

-

1

1

-

-

Upper secondary PR secondary Upper

Lower secondary PR secondary Lower

1 showing boundary at 583.0 m where mineralogy changeseen is 583.0 mineralogy m where 1 boundary at showing

-

for for PR

: Well log :

Figure 46 Figure Formation the Bluesky facies a lag in showing deposit second

125

A’

, XRD and XRF and , XRF XRD

A’

A

SE cross section of the 6 facies interpreted in the 4 Peace River wells using a combination of log of a using wells River combination 4 the Peace in facies 6 interpreted of the section cross SE

-

A

NW

: :

Figure 47 Figure Formation. data for the Bluesky

126

Figure 48: Ternary diagram of XRF data from a reference McMurray Formation core in the Athabasca Oil Sands courtesy of XRF Solutions (2015).

127

3.12 References 1. Alberta Energy Regulator. 2017. Alberta’s energy reserves & supply/demand outlook.

ST98: 1-12 Available from http://www.aer.ca/data-and-publications/statistical-

reports/st98 [accessed May 28, 2017].

2. Baker, J.C., Bai, G.P., Hamilton, P.J., Golding, S.D., Keene, J.B. 1995. Continental-scale

magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-

Sydney basin system, eastern Australia. Journal of Sedimentary Research, v. A65, 522-

520.

3. Bish, D.L. and Reynolds Jr, R.C. 1989. Sample Preparation for X-ray diffraction. In:

Modern Powder Diffraction, Reviews in Mineralogy. Mineralogical Society of America,

Washington, D.C., United States of America, v. 20, ch. 4, p. 73-99.

4. Blum, M. and Pecha, M. 2014. Mid-Cretaceous to Paleocene North American drainage

reorganization from detrital zircons. Geology, v. 42, no.7, p. 607-610.

5. Bragg, W.H. and Bragg, W.L. 1913. The reflection of x-rays by crystals. Series A,

containing papers of a mathematical and physical character. Proceedings of the Royal

Society of London. London, United Kingdom, v. 88, i.605, p. 428-438.

6. Brindley, G.W. 1980. Quantitative X-ray Mineral Analysis of Clays. In: G.W. Brindley and

G. Brown, eds., Crystal Structures of Clay Minerals and Their X-Ray Identification.

Mineralogical Society, London, p. 411-438.

7. Butler, R.M., McNab, G.S., Lo, H.Y. 1981. Theoretical studies on the gravity drainage of

Heavy Oil during in-situ steam heating. The Canadian Journal of Chemical Engineering, v.

59, 455-460.

128

8. Butler, R.M. 1991. Horizontal wells and steam-assisted gravity drainage. The Canadian

Journal of Chemical Engineering, v. 69, 819-824.

9. Campbell, S.G., Botterill, S.E., Gingras, M.K., MacEachern, J.A. 2016. Event

sedimentation, deposition rate, and paleoenvironment using crowded Rosselia

assemblages of the Bluesky Formation, Alberta, Canada. Journal of Sedimentary

Research, v. 86, p. 380-393.

10. Cant, D.J. 1988. Regional structure and development of the Peace River Arch, Alberta: A

Paleozoic failed-rift system? Bulletin of Canadian Petroleum Geology, v. 36, no. 3, p.

284-295.

11. Cant, D.J. 1996. Sedimentological and sequence stratigraphic organization of a foreland

clastic wedge, Mannville Group, Western Canada Basin. Journal of Sedimentary

Research, v. 66, no. 6, p. 1137-1147.

12. Cheng, H., Liu, Q., Yang, J., Zhang, Q., Frost, R.L. 2010. Thermal behavior and

decomposition of kaolinite-potassium acetate intercalation composite. Thermochimica

Acta, v. 503-504, 16-20.

13. Chung, F.H. 1974. Quantitative interpretation of X-ray diffraction patterns. I. Matrix-

flushing method of quantitative multicomponent analysis; II. Adiabatic principle of X-ray

diffraction analysis of mixtures. Journal of Applied Crystallography. 7, 519-531.

14. Copeland, L.E. and Bragg, R.H. 1958. Quantitative X-ray diffraction analysis. Analytical

Chemistry. 30, 196-206.

15. Coveney, R.M. and Kelly, W.C. 1971. Dawsonite as a daughter mineral in hydrothermal

fluid inclusions. Contributions to Mineralogy and Petrology, 32, 334-342.

129

16. Dalrymple, R.W., Zaitlin, B.A., Boyd, R. 1992. Estuarine facies models: conceptual basis

and stratigraphic implications. Journal of Sedimentary Petrology, v. 62, p. 1130-1146.

17. Dickinson, W.R. and Gehrels, G.E. 2003. U-Pb ages of detrital zircons from Permian and

Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications.

Sedimentary Geology, v. 163, p. 29-66.

18. Dix, G.R. 1990. Stages of platform development in the Upper Devonian (Frasnian) Leduc

Formation, Peace River Arch, Alberta Bulletin of Canadian Petroleum Geology, v. 38A,

66-92.

19. Gao, Y., Liu, L., Hu, W. 2009. Petrology and isotopic geochemistry of dawsonite-bearing

sandstones in Hailaer basin, northeastern China. Applied Geochemistry, v. 24, 1724-

1738.

20. Gualtieri, A.F. and Ferrari, S. 2006. Kinetics of illite dehydroxilation. Physics and

Chemistry of Minerals, v. 33, 490-501.

21. Harrington, B.J. 1874. Notes on dawsonite, a new carbonate. Canadian Naturalist, 7,

305-309.

22. Hart, B.S. and Plint, A.G. 1990. Upper Cretaceous warping and fault movement on the

southern flank of the Peace River Arch, Alberta. Bulletin of Canadian Petroleum

Geology, v. 38A, 190-195.

23. den Hartog, S.A.M., Niemeijer, A.R., Spiers, C.J. 2013. Friction on subduction megathrust

faults: beyond the illite-muscovite transition. Earth and Planetary Science Letters, v.

373, 8-19.

130

24. Hubbard, S.M., Pemberton, S.G., Howard, E.A. 1999. Regional geology and

sedimentology of the basal Cretaceous Peace River Oil Sands deposit, north-central

Alberta. Bulletin of Canadian Petroleum Geology, v.47, no.3, p. 270-297.

25. Jackson Jr., J. Huggins, C.W., Ampian, S.G. 1972. Synthesis and Characterization of

Dawsonite. California Institute of Technology, Bureau of Mines Report of Investigations,

United States Government Depository, United States Department of the Interior Bureau

of Mines, College Park Metallurgy Research Center, College Park, Md, p. 1-14.

26. Jackson, P.C. 1984. Paleogeography of the Lower Cretaceous Manville Group of western

Canada. In: Masters, J.A., eds., Elmworth: Case Study of a Deep Basin Gas Field:

American Association of Petroleum Geologists Memoir 38, p. 49-77.

27. James, R.W. 1965. The Optical Principles of the Diffraction of X-rays. Cornell University

Press, Ithaca, New York, United States of America, pp. 664.

28. Jenkins, R. 1988. X-Ray fluorescence spectrometry. Chemical Analysis: A series of

monographs on analytical chemistry and its applications. Wiley-Interscience Publication,

John Wiley & Sons. New York, United States of America. Volume 99, pp. 175.

29. Jenkins, R. 1989. Instrumentation: Measurement of X-ray powder patterns-camera

methods; Experimental procedures. In: Modern Powder Diffraction, Reviews in

Mineralogy. Mineralogical Society of America, Washington, D.C., United States of

America, v. 20, ch. 2, 3, p. 19-71.

30. Jiménez-Millán, J., Abad, I., Hernández-Puentes, P., Jiménez-Espinosa, R. 2015. Influence

of phyllosilicates and fluid-rock interaction on the deformation style and mechanical

131

behavior of quartz-rich rocks in the Carboneras and Palomares fault areas (SE Spain).

Clay Minerals, v. 50, 619-638.

31. Klug, H.P. and Alexander, L.E. 1974. X-ray Diffraction Procedures, 2nd edition. John Wiley

& Sons, New York, p. 365-368; 549-553.

32. Leier, A. and Gehrels, G. 2011. Continental-scale detrital zircon provenance signatures in

Lower Cretaceous strata, western North America. Geology, v. 39, no. 4, p. 399-402.

33. Lin, I.J. and Nadiv, S. 1979. Review of phase transformation and synthesis of inorganic

solids obtained by mechanical treatment (mechanochemical reactions). Materials

Science and Engineering, 39, 193-209.

34. Loughan, F.C. and See, G.T. 1967. Dawsonite in the Greta Coal Measures at

Muswellbrook, New South Wales. American Mineralogist, v. 52, 1216-1219.

35. Mackay, D.A. 2014. A subsurface sedimentological analysis of tide-dominated deposits

in the Bluesky Formation (Early Cretaceous), Peace River Area, West-Central Alberta.

Unpublished Ph.D. thesis, Queen’s University, Kingston, Ontario, p. 1-392.

36. MacKenzie, R.C. 1970. Differential thermal analysis, Volume 1. Academic Press Inc.,

London, United Kingdom, pp. 751.

37. Moore, J., Adams, M., Allis, R., Lutz, S., Rauzi, S. 2005. Mineralogical and geochemical

consequences of the long-term presence of CO2 in natural reservoirs: an example from

the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chemical Geology, c.

217, 365-385.

132

38. Mosser-Ruck, R., Devineau, K., Charpentier, D., Cathelineau, M. 2005. Effects of ethylene

glycol saturation protocols on XRD patterns: a critical review and discussion. Clays and

Clay Minerals, v. 53, no. 6, 631-638.

39. Navias, A.L. 1925. Quantitative determination of the development of mullite in fired

clays by and X-ray method. Journal of the American Ceramic Society. 8, 296-302.

40. O’Connell, S.C. 1988. The distribution of the Bluesky facies in the region overlying the

Peace River Arch, northwestern Alberta. In: James, D.P. and Leckie, D.A., eds.,

Sequences, Stratigraphy, Sedimentology: Surface and Subsurface, Canadian Society of

Petroleum Geologists, Memoir 15, p. 387-400.

41. O’Connell, S.C. 1990. The development of the Lower Cretaceous Peace River

Embayment as determined from Banff and Pekisko Formation depositional patterns.

Bulletin of Canadian Petroleum Geology, v. 38A, 93-114.

42. O'Connell, S.C. 1994. Geological history of the Peace River Arch, in: Geological Atlas of

the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian

Society of Petroleum Geologists and Alberta Research Council,

URL http://ags.aer.ca/publications/chapter-28-geological-history-of-the-peace-river-

arch.htm, [May 6, 2018].

43. Palache, C., Berman, H., Frondel, C. 1951. System of mineralogy, 7 eds., John Wiley &

Sons, New York, United States of America, v. 2, pp. 1124.

44. Pana, D.I. and van der Pluijm, B.A. 2015. Orogenic pulses in the Alberta Rocky

Mountains: Radiometric dating of major faults and comparison with the regional

133

tectono-stratigraphic record. Geological Society of America Bulletin, v.127, no. ¾, p.

480-502.

45. Potts, P.J. 2008. Introduction, Analytical Instrumentation and Application Overview. In:

Portable X-ray Fluorescence Spectrometry, Capabilities for In Situ Analysis. RSC

Publishing, the Royal Society of Chemistry, Cambridge, United Kingdom. Ch. 1, p. 1-12.

46. Powers, M.C. 1953. A new roundness scale for sedimentary particles. Journal of

Sedimentary Petrology, v. 23, no. 2, 117-119.

47. Raines, M.K., Hubbard, S.M., Kukulski, R.D., Leier, A.L., Gehrels, G.E. 2013. Sediment

dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and

lowermost Cretaceous strata, Alberta Basin, Canada. Geological Society of America

Bulletin, v. 125, no. 5/6, p. 741-755.

48. Ross, G.M. and Villeneuve, M. 2003. Provenance of the Mesoproterozoic (1.45 Ga) Belt

basin (western North America): Another piece in the pre-Rodinia paleogeographic

puzzle. Geological Society of America Bulletin, v. 115, no. 10, p. 1191-1217.

49. Rottenfusser, B.A. 1982. Diagenetic Sequence, Oil Migration, and Reservoir Quality in

Peace River Oil Sands, Northwestern Alberta (abs.). American Association of Petroleum

Geologists Bulletin, v. 66, p.626.

50. Rottenfusser, B.A. 1984. Sedimentation in the Lower Cretaceous Gething Basin, Alberta.

Abstract in: Stott, D.F., and Glass, D.J., eds., The Mesozoic of Middle North America:

Canadian Society of Petroleum Geologists, Memoir 9, p. 562.

134

51. Rudkin, R.A. 1964. Lower Cretaceous. In: McCrossan, R.G. and Glaister, R.P., eds.,

Geologic History of Western Canada, Alberta Society of Petroleum Geologists, p. 156-

168.

52. Sirbescu, M-L.C. and Nabelek, P.I. 2003. Dawsonite: an inclusion mineral in quartz from

the Tin Mountain pegmatite, Black Hills, South Dakota. American Mineralogist, v. 88,

1055-1060.

53. Smith, D.G. 1994. Paleogeographic evolution of the Western Canada Foreland Basin. In:

Mossop, G.D., and Shetsen, I., comps., Geological Atlas of the Western Canada

Sedimentary Basin, Canadian Society of Petroleum Geologists and Alberta Research

Council. Available from

http://ags.aer.ca/document/Geological%20Atlas%20of%20the%20Western%20Canada

%20Sedimentary%20Basin%20PDF%20Files/chapter_17.pdf [accessed May 6, 2018].

54. Snyder R.L. and Bish, D.L. 1989. Quantitative Analysis. In: Modern Powder Diffraction,

Reviews in Mineralogy. Mineralogical Society of America, Washington, D.C., United

States of America, v. 20, ch. 5, p. 101-144.

55. Stevenson, J.S. and Stevenson, L.S. 1964. The petrology of Dawsonite at the type

locality, Montreal. The Canadian Mineralogist, 8, 249-252.

56. Voskov, D, Zaydullin, R, Lucia, A. 2016. Heavy oil recovery efficiency using SAGD, SAGD

with propane co-injection and STRIP-SAGD. Computers and Chemical Engineering, v. 88,

115-125.

57. Wadell, H. 1932. Volume, shape and roundness of rock particles. The Journal of Geology,

v. 40, no. 5, 443-451.

135

58. Wells, O.C. 1984. Scanning electron microscopy. McGraw-Hill Inc. New York, United

States of America, p. 1-20.

59. Williams, G.K. 1958. Influence of the Peace River Arch on Mesozoic Strata. In: Scott, J.C.,

eds., Symposium on the Peace River Arch, Alberta Society of Petroleum Geologists

Journal, v. 6, no. 8, p. 74-81.

60. Yuan, J.Y. and McFarlane, R. 2011. Evaluation of steam circulation strategies for SAGD

startup. Journal of Canadian Petroleum Technology, v. 50(1), 20-32.

61. Zhou, S., Huang, H., Liu, Y. 2008. Biodegradation and origin of oil sands in the Western

Canada Sedimentary Basin. Petroleum Science, v.5, p. 87-94.

136

CHAPTER 4: CONCLUSION

The Bluesky Formation in the Peace River Oil Sands is vastly different from the McMurray

Formation in the Athabasca Oil Sands. Results from samples in the McMurray Formation yield similar results as previous studies and agree with the developed model of a combination of multiple drainage systems which source grains from recycled sedimentary sources in the

Western Cordillera and Jurassic eolinites in the southeast United States. Heavy mineral grains in uniform beds in the McMurray Formation also yield no date differences from other sediment and are a product of preferential grain deposition and sediment sorting from grains with higher densities that collect at the base of deposits. The U-Pb geochronology results from dating detrital zircon grains from the Bluesky Formation leads to proof of a system of constantly evolving sediment drainage pathways in the Peace River area due to the transgression and regression of the Boreal sea. At the beginning of the Early Cretaceous, this dynamic system connects a major east-southeast-to-northwest system and a northwest-to-southeast system, as seen in the McMurray Formation, and derives sediment from the recycled sedimentary deposits in the Western Cordillera, Jurassic eolianites and Belt Purcell Super Group. Basin partitioning between the Assiniboia and Edmonton channels occurs during the Albian-Aptian time period due to the regression of the Boreal Sea and blockade of the Red Earth Highlands running northwest-southeast through northern Alberta results in a loss of the east-southeast- to-northwest drainage system. This allows the infiltration of local systems and a northwest-to- southeast drainage system sourcing sediment primarily from the Western Cordillera to take over while the lower PR-1-Wave facies of the Bluesky Formation is being deposited. Local systems also source sediment from cannibalization of barrier island and tidal inlet sand bars

137

and Mississippian-Devonian aged grains from the Red Earth Highlands being eroded due to an increase in wave energy. Excessive sediment influx seen in 100-120 Ma DZ populations support that there is an increase in erosion of a wedge-top depozone and grain influx from the Omineca

Belt ash deposits in the Western Cordillera. Finally as the upper PR-1-Wave facies is being deposited through the end of the Albian, the transgression of the Boreal Sea relinks the east- southeast-to-northwest drainage system with the northwest-to-southeast system and the Red

Earth Highlands are flooded over to incorporate the large regional system once again.

The constant change in sediment drainage pathways and depositional settings from the fluctuations in the Boreal Sea yield a strong variability in mineralogical assemblages between the Bluesky Formation and the McMurray Formation. SEM, XRF and XRD were used for a detailed mineralogical quantitative and qualitative analysis of the Bluesky Formation by establishing mineral qualities, types, and weight percentages. XRF analysis had higher accuracy of determining mineral weight percentages as it relies on less specifications in sample preparation in comparison to XRD. If sample analysis and quantitative calculations are planned by the use of XRD, XRF should also be considered as an analytical tool to improve the resulting mineralogy weight percentages and distributions.

Framework grains of quartz developed intragranular porosity, are usually inclusion-filled and fractured. Dawsonite and exceptionally large vermicular forms of kaolinite are also present.

These observations prove that faulting had a mechanical and chemical effect on alteration of grains and changed the mineralogy of the Bluesky Formation significantly. Fluctuations in mineral grain surface areas, grain sizes, and preferred orientations in minerals such as kaolinite that are seen in calculated XRD data yield inconsistencies from XRF results. Since these minerals

138

formed and grew to their large sizes prior to hydrocarbon migration and act as pore filling minerals which decrease porosity, wells drilled and produced using SAGD procedures that optimize high temperature fluids and steam over 200ᵒC have the potential to increase dawsonite and kaolinite content and possibly see a drop in porosity values during and after production. This should be considered by conducting studies similar to the ones done above and focusing on any changes in dawsonite and vermicular kaolinite seen pre-and-post production. This will ensure optimal production is obtained from the Bluesky Formation in the

Peace River Oil Sands.

139

Appendix A: Data Tables Table 2-1: Detrital Zircon U-Pb-Th data results for PR-1-Lagoon from LA-ICP-MS. 1 = Concentration uncertainty 20%; calibrated against reference material 91500 (80 mg/kg U); 3 = Concordance calculated as (206Pb/238U age/207Pb-206Pb Age)*100; Data collected from the Center for Pure and Applied Tectonics and Thermochronology, Department of Geoscience, University of Calgary. UK00L Dates U Prob. % 207Pb 206Pb U/ (pp 207 2sx 206 2sx 207 2sx Conc. con Sam CPS CPS Th Pb/ 2stotal Pb 2stotal Pb/ 2stotal Spot 1 (ABS (ABS (ABS 3 ple m) 206Pb (ABS) /238U (ABS) 235Pb (ABS) (%) c ) ) ) - UK0 UK00L 140. 318. 0L _26 448 9910 384 1.8 44.1 3 142.2 184.7 5.8 6.3 174.9 10.7 11.0 0.09 5 UK0 UK00L 1359 117. 0L _258 669 0 527 2.6 181.0 4 119.5 188.9 5.9 6.4 188.3 10.2 10.6 0.92 -4.4 UK0 UK00L 157. - 0L _124 388 7880 257 1.2 176.3 1 158.7 232.3 7.7 8.3 227.3 15.3 15.7 0.52 31.8 UK0 UK00L 1588 101. 0L _44 855 0 292 1.8 448.4 6 103.8 385.4 11.9 12.9 394.5 18.2 19.0 0.40 14.0 UK0 UK00L 1353 37 106. 0L _18 729 0 240 9.7 420.3 1 108.2 388.4 12.1 13.2 393.0 18.7 19.4 0.64 7.6 UK0 UK00L 2760 0L _233 1509 0 492 2.8 491.5 85.0 87.6 398.6 12.2 13.2 412.6 16.9 17.8 0.17 18.9 UK0 UK00L 1567 100. 0L _239 856 0 266 2.2 404.1 9 103.1 409.5 12.6 13.7 408.7 18.5 19.3 0.94 -1.4 UK0 UK00L 3750 0L _192 2060 0 636 1.3 440.4 74.9 77.9 419.6 12.9 14.0 422.8 16.0 17.0 0.71 4.7 UK0 UK00L 3650 0L _251 2010 0 621 1.2 408.2 75.1 78.1 420.0 12.7 13.9 418.2 15.7 16.7 0.84 -2.9 UK0 UK00L 123. 0L _185 449 8200 142 1.1 537.3 1 124.9 428.3 13.4 14.5 445.8 23.4 24.1 0.18 20.3 UK0 UK00L 1900 - 0L _175 1008 0 318 0.8 341.6 94.0 96.5 428.4 13.1 14.3 415.0 17.8 18.7 0.17 25.4 UK0 UK00L 1664 0L _221 973 0 269 1.4 529.8 94.6 96.9 429.1 13.1 14.3 445.3 19.3 20.2 0.19 19.0 UK0 UK00L 1120 108. 0L _99 631 0 184 1.6 518.4 4 110.4 437.4 13.4 14.6 450.5 21.3 22.2 0.30 15.6 UK0 UK00L 1412 100. 0L _114 759 0 230 2.6 404.1 8 103.1 438.6 13.5 14.7 433.1 19.4 20.3 0.62 -8.5 UK0 UK00L 132. 0L _263 353 5950 96 1.9 621.5 1 133.7 443.4 14.1 15.2 473.4 26.3 27.0 0.02 28.7 UK0 UK00L 4374 0L _184 2433 0 691 2.3 464.2 69.9 73.0 447.1 13.6 14.8 449.9 16.2 17.3 0.75 3.7 UK0 UK00L 3120 33. 0L _256 1770 0 488 2 522.2 77.7 80.5 456.0 14.0 15.2 467.1 17.8 18.8 0.31 12.7 UK0 UK00L 1003 108. 0L _202 590 0 151 4.8 592.7 7 110.6 464.4 14.3 15.6 486.6 23.0 23.8 0.06 21.6 UK0 UK00L 3240 0L _249 1820 0 500 1.7 483.8 78.0 80.8 465.7 14.1 15.4 468.7 17.8 18.8 0.78 3.7 UK0 UK00L 1096 109. 0L _229 632 0 165 1.0 567.1 7 111.7 469.8 14.3 15.6 486.7 23.0 23.9 0.22 17.2 UK0 UK00L 5050 0L _219 2870 0 747 4.1 487.7 68.4 71.6 477.2 14.4 15.7 479.0 16.8 18.0 0.87 2.2 UK0 UK00L 2110 0L _253 1293 0 251 1.5 715.0 93.6 95.8 569.1 18.9 20.2 599.3 25.3 26.4 0.01 20.4 UK0 UK00L 1383 0L _65 779 0 165 1.3 544.8 95.1 97.4 584.5 17.7 19.2 576.4 23.6 24.7 0.53 -7.3 UK0 UK00L 8723 0L _20 5290 0 1029 0.7 660.3 54.4 58.2 606.8 18.5 20.1 618.2 18.9 20.4 0.26 8.1 UK0 UK00L 4340 - 0L _59 2550 0 485 2.7 548.5 69.2 72.3 636.1 19.1 20.8 617.2 20.7 22.1 0.16 16.0 UK0 UK00L 3140 0L _98 2120 0 268 1.4 892.7 69.0 71.8 804.4 24.0 26.1 828.2 26.1 27.7 0.10 9.9 UK0 UK00L 1273 0L _73 880 0 89 1.4 951.6 92.8 94.9 980.1 29.0 31.5 971.3 34.7 36.2 0.70 -3.0 UK0 UK00L 1300 1141. 1037. 0L _193 940 0 86 1.8 8 84.4 86.5 988.9 29.6 32.1 6 34.7 36.3 0.02 13.4 UK0 UK00L 3140 1016. 1003. 0L _151 2300 0 217 1.0 7 65.6 68.4 997.2 29.0 31.6 3 28.8 30.6 0.73 1.9

140

UK0 UK00L 2079 0L _74 1453 0 142 3.3 966.0 76.7 79.2 999.4 29.2 31.8 989.0 31.0 32.7 0.57 -3.5 UK0 UK00L 2218 1092. 1013. 1038. 0L _27 1645 0 144 2.6 4 74.7 77.1 2 29.6 32.2 6 31.8 33.6 0.20 7.3 UK0 UK00L 3490 1044. 1014. 1023. 0L _138 2570 0 236 2.6 2 63.5 66.4 3 29.6 32.2 8 28.7 30.6 0.58 2.9 UK0 UK00L 1209 1029. - 0L _35 805 0 78 2.4 898.7 95.3 97.4 2 30.3 32.9 988.3 35.4 37.0 0.06 14.5 UK0 UK00L 3430 1052. 1029. 1037. 0L _49 2520 0 223 2.1 3 62.0 64.9 7 30.0 32.6 0 28.6 30.6 0.63 2.1 UK0 UK00L 3446 1046. 1029. 1035. 0L _126 2524 0 225 3.5 9 63.1 66.0 7 30.1 32.8 2 28.9 30.8 0.78 1.6 UK0 UK00L 8970 1063. 1031. 1042. 0L _242 6630 0 588 3.4 1 46.2 50.1 9 29.7 32.4 0 25.2 27.5 0.56 2.9 UK0 UK00L 3540 1063. 1033. 1042. 0L _25 2560 0 223 4.6 1 61.1 64.1 0 30.1 32.7 7 28.5 30.5 0.59 2.8 UK0 UK00L 1744 1049. 1033. 1038. 0L _206 1287 0 112 2.7 6 80.5 82.7 6 30.5 33.1 7 33.2 34.9 0.80 1.5 UK0 UK00L 3644 1041. 1036. 1038. 0L _118 2645 0 242 2.2 5 60.9 63.9 9 30.2 32.8 3 28.4 30.3 0.92 0.4 UK0 UK00L 1666 1049. 1041. 1044. 0L _214 1217 0 105 3.8 6 79.6 81.9 2 31.1 33.7 0 33.3 35.0 0.89 0.8 UK0 UK00L 4510 1002. 1044. 1030. 0L _69 3240 0 295 2.7 8 56.8 60.1 0 30.3 33.0 8 27.3 29.3 0.43 -4.1 UK0 UK00L 4100 1103. 1049. 1067. 0L _290 3190 0 285 0.8 0 57.8 60.9 5 30.3 33.0 0 28.1 30.2 0.32 4.8 UK0 UK00L 1698 1057. 1050. 1052. 0L _245 1261 0 108 1.6 7 78.7 81.1 6 30.7 33.3 9 33.0 34.7 0.92 0.7 UK0 UK00L 1970 1141. 1050. 1080. 0L _82 1481 0 128 0.9 8 78.7 81.0 6 30.9 33.6 6 33.8 35.5 0.20 8.0 UK0 UK00L 1046. 128. 1051. 1050. 0L _283 289 3900 26 1.4 9 3 129.7 7 32.6 35.2 1 47.0 48.3 0.96 -0.5 UK0 UK00L 2780 1089. 1055. 1066. 0L _216 2080 0 175 1.5 8 66.1 68.8 5 30.7 33.4 7 30.1 32.0 0.55 3.1 UK0 UK00L 2721 1058. 1035. 0L _182 1959 0 173 2.2 988.8 68.1 70.8 2 30.8 33.5 8 29.9 31.7 0.23 -7.0 UK0 UK00L 1076. 1060. 1065. 0L _215 732 9730 61 1.3 5 93.4 95.4 4 31.9 34.5 7 37.5 39.1 0.82 1.5 UK0 UK00L 2073 1141. 1067. 1091. 0L _224 1592 0 130 1.4 8 70.8 73.3 0 31.2 33.9 8 31.9 33.8 0.17 6.6 UK0 UK00L 1351 1095. 1071. 1079. 0L _163 1008 0 85 1.0 1 85.3 87.4 9 31.1 33.8 6 35.2 36.9 0.71 2.1 UK0 UK00L 9179 11. 1089. 1073. 1078. 0L _76 6840 0 569 4 8 45.6 49.5 0 30.8 33.6 5 25.6 27.9 0.75 1.5 UK0 UK00L 2170 1076. 1076. 1076. 0L _236 1610 0 136 1.7 5 73.4 75.9 8 31.5 34.2 7 32.2 34.0 1.00 0.0 UK0 UK00L 3520 1118. 1079. 1092. 0L _200 2642 0 217 2.1 6 61.9 64.8 5 31.3 34.1 6 29.6 31.6 0.47 3.5 UK0 UK00L 2359 1076. 1085. 1082. 0L _62 1744 0 149 2.3 5 72.7 75.2 0 31.4 34.2 2 31.9 33.8 0.88 -0.8 UK0 UK00L 3170 1090. 1059. 0L _197 2230 0 192 0.7 997.2 64.2 67.1 4 31.6 34.4 8 29.4 31.3 0.12 -9.3 UK0 UK00L 4920 1071. 1093. 1086. 0L _93 3690 0 302 1.2 2 55.6 58.9 7 31.7 34.5 2 28.0 30.1 0.65 -2.1 UK0 UK00L 1958 1146. 1097. 1114. 0L _15 1487 0 115 1.3 9 74.7 77.0 5 32.0 34.8 2 33.2 35.1 0.38 4.3 UK0 UK00L 1336 1098. 1055. - 0L _84 958 0 82 2.5 968.9 84.1 86.4 0 32.5 35.2 6 34.3 36.0 0.02 13.3 UK0 UK00L 7720 1027. 1099. 1075. 0L _104 5570 0 485 1.8 8 49.7 53.4 7 31.9 34.7 8 26.5 28.7 0.16 -7.0 UK0 UK00L 1199 1187. 1107. 1134. 0L _291 921 0 79 1.4 1 89.9 91.9 3 32.7 35.4 5 38.0 39.7 0.22 6.7 UK0 UK00L 3110 1226. 1120. 1157. 0L _259 2553 0 189 1.2 3 61.9 64.7 3 32.4 35.2 0 30.8 32.8 0.11 8.6 UK0 UK00L 2105 1174. 1128. 1144. 0L _237 1641 0 125 2.1 6 69.7 72.3 4 33.0 35.9 3 32.6 34.6 0.36 3.9 UK0 UK00L 2640 1144. 1136. 1138. 0L _176 2025 0 154 1.4 3 66.7 69.4 0 33.1 35.9 9 31.6 33.6 0.88 0.7 UK0 UK00L 4353 1131. 1138. 1136. 0L _266 3344 0 264 1.1 5 57.3 60.4 7 32.8 35.7 2 29.1 31.2 0.90 -0.6 UK0 UK00L 8950 1154. 1142. 1146. 0L _100 6850 0 522 1.5 5 44.1 48.0 5 32.6 35.5 6 26.3 28.7 0.82 1.0

141

UK0 UK00L 1093 1206. 1143. 1165. 0L _252 864 0 64 3.0 8 89.3 91.3 5 33.6 36.4 6 38.5 40.2 0.31 5.2 UK0 UK00L 8720 1199. 1144. 1163. 0L _162 6860 0 507 2.6 5 44.9 48.7 1 32.9 35.8 4 26.8 29.2 0.33 4.6 UK0 UK00L 3020 1177. 1151. 1160. 0L _269 2370 0 182 4.2 1 62.7 65.5 1 33.1 36.0 2 30.8 32.9 0.64 2.2 UK0 UK00L 2470 1162. 1153. 1156. 0L _286 1950 0 156 1.9 1 66.5 69.2 8 33.5 36.4 7 31.9 33.9 0.88 0.7 UK0 UK00L 1637 1201. 1157. 1173. 0L _38 1269 0 93 1.7 9 79.3 81.5 6 33.6 36.5 1 35.6 37.4 0.50 3.7 UK0 UK00L 2139 1216. 1164. 1182. 0L _208 1683 0 122 1.7 6 72.4 74.8 6 33.9 36.8 9 34.0 35.9 0.47 4.3 UK0 UK00L 4060 1257. 1165. 1198. 0L _188 3352 0 233 3.5 4 56.1 59.1 6 33.5 36.5 2 29.9 32.1 0.13 7.3 UK0 UK00L 5080 1179. 1167. 1171. 0L _112 4020 0 294 3.2 6 53.1 56.4 3 33.5 36.5 6 28.7 30.9 0.82 1.0 UK0 UK00L 4150 1197. 1175. 1183. 0L _101 3260 0 241 1.4 0 56.3 59.4 3 33.7 36.7 0 29.6 31.8 0.72 1.8 UK0 UK00L 3320 1304. 1193. 1233. 0L _195 2780 0 184 1.4 1 58.6 61.4 6 34.7 37.7 5 31.3 33.5 0.05 8.5 UK0 UK00L 3390 1187. 1220. 1208. 0L _77 2660 0 182 2.7 1 60.3 63.2 3 34.9 38.0 4 31.0 33.1 0.55 -2.8 UK0 UK00L 1204 1223. 1221. 1222. 0L _196 954 0 66 1.7 9 82.4 84.6 4 35.8 38.8 3 37.6 39.4 0.96 0.2 UK0 UK00L 1350 1347. 1251. 1286. 0L _296 1150 0 81 0.9 1 79.1 81.2 2 36.3 39.4 9 37.9 39.7 0.16 7.1 UK0 UK00L 2250 1245. 1255. 1252. 0L _136 1800 0 122 1.4 5 67.5 70.1 9 36.4 39.6 1 33.8 35.9 0.86 -0.8 UK0 UK00L 7250 1290. 1256. 1269. 0L _172 5910 0 381 2.9 2 45.4 49.1 5 35.8 39.0 0 28.3 30.7 0.41 2.6 UK0 UK00L 8250 1209. 1274. 1250. 0L _121 6510 0 437 3.9 3 45.4 49.2 5 36.1 39.3 4 27.9 30.3 0.21 -5.4 UK0 UK00L 1419. 101. 1280. 1333. 0L _244 554 6250 33 1.1 2 5 103.1 8 38.4 41.4 5 46.4 48.0 0.05 9.7 UK0 UK00L 2460 1252. 1285. 1273. 0L _300 2002 0 139 2.0 7 64.7 67.4 0 36.7 39.9 0 33.2 35.3 0.58 -2.6 UK0 UK00L 1247. 1297. 1278. 0L _276 693 8370 45 1.4 9 90.6 92.5 2 38.2 41.4 7 41.1 42.9 0.48 -3.9 UK0 UK00L 1502 1791 1315. 1299. 1305. 0L _231 0 00 948 3.9 5 38.9 43.1 8 38.2 41.4 8 28.0 30.6 0.58 1.2 UK0 UK00L 1356. 114. 1318. 1332. 0L _230 413 4820 24 1.4 1 2 115.7 2 40.0 43.1 7 50.5 52.0 0.66 2.8 UK0 UK00L 1705 1360. 1319. 1335. 0L _134 1457 0 86 1.6 5 72.6 74.9 3 37.8 41.1 1 36.6 38.6 0.54 3.0 UK0 UK00L 3183 1331. 1319. 1324. 0L _80 2686 0 158 1.6 4 59.2 62.0 8 37.4 40.7 2 32.4 34.6 0.84 0.9 UK0 UK00L 3246 1320. 1327. 1324. 0L _289 2750 0 174 1.8 1 58.1 61.0 2 37.7 41.0 5 32.1 34.4 0.90 -0.5 UK0 UK00L 3609 1393. 1335. 1357. 0L _145 3154 0 180 2.3 4 56.5 59.4 0 37.9 41.3 6 32.3 34.6 0.34 4.2 UK0 UK00L 2050 1423. 1339. 1372. 0L _268 1821 0 105 2.1 4 66.5 68.9 2 38.4 41.7 0 35.5 37.6 0.15 5.9 UK0 UK00L 2186 1280. 1346. 1321. 0L _154 1832 0 108 1.6 9 65.8 68.4 5 38.6 42.0 4 34.3 36.4 0.18 -5.1 UK0 UK00L 5550 1410. 1366. 1384. 0L _173 4850 0 265 2.7 6 49.9 53.2 9 38.6 42.0 1 30.8 33.3 0.37 3.1 UK0 UK00L 3500 1367. 1371. 1369. 0L _55 2970 0 171 1.7 1 59.2 62.0 1 38.8 42.3 5 33.1 35.3 0.95 -0.3 UK0 UK00L 5730 1463. 1379. 1412. 0L _209 5120 0 271 1.8 3 46.7 50.1 4 38.8 42.3 7 30.3 32.9 0.08 5.7 UK0 UK00L 3430 1373. 1386. 1381. 0L _56 2960 0 163 3.2 7 55.9 58.9 2 39.7 43.1 3 32.5 34.9 0.79 -0.9 UK0 UK00L 3630 1342. 1387. 1369. 0L _107 3070 0 177 2.3 7 56.7 59.6 2 40.8 44.2 8 33.0 35.3 0.27 -3.3 UK0 UK00L 4350 1419. 1391. 1402. 0L _158 3790 0 204 2.6 2 52.9 56.0 4 39.5 42.9 4 31.9 34.3 0.65 2.0 UK0 UK00L 5260 1389. 1395. 1393. 0L _190 4620 0 253 2.7 0 50.8 54.0 5 40.4 43.8 0 31.6 34.0 0.90 -0.5 UK0 UK00L 7010 1351. 1403. 1383. 0L _63 5920 0 332 1.5 6 46.4 50.0 8 39.6 43.1 2 29.9 32.4 0.32 -3.9 UK0 UK00L 1230 1419. 1423. 1421. 0L _281 1093 0 60 1.5 2 80.1 82.1 0 41.0 44.5 5 40.4 42.3 0.95 -0.3

142

UK0 UK00L 5340 1459. 1436. 1445. 0L _299 4870 0 272 1.6 1 48.5 51.8 4 40.9 44.5 6 31.4 33.9 0.61 1.6 UK0 UK00L 1300 1449 1467. 1440. 1451. 0L _13 0 00 617 3.7 4 35.4 39.8 5 40.8 44.4 4 28.3 31.1 0.52 1.8 UK0 UK00L 7000 1483. 1457. 1468. 0L _47 6320 0 313 2.4 8 44.4 48.0 0 41.1 44.7 0 30.5 33.1 0.60 1.8 UK0 UK00L 1284 1567. 1460. 1504. 0L _21 1231 0 55 2.0 2 78.4 80.5 6 42.1 45.6 6 41.4 43.4 0.15 6.8 UK0 UK00L 1290 1410 1492. 1462. 1474. 0L _89 0 00 651 1.7 0 35.6 40.0 2 41.1 44.8 4 28.5 31.3 0.48 2.0 UK0 UK00L 6810 1528. 1464. 1490. 0L _261 6370 0 310 6.4 1 43.5 47.1 7 41.0 44.7 8 30.4 33.1 0.27 4.1 UK0 UK00L 1910 1500. 1473. 1484. 0L _225 1770 0 84 1.8 1 64.9 67.4 4 41.5 45.1 4 36.3 38.6 0.65 1.8 UK0 UK00L 2236 1543. 1478. 1505. 0L _257 2150 0 101 1.5 9 60.9 63.5 1 41.9 45.5 3 35.6 37.9 0.29 4.3 UK0 UK00L 1140 1238 1516. 1480. 1495. 0L _135 0 00 552 6.2 1 37.3 41.5 1 41.5 45.2 0 29.0 31.8 0.39 2.4 UK0 UK00L 1741 1384. 1481. 1442. 0L _86 1514 0 77 1.8 7 72.6 74.9 7 42.2 45.8 3 38.1 40.1 0.10 -7.0 UK0 UK00L 6620 1434. 1481. 1462. 0L _277 5980 0 318 1.7 0 45.1 48.7 7 43.0 46.5 2 31.1 33.7 0.25 -3.3 UK0 UK00L 3420 1616. 1492. 1544. 0L _60 3370 0 151 3.3 6 52.2 55.1 4 42.1 45.8 5 33.5 36.0 0.01 7.7 UK0 UK00L 7730 1425. 1492. 1465. 0L _6 6770 0 314 1.8 5 46.0 49.5 9 42.9 46.6 3 31.2 33.8 0.15 -4.7 UK0 UK00L 4980 1522. 1493. 1505. 0L _119 4570 0 222 2.8 1 48.6 51.8 4 42.1 45.8 3 32.0 34.5 0.62 1.9 UK0 UK00L 1810 1624. 1496. 1549. 0L _155 1738 0 80 1.6 1 65.4 67.8 0 42.3 46.0 8 37.6 39.9 0.03 7.9 UK0 UK00L 2601 1492. 1499. 1496. 0L _232 2407 0 112 1.1 0 59.9 62.6 0 42.5 46.1 1 35.1 37.4 0.89 -0.5 UK0 UK00L 5300 1502. 1547. 1528. 0L _282 4940 0 238 1.9 1 48.7 51.9 4 44.0 47.8 3 32.4 35.0 0.30 -3.0 UK0 UK00L 9340 1514. 1501. 1506. 0L _113 8630 0 412 1.8 1 40.4 44.3 6 42.0 45.7 8 29.8 32.5 0.83 0.8 UK0 UK00L 7190 1561. 1525. 1540. 0L _105 6840 0 312 2.7 4 42.1 45.8 6 42.7 46.5 6 30.7 33.3 0.50 2.3 UK0 UK00L 1303 1376 1561. 1565. 1563. 0L _139 0 00 572 1.8 6 34.1 38.5 6 43.4 47.3 9 28.8 31.7 0.93 -0.3 UK0 UK00L 2290 1574. 1585. 1580. 0L _191 2170 0 94 1.0 9 61.1 63.7 3 44.3 48.2 9 36.4 38.7 0.86 -0.7 UK0 UK00L 3270 1594. 1650. 1625. 0L _14 3200 0 120 1.4 0 53.5 56.4 0 46.0 50.1 6 34.6 37.1 0.31 -3.5 UK0 UK00L 1076 1595. 1640. 1620. 0L _117 1050 0 43 0.7 9 76.4 78.4 0 46.9 50.8 8 42.3 44.3 0.45 -2.8 UK0 UK00L 3620 1614. 1613. 1614. 0L _125 3570 0 147 1.9 8 54.2 57.1 5 44.9 48.9 0 34.7 37.1 0.98 0.1 UK0 UK00L 4040 1618. 1620. 1619. 0L _210 3980 0 161 1.4 5 48.4 51.6 0 45.4 49.3 3 33.2 35.8 0.97 -0.1 UK0 UK00L 1618. 1588. 1601. 0L _285 977 9700 42 0.7 5 79.0 81.0 8 46.3 50.0 6 43.2 45.2 0.60 1.8 UK0 UK00L 8300 1624. 1613. 1618. 0L _37 8130 0 329 2.1 1 39.5 43.3 5 44.9 48.9 1 30.7 33.5 0.82 0.7 UK0 UK00L 5430 1625. 1586. 1603. 0L _32 5260 0 214 1.6 9 44.9 48.3 8 44.4 48.3 7 32.1 34.7 0.40 2.4 UK0 UK00L 1482 1479 1635. 1601. 1616. 0L _264 0 00 644 2.0 2 34.5 38.8 9 44.9 48.8 4 29.7 32.6 0.41 2.0 UK0 UK00L 1661 1635. 1582. 1605. 0L _212 1624 0 69 2.9 2 64.5 66.9 3 46.2 49.9 1 38.6 40.8 0.33 3.2 UK0 UK00L 1635. 117. 1567. 1596. 0L _88 351 3580 15 2.6 2 1 118.4 6 47.5 51.1 7 57.6 59.2 0.34 4.1 UK0 UK00L 8830 1638. 1608. 1621. 0L _271 8900 0 367 2.5 9 37.9 41.8 0 44.4 48.4 4 30.2 33.0 0.50 1.9 UK0 UK00L 2034 1638. 1533. 1578. 0L _68 2019 0 85 2.3 9 62.1 64.6 2 43.4 47.2 2 37.0 39.3 0.05 6.4 UK0 UK00L 2840 1640. 1680. 1662. 0L _274 2860 0 111 1.2 7 55.9 58.7 4 47.1 51.2 8 35.9 38.3 0.45 -2.4 UK0 UK00L 5970 1644. 1639. 1641. 0L _106 5810 0 238 1.5 4 43.6 47.1 0 45.4 49.4 4 31.9 34.6 0.92 0.3 UK0 UK00L 3570 1646. 1670. 1659. 0L _123 3590 0 142 1.1 2 52.1 55.1 4 46.5 50.5 8 34.6 37.1 0.67 -1.5

143

UK0 UK00L 1203 1190 1649. 1701. 1678. 0L _297 0 00 491 0.9 9 35.2 39.4 7 46.8 51.0 6 30.1 33.0 0.30 -3.1 UK0 UK00L 1253 1243 23. 1653. 1582. 1613. 0L _260 0 00 493 0 6 36.1 40.2 8 44.6 48.5 4 30.1 33.0 0.07 4.3 UK0 UK00L 5330 1653. 1598. 1622. 0L _17 5380 0 223 5.7 6 46.8 50.1 4 45.7 49.5 4 33.2 35.8 0.24 3.3 UK0 UK00L 1455 1657. 1604. 1627. 0L _83 1474 0 58 2.6 2 69.5 71.7 4 45.4 49.3 4 40.0 42.2 0.39 3.2 UK0 UK00L 9570 1660. 1626. 1641. 0L _174 9670 0 378 1.0 8 37.5 41.4 5 45.1 49.1 5 30.4 33.2 0.47 2.1 UK0 UK00L 8730 1662. 1605. 1630. 0L _34 8690 0 348 1.0 6 38.5 42.4 4 44.5 48.5 4 30.5 33.3 0.25 3.4 UK0 UK00L 2174 1668. 1652. 1659. 0L _103 2207 0 84 1.2 1 58.9 61.5 0 46.3 50.3 1 36.8 39.2 0.71 1.0 UK0 UK00L 1378 1668. 1577. 1616. 0L _61 1376 0 58 1.7 1 71.3 73.4 2 44.6 48.5 5 40.5 42.6 0.18 5.4 UK0 UK00L 9590 1677. 1634. 1653. 0L _9 9640 0 343 2.2 1 38.0 41.9 5 45.5 49.5 2 30.7 33.5 0.36 2.5 UK0 UK00L 7450 1684. 1610. 1642. 0L _159 7660 0 301 2.0 2 40.9 44.6 5 45.1 49.1 7 31.5 34.2 0.11 4.4 UK0 UK00L 4260 1684. 1623. 1650. 0L _273 4420 0 180 1.4 2 46.5 49.8 5 44.9 48.9 2 32.8 35.5 0.19 3.6 UK0 UK00L 2730 1684. 1639. 1659. 0L _288 2880 0 116 1.0 2 55.3 58.0 5 45.7 49.7 2 35.6 38.0 0.51 2.7 UK0 UK00L 2455 1687. 1768. 1731. 0L _46 2460 0 88 1.5 8 56.4 59.1 7 49.3 53.6 9 36.7 39.2 0.10 -4.8 UK0 UK00L 1906 1691. 1692. 1691. 0L _218 1976 0 73 1.3 4 61.7 64.2 3 47.3 51.4 9 38.0 40.4 0.99 -0.1 UK0 UK00L 7220 1696. 1701. 1699. 0L _111 7340 0 275 2.6 7 40.3 44.0 7 47.2 51.3 5 31.7 34.5 0.90 -0.3 UK0 UK00L 5540 1696. 1667. 1680. 0L _96 5650 0 215 1.6 7 44.1 47.5 5 46.2 50.3 4 32.4 35.2 0.60 1.7 UK0 UK00L 2150 1698. 1582. 1632. 0L _57 2140 0 89 1.5 5 59.0 61.6 3 44.3 48.2 8 36.5 38.9 0.04 6.8 UK0 UK00L 5360 1700. 1663. 1679. 0L _295 5560 0 226 1.3 2 44.5 47.9 5 45.9 50.0 8 32.5 35.2 0.51 2.2 UK0 UK00L 7030 1703. 1706. 1705. 0L _284 7390 0 286 1.2 8 41.4 45.0 7 47.1 51.2 4 31.9 34.7 0.95 -0.2 UK0 UK00L 1259 1226 1705. 1668. 1684. 0L _52 0 00 490 2.7 5 34.7 38.9 0 47.5 51.5 7 30.8 33.7 0.35 2.2 UK0 UK00L 2709 1705. 1646. 1672. 0L _92 2791 0 107 1.9 5 53.5 56.4 0 46.2 50.2 3 35.3 37.9 0.26 3.5 UK0 UK00L 6270 1716. 1656. 1682. 0L _265 6500 0 250 2.2 1 41.8 45.3 0 45.7 49.8 7 31.8 34.6 0.23 3.5 UK0 UK00L 1777 1728 1717. 1615. 1660. 0L _133 0 00 738 1.5 8 33.1 37.5 5 45.8 49.7 5 30.1 33.0 0.02 6.0 UK0 UK00L 1137 1098 1717. 1737. 1728. 0L _102 0 00 413 1.1 8 35.2 39.4 8 47.6 51.9 7 30.5 33.4 0.70 -1.2 UK0 UK00L 6190 1717. 1789. 1756. 0L _24 6340 0 216 1.9 8 42.6 46.1 7 49.2 53.6 8 32.7 35.5 0.15 -4.2 UK0 UK00L 1629 1723. 1707. 1714. 0L _234 1741 0 61 2.2 0 65.4 67.7 7 47.7 51.8 6 39.5 41.8 0.81 0.9 UK0 UK00L 3380 1728. 1724. 1726. 0L _108 3490 0 125 2.1 3 52.6 55.5 9 47.9 52.1 4 35.5 38.0 0.96 0.2 UK0 UK00L 1034 9930 1735. 1705. 1718. 0L _165 0 0 370 2.8 2 36.0 40.1 2 47.0 51.2 7 30.7 33.6 0.50 1.7 UK0 UK00L 4150 1735. 1757. 1747. 0L _183 4390 0 148 1.4 2 46.0 49.2 4 48.8 53.0 3 33.7 36.4 0.63 -1.3 UK0 UK00L 6950 1743. 1744. 1744. 0L _198 7240 0 253 1.5 8 40.4 44.0 2 47.9 52.2 0 31.9 34.8 0.99 0.0 UK0 UK00L 6280 1747. 1734. 1740. 0L _228 6730 0 228 1.5 2 40.9 44.5 3 47.8 52.0 2 32.1 34.9 0.79 0.7 UK0 UK00L 3587 1747. 1680. 1710. 0L _294 3812 0 151 2.1 2 49.3 52.3 4 47.0 51.0 3 34.4 37.0 0.19 3.8 UK0 UK00L 1617 1527 1748. 1767. 1759. 0L _213 0 00 539 2.7 9 31.2 35.7 7 48.7 53.0 1 29.9 33.0 0.63 -1.1 UK0 UK00L 1330 1249 1750. 1729. 1739. 0L _241 0 00 458 4.2 6 33.1 37.4 4 47.3 51.6 0 30.0 33.0 0.64 1.2 UK0 UK00L 1610 1497 1776. 1871. 1826. 0L _137 0 00 521 3.3 1 31.3 35.8 7 51.2 55.7 9 30.4 33.5 0.02 -5.4 UK0 UK00L 1513 1776. 1660. 1712. 0L _91 1613 0 59 2.7 1 66.5 68.8 5 46.7 50.7 2 40.1 42.4 0.07 6.5

144

UK0 UK00L 8950 1779. 1762. 1770. 0L _2 9440 0 302 2.1 4 37.2 41.1 8 48.2 52.5 4 31.2 34.2 0.74 0.9 UK0 UK00L 1601 1781. 1793. 1787. 0L _16 1722 0 56 1.6 1 74.6 76.6 6 52.0 56.1 8 44.3 46.5 0.86 -0.7 UK0 UK00L 5256 1782. 1743. 1761. 0L _178 5660 0 193 1.7 8 43.3 46.7 7 48.0 52.2 5 32.9 35.7 0.42 2.2 UK0 UK00L 5380 1789. 1764. 1775. 0L _194 5840 0 193 3.9 4 43.8 47.2 3 48.5 52.8 8 33.2 36.0 0.64 1.4 UK0 UK00L 4920 1789. 1710. 1746. 0L _243 5300 0 183 2.9 4 44.6 47.9 1 47.4 51.6 1 33.3 36.1 0.09 4.4 UK0 UK00L 7270 1791. 1760. 1774. 0L _42 7800 0 264 2.2 1 39.5 43.2 9 48.2 52.5 7 32.0 34.8 0.55 1.7 UK0 UK00L 1128 1042 1794. 1755. 1773. 0L _171 0 00 383 3.2 4 34.8 39.0 5 48.0 52.3 3 30.7 33.7 0.44 2.2 UK0 UK00L 7130 1796. 1773. 1783. 0L _205 7800 0 253 2.4 1 39.5 43.2 1 48.4 52.7 7 31.9 34.8 0.67 1.3 UK0 UK00L 3797 1797. 1780. 1788. 0L _75 4070 0 135 2.6 7 48.3 51.3 4 48.8 53.2 4 34.6 37.3 0.75 1.0 UK0 UK00L 4390 1801. 1790. 1795. 0L _227 4720 0 153 2.9 1 46.1 49.3 7 49.1 53.5 5 34.0 36.8 0.86 0.6 UK0 UK00L 1025 9510 1802. 1749. 1773. 0L _85 0 0 347 5.0 7 36.8 40.7 6 47.9 52.2 9 31.2 34.2 0.32 2.9 UK0 UK00L 6620 1802. 1749. 1773. 0L _220 7420 0 239 3.0 7 41.6 45.1 6 49.0 53.2 9 33.0 35.8 0.27 2.9 UK0 UK00L 1121 1036 1804. 1835. 1820. 0L _66 0 00 355 2.3 4 35.4 39.4 0 50.0 54.5 7 31.2 34.2 0.50 -1.7 UK0 UK00L 9080 1804. 1748. 1773. 0L _180 9790 0 331 1.4 4 36.6 40.6 1 47.9 52.2 9 31.2 34.2 0.22 3.1 UK0 UK00L 1043 9560 1804. 1773. 1787. 0L _267 0 0 343 1.1 4 37.6 41.4 1 48.9 53.2 5 31.7 34.7 0.39 1.7 UK0 UK00L 4610 1810. 1752. 1779. 0L _166 5040 0 168 4.3 9 45.6 48.8 5 48.2 52.4 3 33.7 36.5 0.30 3.2 UK0 UK00L 7168 1812. 1716. 1760. 0L _169 7840 0 267 2.1 6 39.3 43.0 1 47.4 51.6 0 31.9 34.8 0.04 5.3 UK0 UK00L 3450 1822. 1735. 1775. 0L _186 3770 0 127 2.2 4 50.6 53.5 8 48.0 52.2 4 35.3 38.0 0.13 4.8 UK0 UK00L 4162 1824. 1793. 1807. 0L _109 4490 0 150 2.7 0 47.8 50.8 1 48.9 53.3 5 34.5 37.2 0.58 1.7 UK0 UK00L 5170 1840. 1804. 1821. 0L _72 5670 0 183 0.9 2 42.9 46.2 9 49.0 53.4 3 33.1 36.0 0.49 1.9 UK0 UK00L 2290 2078 1843. 1826. 1834. 0L _53 0 00 723 3.6 4 27.9 32.8 3 49.8 54.3 3 29.6 32.8 0.70 0.9 UK0 UK00L 7970 1843. 1816. 1829. 0L _51 8810 0 280 2.1 4 37.7 41.5 5 49.6 54.0 1 31.9 34.8 0.66 1.5 UK0 UK00L 6420 1848. 1841. 1844. 0L _199 7210 0 217 1.6 2 41.4 44.9 8 50.4 54.9 8 33.1 36.0 0.89 0.3 UK0 UK00L 2568 1851. 1848. 1849. 0L _179 2860 0 88 1.6 4 54.4 57.1 6 50.7 55.1 9 37.1 39.7 0.96 0.2 UK0 UK00L 3516 1854. 1843. 1848. 0L _3 3880 0 112 0.5 6 48.6 51.6 2 50.3 54.7 6 35.2 37.9 0.85 0.6 UK0 UK00L 1545 1369 1859. 1823. 1840. 0L _262 0 00 502 1.4 4 31.9 36.3 3 50.0 54.4 2 30.7 33.8 0.33 1.9 UK0 UK00L 3230 1859. 1878. 1869. 0L _87 3590 0 108 1.5 4 50.1 53.0 5 51.2 55.7 4 35.8 38.5 0.71 -1.0 UK0 UK00L 6220 1861. 1816. 1837. 0L _95 6940 0 217 1.6 0 41.1 44.6 0 49.9 54.3 1 33.0 35.9 0.34 2.4 UK0 UK00L 1268 1115 1862. 1835. 1848. 0L _181 0 00 382 3.9 5 33.6 37.8 5 50.0 54.4 2 31.0 34.0 0.60 1.5 UK0 UK00L 8370 1879. 1851. 1865. 0L _248 9510 0 284 1.1 9 36.9 40.8 9 50.3 54.8 1 31.9 34.9 0.63 1.5 UK0 UK00L 2085 1890. 1861. 1875. 0L _23 2326 0 70 1.7 8 57.1 59.6 6 51.7 56.1 4 38.5 41.1 0.60 1.5 UK0 UK00L 7207 1895. 1860. 1877. 0L _177 8310 0 242 2.0 5 38.7 42.3 6 51.2 55.7 1 32.8 35.7 0.40 1.8 UK0 UK00L 1323 1152 1900. 1876. 1887. 0L _170 0 00 388 1.4 1 33.3 37.5 6 51.1 55.7 8 31.3 34.3 0.55 1.2 UK0 UK00L 2606 1909. 1931. 1921. 0L _54 2989 0 85 1.1 4 52.0 54.8 7 53.2 57.8 0 37.2 39.8 0.68 -1.2 UK0 UK00L 7710 1921. 1881. 1900. 0L _70 8930 0 263 3.4 6 37.8 41.5 4 51.1 55.7 6 32.4 35.4 0.44 2.1 UK0 UK00L 1547 1325 1945. 1980. 1963. 0L _149 0 00 424 0.5 8 31.0 35.4 8 53.3 58.1 7 31.0 34.2 0.51 -1.8

145

UK0 UK00L 2317 1953 1950. 1907. 1928. 0L _270 0 00 672 2.5 3 27.3 32.2 3 51.4 56.1 0 30.0 33.2 0.37 2.2 UK0 UK00L 7020 1954. 1898. 1925. 0L _8 8230 0 221 4.8 7 38.3 42.0 7 51.6 56.2 6 32.8 35.8 0.25 2.9 UK0 UK00L 5620 1962. 1860. 1909. 0L _67 6700 0 187 1.4 2 41.2 44.6 6 51.6 56.1 1 33.9 36.8 0.03 5.2 UK0 UK00L 2489 1975. 1904. 1938. 0L _50 2930 0 83 1.6 4 56.3 58.9 4 52.5 57.0 7 38.8 41.4 0.20 3.6 UK0 UK00L 1028 8640 1993. 1879. 1933. 0L _4 0 0 277 3.9 0 40.0 43.5 0 53.1 57.5 7 34.2 37.1 0.04 5.7 UK0 UK00L 1321 2001. 1963. 1982. 0L _279 1595 0 43 0.7 6 64.3 66.5 2 54.0 58.6 0 42.0 44.5 0.53 1.9 UK0 UK00L 8240 2003. 1951. 1976. 0L _81 9960 0 266 1.4 1 35.7 39.5 3 52.9 57.6 5 32.5 35.5 0.24 2.6 UK0 UK00L 1405 1157 2008. 1994. 2001. 0L _31 0 00 355 1.7 8 32.1 36.3 0 53.7 58.5 3 31.6 34.8 0.77 0.7 UK0 UK00L 3560 2031. 1981. 2006. 0L _90 4350 0 113 2.0 6 45.9 48.9 2 53.8 58.5 0 35.7 38.6 0.36 2.5 UK0 UK00L 2052. 2073. 2063. 0L _235 784 6250 18 1.5 7 78.3 80.1 5 58.1 62.8 1 48.7 50.8 0.72 -1.0 UK0 UK00L 1138 9060 2074. 2003. 2039. 0L _187 0 0 276 1.6 8 35.0 38.9 9 54.1 58.9 1 32.7 35.8 0.13 3.4 UK0 UK00L 1073 8650 2083. 2059. 2071. 0L _110 0 0 265 0.9 0 34.7 38.6 4 55.1 60.1 3 32.7 35.8 0.65 1.1 UK0 UK00L 5540 2088. 2022. 2055. 0L _97 7110 0 172 1.8 5 40.1 43.5 8 54.5 59.4 5 34.2 37.2 0.24 3.1 UK0 UK00L 3435 2091. 2009. 2050. 0L _79 4375 0 106 1.0 2 44.8 47.9 6 54.5 59.3 2 35.7 38.6 0.08 3.9 UK0 UK00L 1129 8690 2120. 2069. 2095. 0L _287 0 0 279 2.3 8 34.0 37.9 3 55.6 60.5 2 32.7 35.9 0.29 2.4 UK0 UK00L 3983 2327. 2328. 2328. 0L _150 5820 0 105 1.3 6 41.4 44.5 7 61.4 66.9 1 36.2 39.2 0.98 0.0 UK0 UK00L 2368. 2337. 2354. 0L _142 833 5490 15 1.1 5 90.6 92.1 2 72.6 77.3 0 59.3 61.2 0.72 1.3 UK0 UK00L 5480 11. 2421. 2282. 2356. 0L _226 8460 0 146 3 4 36.8 40.2 2 60.7 66.0 5 35.1 38.2 0.02 5.7 UK0 UK00L 1633 2476. 2377. 2431. 0L _250 2650 0 41 0.9 6 52.5 54.9 9 63.9 69.4 5 41.3 44.0 0.12 4.0 UK0 UK00L 3339 2097 2489. 2430. 2462. 0L _41 0 00 517 1.4 1 23.6 28.6 3 63.1 68.8 4 31.6 35.1 0.20 2.4 UK0 UK00L 4540 2489. 2431. 2462. 0L _189 7360 0 112 2.0 1 36.7 40.1 2 64.1 69.7 8 35.6 38.8 0.23 2.3 UK0 UK00L 5920 2537. 2508. 2524. 0L _204 9770 0 142 0.9 8 33.8 37.4 9 65.2 71.0 9 34.7 38.0 0.61 1.1 UK0 UK00L 1986 1176 2581. 2532. 2559. 0L _156 0 00 281 1.8 1 26.9 31.3 5 65.4 71.3 6 32.8 36.3 0.33 1.9 UK0 UK00L 2615. 2509. 2568. 0L _115 1640 9410 23 2.6 5 61.6 63.6 8 68.6 74.1 7 46.3 48.9 0.12 4.0 UK0 UK00L 3442 2643. 2592. 2621. 0L _11 5980 0 74 1.9 6 43.0 45.9 7 67.8 73.7 4 38.5 41.5 0.36 1.9 UK0 UK00L 2743 1538 2644. 2623. 2635. 0L _275 0 00 365 5.6 6 23.9 28.7 2 67.2 73.2 3 32.3 35.8 0.65 0.8 UK0 UK00L 1598 2677. 2641. 2662. 0L _247 2847 0 36 2.9 5 51.5 53.9 7 69.2 75.2 0 42.0 44.8 0.60 1.3 UK0 UK00L 2340 2692. 2680. 2687. 0L _240 4220 0 50 1.4 0 43.0 45.8 5 70.1 76.1 0 38.9 41.9 0.83 0.4 UK0 UK00L 4020 2203 2697. 2754. 2721. 0L _130 0 00 480 7.9 3 21.8 27.0 5 70.2 76.4 6 32.2 35.8 0.22 -2.1 UK0 UK00L 1968 1066 2710. 2655. 2686. 0L _238 0 00 226 1.0 7 27.9 32.1 3 68.8 74.8 9 33.8 37.3 0.26 2.0 UK0 UK00L 4418 2711. 2654. 2686. 0L _152 8060 0 100 0.6 5 35.5 38.9 1 68.6 74.6 8 36.0 39.3 0.29 2.1 UK0 UK00L 3030 1654 22. 2718. 2610. 2671. 0L _58 0 00 376 7 6 23.9 28.6 4 67.0 73.0 8 32.4 36.0 0.03 4.0 UK0 UK00L 3910 2720. 2736. 2727. 0L _129 7220 0 85 0.7 4 37.1 40.3 8 70.3 76.5 4 36.7 39.9 0.78 -0.6 UK0 UK00L 1410 7690 2722. 2704. 2714. 0L _19 0 0 159 1.9 1 30.4 34.3 3 70.0 76.1 5 34.7 38.1 0.71 0.7 UK0 UK00L 5350 2725. 2712. 2719. 0L _153 9900 0 118 0.5 6 32.7 36.3 3 69.3 75.5 9 35.1 38.4 0.82 0.5 UK0 UK00L 5260 2737. 2752. 2744. 0L _146 9910 0 113 1.4 8 33.2 36.8 4 70.3 76.6 0 35.4 38.7 0.79 -0.5

146

UK0 UK00L 1348 7250 2745. 2756. 2750. 0L _28 0 0 150 1.8 6 30.2 34.1 6 71.5 77.6 3 34.9 38.2 0.81 -0.4 UK0 UK00L 1143 6040 2755. 2718. 2739. 0L _45 0 0 131 1.2 1 32.2 35.9 2 71.4 77.4 4 35.7 39.0 0.35 1.3 UK0 UK00L 3192 2773. 2705. 2744. 0L _147 5990 0 70 0.9 8 38.9 41.9 1 69.6 75.7 6 37.3 40.5 0.24 2.5 UK0 UK00L 2329 1200 2790. 2744. 2771. 0L _280 0 00 273 1.7 7 25.5 29.9 4 70.1 76.3 1 33.2 36.8 0.30 1.7 UK0 UK00L 7050 3630 2795. 2871. 2827. 0L _211 0 00 738 0.8 7 18.7 24.4 6 72.5 79.0 2 31.8 35.5 0.12 -2.7 UK0 UK00L 2517 2818. 2760. 2794. 0L _254 4940 0 54 1.1 8 40.7 43.6 4 71.2 77.4 3 38.3 41.4 0.28 2.1 UK0 UK00L 2720 2868. 2858. 2864. 0L _143 5400 0 55 2.3 8 39.1 42.1 4 72.7 79.1 5 37.9 41.0 0.85 0.4 UK0 UK00L 2073 1006 2885. 2983. 2925. 0L _255 0 00 194 2.2 3 26.3 30.5 3 74.7 81.3 1 33.8 37.3 0.07 -3.4 UK0 UK00L 1590 7200 3026. 2920. 2983. 0L _10 0 0 150 1.2 8 41.1 43.8 1 85.2 91.0 7 42.7 45.6 0.07 3.5 UK0 UK00L 2481 3146. 3113. 3134. 0L _140 5930 0 46 1.8 9 37.0 40.0 9 78.8 85.6 0 38.3 41.6 0.53 1.0 UK0 UK00L 3098 8990 3733. 3653. 3705. 0L _39 0 0 134 1.6 7 21.6 26.0 0 87.8 95.5 3 34.1 37.9 0.13 2.2 UK0 UK00L 130. 0L _29 353 6370 399 1.3 533.5 7 132.4 114.9 3.6 3.9 136.6 8.6 8.9 0.00 78.5 UK0 UK00L 1553 0L _127 908 0 262 1.5 614.4 93.1 95.3 421.6 12.8 13.9 452.8 19.5 20.4 0.01 31.4 UK0 UK00L 1343 0L _161 815 0 231 0.6 711.6 96.2 98.3 421.7 13.2 14.3 469.7 20.9 21.8 0.00 40.7 UK0 UK00L 3830 0L _7 2620 0 563 1.5 940.0 71.0 73.6 445.2 14.2 15.4 535.2 19.9 21.1 0.00 52.6 UK0 UK00L 2930 0L _148 2010 0 337 3.3 948.8 68.9 71.7 619.1 18.7 20.4 694.9 23.3 24.7 0.00 34.7 UK0 UK00L 4090 1278. 0L _132 3260 0 482 1.2 6 57.7 60.6 634.3 19.7 21.3 795.5 24.3 25.9 0.00 50.4 UK0 UK00L 2061 1057 2799. 2677. 2747. 0L _222 0 00 233 2.2 8 26.1 30.5 1 69.2 75.3 6 33.6 37.0 0.01 4.4 UK0 UK00L 1826 9730 2752. 2508. 2646. 0L _128 0 0 236 2.0 5 27.5 31.6 9 64.9 70.8 0 33.3 36.8 0.00 8.8 UK0 UK00L 1709 9400 2691. 2550. 2629. 0L _207 0 0 220 2.0 1 28.2 32.3 7 66.0 71.8 7 33.5 36.9 0.01 5.2 UK0 UK00L 1535 8410 2712. 2522. 2629. 0L _30 0 0 191 2.7 4 28.8 32.8 5 66.6 72.3 2 34.2 37.5 0.00 7.0 UK0 UK00L 3000 2040 2285. 2114. 2202. 0L _122 0 00 594 9.6 4 29.7 34.0 9 58.8 63.7 7 33.2 36.4 0.00 7.5 UK0 UK00L 1354 7220 2754. 2508. 2646. 0L _167 0 0 171 1.4 2 29.8 33.7 5 65.3 71.0 8 34.1 37.5 0.00 8.9 UK0 UK00L 1370 7370 2732. 2579. 2666. 0L _43 0 0 179 0.7 6 32.7 36.3 3 67.5 73.4 1 35.3 38.6 0.00 5.6 UK0 UK00L 1287 1209 1743. 1632. 1681. 0L _278 0 00 507 2.7 8 33.4 37.7 0 45.0 49.0 5 29.7 32.7 0.01 6.4 UK0 UK00L 1405 1146 2004. 1824. 1910. 0L _246 0 90 410 1.8 5 34.4 38.4 3 50.3 54.7 1 32.0 35.0 0.00 9.0 UK0 UK00L 8170 1806. 1708. 1752. 0L _223 8890 0 306 3.9 0 36.6 40.6 1 47.0 51.2 6 31.1 34.1 0.01 5.4 UK0 UK00L 4410 2577. 2388. 2491. 0L _292 7570 0 124 1.0 2 37.3 40.6 6 63.3 68.8 9 36.0 39.1 0.00 7.3 UK0 UK00L 4760 2141. 1965. 2052. 0L _1 6100 0 141 1.0 9 42.0 45.2 1 53.3 58.0 7 34.9 37.8 0.00 8.3 UK0 UK00L 5620 2096. 1915. 2004. 0L _33 7050 0 191 2.2 6 42.2 45.4 9 52.5 57.1 3 34.8 37.7 0.00 8.6 UK0 UK00L 5070 1807. 1664. 1728. 0L _201 5390 0 194 3.4 7 44.3 47.6 5 46.9 50.9 8 33.4 36.1 0.00 7.9 UK0 UK00L 3330 2120. 1972. 2045. 0L _116 4230 0 113 4.9 8 46.4 49.4 2 55.3 59.9 8 37.0 39.7 0.00 7.0 UK0 UK00L 1565 2797. 2633. 2727. 0L _144 3040 0 35 0.8 3 48.0 50.5 5 70.0 75.8 2 41.3 44.2 0.00 5.9 UK0 UK00L 4670 2237. 2103. 2172. 0L _298 6590 0 155 0.6 1 51.4 54.0 8 59.9 64.6 0 40.0 42.7 0.00 6.0 UK0 UK00L 2658. 3137. 2853. - 0L _5 1680 9620 16 2.3 4 60.4 62.4 7 83.8 90.3 4 47.4 50.0 0.00 18.0 UK0 UK00L 2412 1003 3177. 2194. 2744. 0L _12 0 00 277 1.3 8 24.8 29.1 3 61.5 66.4 0 34.7 38.0 0.00 30.9

147

UK0 UK00L 3740 2050 2720. 2108. 2435. 0L _22 0 00 581 4.2 4 21.9 27.0 9 61.1 65.8 2 33.7 37.0 0.00 22.5 UK0 UK00L 2150 1153 2730. 1844. 2298. 0L _36 0 00 369 1.5 0 27.0 31.3 7 53.9 58.1 2 34.1 37.2 0.00 32.4 UK0 UK00L 1130 9630 1936. 1186. 1482. 0L _40 0 0 532 3.5 7 38.7 42.3 1 35.1 38.0 5 30.4 33.0 0.00 38.8 UK0 UK00L 9110 1724. 1339. 1495. 0L _48 9700 0 427 4.5 8 40.2 43.8 2 43.0 46.0 6 32.7 35.2 0.00 22.4 UK0 UK00L 1239 1956. 100. 1232. 1524. 0L _64 1510 0 70 1.4 2 0 101.5 5 37.3 40.3 1 51.4 53.0 0.00 37.0 UK0 UK00L 3300 1353. 1021. 0L _71 2840 0 278 2.5 8 74.6 76.9 873.4 36.9 38.6 4 38.3 39.8 0.00 35.5 UK0 UK00L 4480 1571. 1388. 1462. 0L _78 4310 0 211 1.9 1 50.7 53.8 8 40.1 43.5 4 32.6 35.0 0.00 11.6 UK0 UK00L 6560 1883. 1596. 1724. 0L _94 7600 0 270 2.9 0 41.6 45.0 4 44.5 48.4 2 32.4 35.2 0.00 15.2 UK0 UK00L 8010 1886. 1586. 1720. 0L _120 9190 0 350 1.6 1 41.4 44.8 8 45.7 49.5 0 33.0 35.7 0.00 15.9 UK0 UK00L 5300 1796. 1501. 1628. 0L _131 5750 0 235 1.9 1 44.0 47.3 1 42.9 46.6 0 32.6 35.2 0.00 16.4 UK0 UK00L 8500 1347. 1143. 1216. 0L _141 7090 0 493 2.9 1 44.0 47.7 5 33.8 36.7 1 28.0 30.4 0.00 15.1 UK0 UK00L 1503 1139. 1038. 0L _157 1149 0 102 0.7 2 81.2 83.4 990.6 29.5 32.0 0 33.8 35.4 0.01 13.0 UK0 UK00L 1776 1161 2431. 1407. 0L _160 0 00 911 3.2 1 38.6 41.9 833.3 26.0 28.1 8 30.7 33.2 0.00 65.7 UK0 UK00L 7720 1797. 1545. 1655. 0L _164 8360 0 321 3.6 7 39.7 43.4 9 43.5 47.3 6 31.4 34.2 0.00 14.0 UK0 UK00L 3521 1960. 1709. 1825. 0L _168 4220 0 132 0.8 7 49.0 51.9 1 48.7 52.8 4 36.0 38.7 0.00 12.8 UK0 UK00L 1647 1853. 1608. 1717. 0L _203 1828 0 65 1.7 0 62.7 65.1 5 45.4 49.3 4 39.0 41.4 0.00 13.2 UK0 UK00L 1052 1012 1730. 1387. 1528. 0L _217 0 00 493 1.5 0 36.8 40.7 2 40.6 43.9 5 30.2 32.9 0.00 19.8 UK0 UK00L 1120 1259. 1046. 1117. 0L _272 9290 00 801 6.8 8 43.7 47.6 2 31.5 34.1 8 26.8 29.1 0.00 17.0 UK0 UK00L 1187 5670 2919. 2263. 2626. 0L _293 0 0 172 1.6 4 31.6 35.2 2 62.7 67.8 3 35.9 39.1 0.00 22.5

148

Table 2-2: Dates of grains from PR-1-Lagoon collected from Detrital Zircon U-Pb-Th data results from LA-ICP- MS seen in Table 1. 4 = Accepted dates have probability of concordance >1%. Data collected from the Center for Pure and Applied Tectonics and Thermochronology, Department of Geoscience, University of Calgary. Accepted Dates4

Date 2sx 2sx 2stotal 2stotal (ABS) (Ma) (ABS) (%) (%) 184.7 5.8 3.2 6.3 3.5 188.9 5.9 3.1 6.4 3.4 232.3 7.7 3.3 8.3 3.6 385.4 11.9 3.1 12.9 3.3 388.4 12.1 3.1 13.2 3.4 398.6 12.2 3.1 13.2 3.3 409.5 12.6 3.1 13.7 3.3 419.6 12.9 3.1 14.0 3.3 420.0 12.7 3.0 13.9 3.3 428.3 13.4 3.1 14.5 3.4 428.4 13.1 3.1 14.3 3.4 429.1 13.1 3.1 14.3 3.3 437.4 13.4 3.1 14.6 3.3 438.6 13.5 3.1 14.7 3.4 443.4 14.1 3.2 15.2 3.4 447.1 13.6 3.0 14.8 3.3 456.0 14.0 3.1 15.2 3.3 464.4 14.3 3.1 15.6 3.3 465.7 14.1 3.0 15.4 3.3 469.8 14.3 3.1 15.6 3.3 477.2 14.4 3.0 15.7 3.3 569.1 18.9 3.3 20.2 3.5 584.5 17.7 3.0 19.2 3.3 606.8 18.5 3.1 20.1 3.3 636.1 19.1 3.0 20.8 3.3 804.4 24.0 3.0 26.1 3.2 980.1 29.0 3.0 31.5 3.2 988.9 29.6 3.0 32.1 3.2 997.2 29.0 2.9 31.6 3.2 999.4 29.2 2.9 31.8 3.2 1013.2 29.6 2.9 32.2 3.1 1014.3 29.6 2.9 32.2 3.2 1029.2 30.3 2.9 32.9 3.3 1029.7 30.0 2.9 32.6 3.2 1029.7 30.1 2.9 32.8 3.2 1031.9 29.7 2.9 32.4 3.1 1033.0 30.1 2.9 32.7 3.2

149

1033.6 30.5 2.9 33.1 3.2 1036.9 30.2 2.9 32.8 3.2 1041.2 31.1 3.0 33.7 3.2 1044.0 30.3 2.9 33.0 3.2 1049.5 30.3 2.9 33.0 3.1 1050.6 30.7 2.9 33.3 3.2 1050.6 30.9 2.9 33.6 3.2 1051.7 32.6 3.1 35.2 3.3 1055.5 30.7 2.9 33.4 3.1 1058.2 30.8 2.9 33.5 3.2 1060.4 31.9 3.0 34.5 3.2 1067.0 31.2 2.9 33.9 3.1 1071.9 31.1 2.9 33.8 3.1 1073.0 30.8 2.9 33.6 3.1 1076.8 31.5 2.9 34.2 3.2 1079.5 31.3 2.9 34.1 3.1 1085.0 31.4 2.9 34.2 3.2 1090.4 31.6 2.9 34.4 3.2 1093.7 31.7 2.9 34.5 3.2 1097.5 32.0 2.9 34.8 3.1 1098.0 32.5 3.0 35.2 3.3 1099.7 31.9 2.9 34.7 3.2 1107.3 32.7 2.9 35.4 3.2 1120.3 32.4 2.9 35.2 3.1 1128.4 33.0 2.9 35.9 3.2 1136.0 33.1 2.9 35.9 3.2 1138.7 32.8 2.9 35.7 3.1 1142.5 32.6 2.9 35.5 3.1 1143.5 33.6 2.9 36.4 3.2 1144.1 32.9 2.9 35.8 3.1 1151.1 33.1 2.9 36.0 3.1 1153.8 33.5 2.9 36.4 3.2 1157.6 33.6 2.9 36.5 3.1 1164.6 33.9 2.9 36.8 3.1 1165.6 33.5 2.9 36.5 3.1 1167.3 33.5 2.9 36.5 3.1 1175.3 33.7 2.9 36.7 3.1 1193.6 34.7 2.9 37.7 3.1 1220.3 34.9 2.9 38.0 3.1 1221.4 35.8 2.9 38.8 3.2 1251.2 36.3 2.9 39.4 3.1

150

1255.9 36.4 2.9 39.6 3.2 1256.5 35.8 2.8 39.0 3.1 1274.5 36.1 2.8 39.3 3.1 1280.8 38.4 3.0 41.4 3.2 1285.0 36.7 2.9 39.9 3.1 1297.2 38.2 2.9 41.4 3.2 1299.8 38.2 2.9 41.4 3.2 1318.2 40.0 3.0 43.1 3.3 1319.3 37.8 2.9 41.1 3.1 1319.8 37.4 2.8 40.7 3.1 1327.2 37.7 2.8 41.0 3.1 1335.0 37.9 2.8 41.3 3.1 1339.2 38.4 2.9 41.7 3.1 1346.5 38.6 2.9 42.0 3.2 1366.9 38.6 2.8 42.0 3.0 1371.1 38.8 2.8 42.3 3.1 1379.4 38.8 2.8 42.3 3.0 1386.2 39.7 2.9 43.1 3.1 1387.2 40.8 2.9 44.2 3.2 1391.4 39.5 2.8 42.9 3.1 1395.5 40.4 2.9 43.8 3.1 1403.8 39.6 2.8 43.1 3.1 1423.0 41.0 2.9 44.5 3.1 1436.4 40.9 2.8 44.5 3.1 1440.5 40.8 2.8 44.4 3.1 1457.0 41.1 2.8 44.7 3.0 1460.6 42.1 2.9 45.6 3.1 1462.2 41.1 2.8 44.8 3.0 1464.7 41.0 2.8 44.7 3.0 1473.4 41.5 2.8 45.1 3.0 1478.1 41.9 2.8 45.5 3.0 1480.1 41.5 2.8 45.2 3.0 1481.7 42.2 2.8 45.8 3.1 1481.7 43.0 2.9 46.5 3.2 1492.4 42.1 2.8 45.8 3.0 1492.9 42.9 2.9 46.6 3.2 1493.4 42.1 2.8 45.8 3.1 1496.0 42.3 2.8 46.0 3.0 1499.0 42.5 2.8 46.1 3.1 1502.1 48.7 3.2 51.9 3.4 1514.1 40.4 2.7 44.3 2.9

151

1561.4 42.1 2.7 45.8 3.0 1561.6 34.1 2.2 38.5 2.5 1574.9 61.1 3.9 63.7 4.0 1594.0 53.5 3.4 56.4 3.5 1595.9 76.4 4.8 78.4 4.8 1614.8 54.2 3.4 57.1 3.5 1618.5 48.4 3.0 51.6 3.2 1618.5 79.0 4.9 81.0 5.1 1624.1 39.5 2.4 43.3 2.7 1625.9 44.9 2.8 48.3 3.0 1635.2 34.5 2.1 38.8 2.4 1635.2 64.5 3.9 66.9 4.2 1635.2 117.1 7.2 118.4 7.5 1638.9 37.9 2.3 41.8 2.6 1638.9 62.1 3.8 64.6 4.1 1640.7 55.9 3.4 58.7 3.5 1644.4 43.6 2.7 47.1 2.9 1646.2 52.1 3.2 55.1 3.3 1649.9 35.2 2.1 39.4 2.3 1653.6 36.1 2.2 40.2 2.5 1653.6 46.8 2.8 50.1 3.1 1657.2 69.5 4.2 71.7 4.4 1660.8 37.5 2.3 41.4 2.5 1662.6 38.5 2.3 42.4 2.6 1668.1 58.9 3.5 61.5 3.7 1668.1 71.3 4.3 73.4 4.6 1677.1 38.0 2.3 41.9 2.5 1684.2 40.9 2.4 44.6 2.7 1684.2 46.5 2.8 49.8 3.0 1684.2 55.3 3.3 58.0 3.5 1687.8 56.4 3.3 59.1 3.4 1691.4 61.7 3.6 64.2 3.8 1696.7 40.3 2.4 44.0 2.6 1696.7 44.1 2.6 47.5 2.8 1698.5 59.0 3.5 61.6 3.8 1700.2 44.5 2.6 47.9 2.9 1703.8 41.4 2.4 45.0 2.6 1705.5 34.7 2.0 38.9 2.3 1705.5 53.5 3.1 56.4 3.4 1716.1 41.8 2.4 45.3 2.7 1717.8 33.1 1.9 37.5 2.3

152

1717.8 35.2 2.1 39.4 2.3 1717.8 42.6 2.5 46.1 2.6 1723.0 65.4 3.8 67.7 4.0 1728.3 52.6 3.0 55.5 3.2 1735.2 36.0 2.1 40.1 2.3 1735.2 46.0 2.6 49.2 2.8 1743.8 40.4 2.3 44.0 2.5 1747.2 40.9 2.3 44.5 2.6 1747.2 49.3 2.8 52.3 3.1 1748.9 31.2 1.8 35.7 2.0 1750.6 33.1 1.9 37.4 2.2 1776.1 31.3 1.8 35.8 2.0 1776.1 66.5 3.7 68.8 4.1 1779.4 37.2 2.1 41.1 2.3 1781.1 74.6 4.2 76.6 4.3 1782.8 43.3 2.4 46.7 2.7 1789.4 43.8 2.4 47.2 2.7 1789.4 44.6 2.5 47.9 2.8 1791.1 39.5 2.2 43.2 2.4 1794.4 34.8 1.9 39.0 2.2 1796.1 39.5 2.2 43.2 2.4 1797.7 48.3 2.7 51.3 2.9 1801.1 46.1 2.6 49.3 2.7 1802.7 36.8 2.0 40.7 2.3 1802.7 41.6 2.3 45.1 2.5 1804.4 35.4 2.0 39.4 2.2 1804.4 36.6 2.0 40.6 2.3 1804.4 37.6 2.1 41.4 2.3 1810.9 45.6 2.5 48.8 2.8 1812.6 39.3 2.2 43.0 2.5 1822.4 50.6 2.8 53.5 3.0 1824.0 47.8 2.6 50.8 2.8 1840.2 42.9 2.3 46.2 2.5 1843.4 27.9 1.5 32.8 1.8 1843.4 37.7 2.0 41.5 2.3 1848.2 41.4 2.2 44.9 2.4 1851.4 54.4 2.9 57.1 3.1 1854.6 48.6 2.6 51.6 2.8 1859.4 31.9 1.7 36.3 2.0 1859.4 50.1 2.7 53.0 2.8 1861.0 41.1 2.2 44.6 2.4

153

1862.5 33.6 1.8 37.8 2.0 1879.9 36.9 2.0 40.8 2.2 1890.8 57.1 3.0 59.6 3.2 1895.5 38.7 2.0 42.3 2.3 1900.1 33.3 1.8 37.5 2.0 1909.4 52.0 2.7 54.8 2.8 1921.6 37.8 2.0 41.5 2.2 1945.8 31.0 1.6 35.4 1.8 1950.3 27.3 1.4 32.2 1.7 1954.7 38.3 2.0 42.0 2.2 1962.2 41.2 2.1 44.6 2.3 1975.4 56.3 2.9 58.9 3.1 1993.0 40.0 2.0 43.5 2.3 2001.6 64.3 3.2 66.5 3.4 2003.1 35.7 1.8 39.5 2.0 2008.8 32.1 1.6 36.3 1.8 2031.6 45.9 2.3 48.9 2.4 2052.7 78.3 3.8 80.1 3.9 2074.8 35.0 1.7 38.9 1.9 2083.0 34.7 1.7 38.6 1.9 2088.5 40.1 1.9 43.5 2.1 2091.2 44.8 2.1 47.9 2.3 2120.8 34.0 1.6 37.9 1.8 2327.6 41.4 1.8 44.5 1.9 2368.5 90.6 3.8 92.1 3.9 2421.4 36.8 1.5 40.2 1.7 2476.6 52.5 2.1 54.9 2.3 2489.1 23.6 0.9 28.6 1.2 2489.1 36.7 1.5 40.1 1.6 2537.8 33.8 1.3 37.4 1.5 2581.1 26.9 1.0 31.3 1.2 2615.5 61.6 2.4 63.6 2.5 2643.6 43.0 1.6 45.9 1.8 2644.6 23.9 0.9 28.7 1.1 2677.5 51.5 1.9 53.9 2.0 2692.0 43.0 1.6 45.8 1.7 2697.3 21.8 0.8 27.0 1.0 2710.7 27.9 1.0 32.1 1.2 2711.5 35.5 1.3 38.9 1.4 2718.6 23.9 0.9 28.6 1.1 2720.4 37.1 1.4 40.3 1.5

154

2722.1 30.4 1.1 34.3 1.3 2725.6 32.7 1.2 36.3 1.3 2737.8 33.2 1.2 36.8 1.3 2745.6 30.2 1.1 34.1 1.2 2755.1 32.2 1.2 35.9 1.3 2773.8 38.9 1.4 41.9 1.5 2790.7 25.5 0.9 29.9 1.1 2795.7 18.7 0.7 24.4 0.9 2818.8 40.7 1.4 43.6 1.6 2868.8 39.1 1.4 42.1 1.5 2885.3 26.3 0.9 30.5 1.0 3026.8 41.1 1.4 43.8 1.5 3146.9 37.0 1.2 40.0 1.3 3733.7 21.6 0.6 26.0 0.7

155

Table 2-3: Detrital Zircon U-Pb-Th data results for PR-1-Wave from LA-ICP-MS. 1 = Concentration uncertainty 20%; calibrated against reference material 91500 (80 mg/kg U); 3 = Concordance calculated as (206Pb/238U age/207Pb -206Pb Age)*100; Data collected from the Center for Pure and Applied Tectonics and Thermochronology, Department of Geoscience, University of Calgary. UK00W Dates U Prob. % 207Pb 206Pb U/T Sa (pp 207 2sx 206 2sx 207 2sx Conc. con CPS CPS h Pb/ 2stotal Pb 2stotal Pb/ 2stotal mpl Spot 1 (ABS (ABS (ABS 3 m) 206Pb (ABS) /238U (ABS) 235Pb (ABS) (%) c e ) ) ) UK00 UK0 W_19 1882 0W 9 958 0 1395 2.0 185.7 98.2 100.7 103.9 3.7 3.9 107.4 5.6 5.9 0.18 44.0 UK0 UK00 1552 110. 0W W_81 788 0 1335 1.6 227.2 6 112.8 108.2 3.5 3.8 113.5 6.2 6.5 0.09 52.4 UK00 UK0 W_10 1215 117. 0W 2 610 0 1052 1.2 227.2 9 120.0 108.6 4.0 4.2 114.0 6.8 7.0 0.12 52.2 - UK0 UK00 1870 191. 222. 0W W_50 870 0 1730 1.7 33.9 8 193.2 109.2 3.8 4.1 106.0 8.8 8.9 0.50 1 UK00 UK0 W_24 1327 119. 0W 9 653 0 976 3.0 143.0 4 121.5 109.5 3.6 3.9 111.0 6.4 6.6 0.68 23.5 UK00 UK0 W_29 1420 106. 0W 6 737 0 989 1.6 190.3 5 108.8 110.3 3.5 3.8 113.9 6.0 6.3 0.31 42.1 UK00 UK0 W_26 1054 139. 0W 2 538 0 701 1.9 263.3 8 141.5 111.3 3.7 4.0 118.4 7.7 8.0 0.10 57.7 UK00 UK0 W_21 1410 112. 0W 6 703 0 1006 1.8 195.0 0 114.2 111.4 3.6 3.9 115.2 6.3 6.6 0.29 42.9 UK00 UK0 W_21 129. 0W 2 440 8620 612 2.7 171.6 9 131.8 111.5 3.5 3.8 114.2 6.9 7.2 0.44 35.0 UK00 UK0 W_26 1380 108. 0W 9 681 0 992 0.7 190.3 5 110.8 111.5 3.5 3.8 115.1 6.1 6.4 0.30 41.4 UK0 UK00 1105 135. - 0W W_7 533 0 845 1.5 84.4 4 137.3 111.6 3.6 3.9 110.4 6.9 7.1 0.73 32.2 UK00 UK0 W_11 1430 113. 0W 4 689 0 1190 1.3 138.2 2 115.4 111.6 3.6 3.9 112.8 6.2 6.5 0.70 19.2 UK0 UK00 1076 130. 0W W_20 566 0 853 2.7 195.0 3 132.2 111.7 3.6 3.9 115.5 7.1 7.3 0.33 42.7 UK0 UK00 208. 0W W_11 146 3060 246 3.0 109.1 4 209.7 111.9 3.7 4.0 111.8 9.9 10.1 0.98 -2.6 UK00 UK0 W_19 1899 104. 0W 6 918 0 1338 3.6 123.7 3 106.8 112.1 3.5 3.8 112.6 5.8 6.1 0.87 9.4 UK00 UK0 W_24 1059 119. 0W 3 533 0 752 1.0 109.1 7 121.9 112.3 3.6 3.9 112.2 6.4 6.6 0.97 -3.0 UK00 UK0 W_23 1019 122. 0W 4 509 0 710 2.0 162.1 6 124.7 112.5 3.6 3.9 114.7 6.7 6.9 0.54 30.6 UK0 UK00 1117 148. 0W W_13 527 0 915 2.6 109.1 9 150.6 113.2 4.0 4.3 113.0 7.7 7.9 0.96 -3.8 UK00 UK0 W_15 1571 105. 0W 4 782 0 1193 4.3 218.1 3 107.6 113.3 3.6 3.9 118.2 6.2 6.5 0.10 48.0 UK0 UK00 1306 119. 0W W_25 614 0 1043 2.0 109.1 6 121.7 113.7 3.6 3.9 113.5 6.4 6.7 0.95 -4.2 UK00 UK0 W_27 1169 117. 0W 4 574 0 797 2.1 114.0 5 119.7 114.1 3.6 3.9 114.1 6.4 6.6 1.00 -0.1 UK00 UK0 W_14 2197 0W 3 1136 0 1670 3.1 195.0 96.3 98.9 114.8 3.6 3.9 118.5 5.8 6.1 0.24 41.2 UK00 UK0 W_17 135. 306. 0W 5 450 9580 697 2.8 -55.7 8 137.8 115.0 3.7 4.0 107.5 6.6 6.8 0.04 6 UK0 UK00 143. 0W W_42 376 7690 630 2.3 147.8 1 144.9 115.1 3.7 4.0 116.7 7.6 7.8 0.71 22.1

156

UK00 UK0 W_28 1329 115. 0W 3 646 0 912 4.1 152.6 5 117.7 115.2 3.7 4.0 116.9 6.5 6.7 0.64 24.5 UK00 UK0 W_17 137. 0W 1 365 7760 547 1.7 147.8 5 139.3 115.3 3.7 4.0 116.8 7.4 7.6 0.71 22.0 UK00 UK0 W_14 1088 130. - 0W 6 493 0 801 2.8 69.4 8 132.8 115.4 3.6 3.9 113.3 6.8 7.0 0.54 66.3 UK00 UK0 W_24 133. - 0W 4 391 7790 527 1.8 94.3 9 135.8 115.4 3.6 3.9 114.5 7.0 7.2 0.81 22.4 UK00 UK0 W_15 154. 0W 2 325 6880 503 2.7 123.7 2 155.8 115.8 3.7 4.0 116.1 8.0 8.2 0.93 6.4 UK0 UK00 133. 0W W_73 368 7730 653 2.8 114.0 8 135.7 115.8 3.7 4.0 115.7 7.1 7.4 0.98 -1.6 UK00 UK0 W_12 1680 123. 0W 1 817 0 1360 3.4 171.6 2 125.2 115.8 3.7 4.0 118.5 6.9 7.1 0.53 32.5 UK00 UK0 W_19 128. 0W 5 404 7830 540 2.5 254.3 1 129.9 115.8 3.7 4.0 122.5 7.4 7.6 0.11 54.5 UK00 UK0 W_29 161. 0W 9 221 4110 260 1.3 222.6 1 162.6 115.8 3.8 4.1 120.9 8.8 9.0 0.28 48.0 UK00 UK0 W_23 1300 116. 0W 8 630 0 864 1.9 190.3 0 118.2 116.0 3.8 4.1 119.5 6.7 7.0 0.34 39.0 UK00 UK0 W_29 1745 0W 0 914 0 1155 3.2 240.8 99.9 102.3 116.1 3.6 3.9 122.2 6.2 6.4 0.06 51.8 UK0 UK00 147. - 0W W_22 282 6060 457 2.3 104.2 4 149.1 116.3 3.8 4.1 115.8 7.7 7.9 0.89 11.7 UK00 UK0 W_16 163. 0W 9 250 4980 354 2.3 227.2 4 164.9 116.5 3.8 4.1 121.9 8.9 9.1 0.26 48.7 UK00 UK0 W_10 196. 360. 0W 1 177 3810 293 1.7 -44.9 5 197.9 116.9 3.9 4.2 109.7 9.1 9.2 0.15 6 UK00 UK0 W_29 1133 118. 0W 5 584 0 739 6.8 315.9 2 120.2 117.1 3.7 4.0 127.0 7.3 7.5 0.02 62.9 UK00 UK0 W_13 132. 0W 3 410 8130 596 2.5 222.6 3 134.1 117.2 3.7 4.0 122.3 7.5 7.8 0.21 47.4 UK00 UK0 W_14 170. 0W 5 194 3770 276 1.6 298.5 2 171.6 117.2 3.9 4.2 126.2 9.7 9.9 0.09 60.7 UK0 UK00 1540 114. 0W W_77 754 0 1276 2.9 195.0 0 116.2 117.4 3.8 4.1 121.1 6.7 7.0 0.33 39.8 UK00 UK0 W_18 129. 0W 6 460 9300 624 2.0 118.9 5 131.4 117.4 3.7 4.0 117.5 7.0 7.3 0.99 1.2 UK00 UK0 W_18 177. 292. 0W 5 344 7440 532 2.2 -61.1 6 179.1 117.5 3.9 4.2 109.5 8.3 8.5 0.09 3 UK00 UK0 W_17 255. - 0W 4 98 1960 130 2.1 84.4 9 257.0 117.6 4.2 4.5 116.1 12.4 12.5 0.82 39.3 UK00 - UK0 W_26 1010 127. 201. 0W 5 487 0 678 1.8 39.0 1 129.2 117.9 3.7 4.0 114.2 6.7 6.9 0.34 9 UK00 UK0 W_22 126. 0W 1 473 9130 621 1.2 240.8 4 128.3 117.9 3.8 4.1 123.9 7.4 7.7 0.09 51.0 UK0 UK00 1134 125. - 0W W_37 533 0 889 1.5 94.3 1 127.2 118.2 3.8 4.1 117.0 6.8 7.1 0.76 25.3 UK0 UK00 1763 0W W_62 856 0 1410 1.6 147.8 99.0 101.5 118.4 3.8 4.1 119.8 6.0 6.3 0.65 19.9 UK00 UK0 W_27 1613 107. - 0W 6 817 0 1090 3.3 104.2 7 110.0 119.1 3.8 4.2 118.4 6.2 6.5 0.83 14.3

157

UK00 UK0 W_10 1119 136. 0W 9 559 0 886 4.0 227.2 3 138.1 119.4 4.4 4.7 124.7 8.2 8.4 0.19 47.5 UK00 UK0 W_20 1163 114. 0W 0 596 0 798 2.9 208.9 6 116.7 119.6 3.8 4.1 123.9 6.9 7.1 0.22 42.8 UK00 UK0 W_11 154. 0W 5 438 9010 707 2.1 176.3 2 155.8 119.7 3.9 4.3 122.4 8.5 8.7 0.54 32.1 UK0 UK00 2050 103. 0W W_46 1048 0 1690 0.7 171.6 7 106.1 120.7 4.0 4.3 123.2 6.4 6.7 0.42 29.7 UK00 - UK0 W_13 1709 110. 416. 0W 8 818 0 1193 4.2 23.6 2 112.6 121.9 3.8 4.2 117.2 6.2 6.4 0.21 0 UK0 UK00 142. 0W W_98 424 8250 666 3.0 231.8 8 144.5 123.5 4.5 4.8 129.0 8.7 8.9 0.18 46.7 UK0 UK00 1210 148. - 0W W_56 595 0 1000 2.8 74.4 3 150.1 123.9 4.3 4.6 121.5 8.2 8.4 0.53 66.5 UK00 UK0 W_19 1026 126. 0W 0 524 0 418 1.9 231.8 6 128.5 190.9 6.2 6.7 194.0 11.3 11.6 0.62 17.6 UK00 UK0 W_13 1410 124. 0W 2 699 0 602 5.3 190.3 2 126.2 206.7 6.5 7.0 205.4 11.5 12.0 0.84 -8.6 UK00 UK0 W_18 179. 0W 1 182 3590 127 2.4 366.9 8 181.1 223.7 7.4 8.0 236.6 18.2 18.6 0.18 39.0 UK00 UK0 W_18 227. 102 0W 4 122 2610 85 1.3 -2.4 5 228.6 241.7 8.2 8.8 220.3 19.8 20.1 0.05 42.8 UK00 UK0 W_17 1655 0W 3 919 0 385 2.1 404.1 97.3 99.7 344.1 10.6 11.5 352.0 16.0 16.7 0.36 14.8 UK0 UK00 120. 0W W_1 522 9590 234 1.8 412.2 8 122.7 345.3 10.7 11.7 354.1 18.7 19.4 0.44 16.2 UK00 UK0 W_19 1398 113. - 0W 3 724 0 313 2.0 249.8 0 115.1 346.1 10.8 11.7 333.9 16.7 17.3 0.13 38.5 UK00 UK0 W_18 129. 0W 2 406 7230 162 5.6 375.2 9 131.7 351.3 11.1 12.0 354.4 19.8 20.4 0.78 6.4 UK00 UK0 W_19 1530 106. 0W 8 864 0 345 3.8 440.4 0 108.1 353.7 11.1 12.0 365.4 17.6 18.3 0.23 19.7 UK00 UK0 W_10 3170 0W 7 1729 0 776 1.8 404.1 77.1 80.1 361.7 11.1 12.1 367.5 14.4 15.3 0.52 10.5 UK00 UK0 W_15 1918 - 0W 3 1004 0 431 2.2 298.5 95.2 97.7 364.4 11.3 12.2 355.6 15.7 16.5 0.36 22.0 UK00 UK0 W_23 117. 0W 2 554 9790 198 1.7 491.5 5 119.4 384.7 12.1 13.1 400.4 20.6 21.3 0.23 21.7 UK0 UK00 117. 0W W_2 456 7890 159 1.3 476.0 1 119.1 410.2 12.7 13.8 420.3 21.3 22.0 0.38 13.8 UK0 UK00 5210 0W W_65 2960 0 1117 1.4 476.0 66.4 69.7 425.5 12.9 14.1 433.5 15.3 16.4 0.35 10.6 UK00 UK0 W_13 119. 0W 0 499 8550 163 1.1 556.0 7 121.5 443.4 13.7 14.8 462.1 23.5 24.3 0.17 20.3 UK00 UK0 W_28 1205 106. 0W 5 695 0 201 1.4 456.3 1 108.2 448.2 13.7 14.9 449.5 20.8 21.7 0.92 1.8 UK00 UK0 W_11 1360 0W 7 834 0 214 1.6 625.1 97.1 99.3 537.8 16.4 17.8 554.8 23.6 24.6 0.22 14.0 UK00 UK0 W_10 2098 111. 0W 4 1199 0 355 1.6 541.1 0 112.9 557.3 18.1 19.5 554.1 26.0 27.0 0.79 -3.0 UK0 UK00 1270 100. 0W W_48 769 0 209 1.6 617.9 0 102.1 560.3 17.0 18.5 571.8 24.5 25.6 0.43 9.3 UK00 UK0 W_10 1033 108. 0W 6 636 0 151 4.0 589.1 8 110.8 598.6 18.3 19.9 596.6 26.8 27.9 0.90 -1.6

158

UK0 UK00 1632 0W W_18 991 0 229 1.4 670.7 89.1 91.4 606.2 18.4 20.0 620.0 24.3 25.5 0.33 9.6 UK00 UK0 W_18 138. 0W 9 326 5600 70 2.6 570.8 5 140.0 611.5 19.0 20.5 602.9 32.4 33.3 0.63 -7.1 UK0 UK00 1048 103. 0W W_82 681 0 141 2.1 787.2 7 105.7 658.8 20.1 21.8 688.6 29.4 30.6 0.05 16.3 UK0 UK00 3060 0W W_90 1930 0 413 2.7 728.4 71.5 74.3 661.7 20.0 21.7 677.0 22.9 24.3 0.21 9.2 UK00 UK0 W_29 1057 157. 0W 4 740 0 108 1.1 880.7 6 158.9 765.6 24.2 26.1 795.6 45.8 46.7 0.33 13.1 UK00 UK0 W_26 1866 0W 3 1276 0 168 2.2 868.6 78.5 81.0 829.4 25.5 27.6 840.1 28.6 30.1 0.37 4.5 UK00 UK0 W_16 1412 1027. 1004. 0W 5 1031 0 109 2.3 8 86.4 88.5 993.4 29.3 31.8 1 33.9 35.6 0.60 3.3 UK00 UK0 W_12 3570 1041. 1001. 1013. 0W 2 2625 0 293 0.5 5 62.1 65.0 1 29.0 31.6 8 28.1 30.1 0.49 3.9 UK0 UK00 1092. 114. 1012. 1038. 0W W_24 470 6120 52 1.4 4 6 116.2 7 31.0 33.5 2 42.9 44.3 0.36 7.3 UK00 UK0 W_10 1403 1141. 1015. 1056. 0W 8 1098 0 114 3.1 8 79.7 81.9 4 29.6 32.2 3 33.5 35.2 0.03 11.1 UK0 UK00 5930 1071. 1020. 1037. 0W W_99 4410 0 488 1.7 2 52.2 55.6 9 29.6 32.2 0 26.4 28.5 0.37 4.7 UK00 UK0 W_28 2672 1068. 1035. 1046. 0W 4 2035 0 187 2.5 5 67.3 70.0 8 30.4 33.0 3 30.1 32.0 0.63 3.1 UK00 UK0 W_20 5600 1033. 1040. 1037. 0W 7 4110 0 391 1.3 3 56.5 59.7 1 30.8 33.5 9 27.7 29.7 0.89 -0.7 UK00 UK0 W_24 3590 1095. 1045. 1061. 0W 5 2730 0 245 4.3 1 60.7 63.7 1 31.3 33.9 4 29.2 31.2 0.30 4.6 UK00 UK0 W_22 5070 1002. 1048. 1034. 0W 4 3750 0 363 1.5 8 54.2 57.6 9 30.6 33.3 1 26.9 28.9 0.26 -4.6 UK0 UK00 3610 1118. 1054. 1075. 0W W_47 2760 0 302 4.6 6 59.2 62.2 4 30.6 33.3 5 28.7 30.7 0.27 5.7 UK00 UK0 W_24 2230 1149. 1054. 1085. 0W 1 1690 0 157 2.0 4 72.5 74.9 4 31.0 33.7 8 32.3 34.1 0.17 8.3 UK00 UK0 W_16 1276 1136. 1060. 1085. 0W 0 1015 0 93 1.2 7 83.6 85.7 4 31.3 34.0 7 35.2 36.9 0.22 6.7 UK00 UK0 W_10 2297 1116. 1068. 1084. 0W 0 1784 0 184 1.5 0 68.2 70.8 6 31.3 34.0 3 31.1 33.0 0.30 4.2 UK00 UK0 W_20 1152. 1075. 1100. 0W 8 640 8080 58 2.1 0 99.5 101.3 2 31.9 34.6 8 40.0 41.5 0.28 6.7 UK0 UK00 3933 1103. 1080. 1088. 0W W_61 3030 0 301 2.1 0 64.1 66.9 6 31.4 34.1 0 30.0 32.0 0.68 2.0 UK00 UK0 W_25 4430 1071. 1084. 1080. 0W 9 3360 0 298 2.5 2 56.9 60.1 4 31.3 34.1 0 28.1 30.2 0.82 -1.2 UK00 UK0 W_21 1978 1139. 1113. 1122. 0W 3 1545 0 138 1.3 2 83.3 85.4 8 33.4 36.1 4 36.0 37.7 0.69 2.2 UK00 UK0 W_25 2453 1128. 1136. 1133. 0W 3 1916 0 159 2.4 9 66.3 69.0 5 33.1 36.0 9 31.4 33.4 0.90 -0.7 UK00 UK0 W_11 2441 1159. 1161. 1161. 0W 8 1946 0 173 3.2 6 70.0 72.5 9 33.4 36.4 1 32.7 34.6 0.97 -0.2 UK00 UK0 W_16 2066 1201. 1178. 1186. 0W 2 1665 0 131 1.5 9 70.6 73.1 0 33.9 36.9 5 33.4 35.3 0.70 2.0 UK00 UK0 W_22 3010 1331. 1317. 1322. 0W 3 2610 0 166 2.3 4 59.1 62.0 2 37.3 40.7 6 32.4 34.6 0.81 1.1

159

UK00 UK0 W_13 6530 1471. 1434. 1449. 0W 5 6030 0 353 2.5 5 43.3 47.0 9 40.2 43.8 7 29.9 32.5 0.41 2.5 UK00 UK0 W_23 3580 1609. 1530. 1563. 0W 9 3600 0 166 2.4 1 51.8 54.7 6 43.1 46.9 9 33.6 36.1 0.20 4.9 UK00 UK0 W_18 3190 1627. 1569. 1594. 0W 3 3250 0 146 0.6 8 54.8 57.6 2 44.8 48.6 3 35.1 37.5 0.17 3.6 UK00 UK0 W_19 2420 1659. 1611. 1631. 0W 2 2470 0 106 1.1 0 58.5 61.1 0 45.1 49.0 9 36.3 38.7 0.38 2.9 UK00 UK0 W_18 3926 1705. 1708. 1707. 0W 7 4120 0 168 1.3 5 51.7 54.6 6 48.3 52.3 2 35.3 37.9 0.94 -0.2 UK00 UK0 W_23 7460 1709. 1662. 1683. 0W 1 7880 0 310 6.9 1 39.2 43.0 5 45.7 49.8 2 31.1 33.9 0.32 2.7 UK00 UK0 W_11 4050 1712. 1685. 1697. 0W 0 4230 0 189 2.9 6 48.0 51.1 4 46.7 50.8 5 33.7 36.4 0.55 1.6 UK00 UK0 W_17 4270 1731. 1749. 1741. 0W 2 4600 0 173 2.4 7 48.5 51.6 6 47.9 52.2 4 34.1 36.8 0.74 -1.0 UK0 UK00 3620 1742. 1748. 1745. 0W W_95 3880 0 169 1.6 1 49.4 52.4 1 48.3 52.5 3 34.6 37.2 0.92 -0.3 UK0 UK00 1750 1747. 1745. 1746. 0W W_71 1880 0 85 1.8 2 62.7 65.2 1 48.7 52.9 1 39.0 41.4 0.97 0.1 UK00 UK0 W_13 8260 1750. 1755. 1753. 0W 9 8900 0 357 2.9 6 37.9 41.8 5 48.1 52.4 3 31.3 34.3 0.93 -0.3 UK00 UK0 W_27 1023 9330 1754. 1733. 1742. 0W 1 0 0 372 1.8 1 36.0 40.0 3 47.7 51.9 7 30.8 33.8 0.65 1.2 UK00 UK0 W_24 7400 1760. 1702. 1729. 0W 8 8090 0 302 1.9 9 39.1 42.8 7 46.8 51.0 0 31.5 34.4 0.25 3.3 UK00 UK0 W_25 1301 1191 1760. 1808. 1786. 0W 2 0 00 455 2.0 9 33.7 38.0 7 49.2 53.6 6 30.5 33.5 0.36 -2.7 UK0 UK00 8740 1765. 1761. 1763. 0W W_44 9450 0 407 2.8 9 37.2 41.1 8 48.3 52.6 7 31.3 34.2 0.94 0.2 UK00 UK0 W_11 3500 1767. 1743. 1754. 0W 2 3780 0 158 3.0 6 49.5 52.5 7 48.0 52.3 6 34.7 37.3 0.70 1.4 UK0 UK00 2775 1772. 1717. 1742. 0W W_57 3003 0 134 1.7 7 54.4 57.1 0 47.6 51.8 3 36.2 38.7 0.32 3.1 UK00 UK0 W_23 1246 1129 1772. 1684. 1724. 0W 7 0 00 467 1.1 7 33.8 38.0 9 46.4 50.6 4 30.2 33.2 0.03 5.0 UK0 UK00 2170 1774. 1768. 1771. 0W W_94 2325 0 98 1.4 4 56.6 59.3 2 49.1 53.3 0 37.2 39.7 0.90 0.3 UK00 UK0 W_29 1050 9580 1776. 1776. 1776. 0W 8 0 0 364 3.6 1 36.2 40.2 5 48.6 52.9 3 31.1 34.0 0.99 0.0 UK00 UK0 W_10 1787. 1708. 1744. 0W 3 1045 9640 45 0.5 8 73.6 75.6 6 48.9 52.9 5 43.2 45.4 0.13 4.4 UK0 UK00 8470 1791. 1713. 1748. 0W W_8 9240 0 374 2.2 1 36.8 40.7 6 47.1 51.3 8 31.1 34.0 0.13 4.3 UK0 UK00 2460 1791. 1751. 1769. 0W W_74 2690 0 119 1.3 1 55.3 58.0 5 48.7 52.9 7 36.8 39.3 0.48 2.2 UK00 UK0 W_19 2560 1792. 1819. 1807. 0W 1 2800 0 97 2.2 8 54.4 57.1 5 50.1 54.5 0 36.7 39.3 0.65 -1.5 UK0 UK00 6000 1796. 1822. 1810. 0W W_87 6570 0 268 1.3 1 41.9 45.4 4 50.1 54.5 1 33.0 35.8 0.60 -1.5 UK00 UK0 W_16 1990 1797. 1830. 1815. 0W 1 2180 0 79 0.4 7 61.4 63.8 1 50.7 55.1 0 39.2 41.6 0.62 -1.8 UK0 UK00 4500 1799. 1769. 1783. 0W W_86 4940 0 207 1.8 4 45.0 48.3 7 48.5 52.8 4 33.6 36.3 0.57 1.7

160

UK00 UK0 W_25 4780 1804. 1814. 1809. 0W 5 5330 0 185 1.5 4 43.6 46.9 6 49.7 54.1 8 33.4 36.2 0.84 -0.6 UK00 UK0 W_14 6900 1806. 1806. 1806. 0W 2 7530 0 283 6.6 0 39.8 43.4 3 50.0 54.3 2 32.5 35.4 0.99 0.0 UK00 UK0 W_29 6160 1806. 1732. 1766. 0W 3 6790 0 239 1.3 0 40.6 44.2 3 47.9 52.1 0 32.3 35.2 0.14 4.1 UK00 UK0 W_28 2850 1809. 1836. 1823. 0W 0 3180 0 106 1.3 3 51.6 54.4 0 50.4 54.9 5 36.0 38.6 0.59 -1.5 UK00 UK0 W_21 1228 1100 1810. 1836. 1824. 0W 4 0 00 412 3.4 9 34.5 38.6 0 50.1 54.6 3 31.1 34.1 0.58 -1.4 UK0 UK00 7940 1812. 1717. 1760. 0W W_5 8640 0 351 1.5 6 37.8 41.6 0 47.1 51.3 6 31.4 34.3 0.05 5.3 UK00 UK0 W_25 1610 1812. 1825. 1819. 0W 4 1810 0 62 1.4 6 62.8 65.1 8 50.6 55.0 6 39.8 42.2 0.83 -0.7 UK00 UK0 W_25 4860 1812. 1805. 1809. 0W 6 5540 0 180 2.3 6 51.6 54.4 8 50.7 55.0 0 36.3 38.9 0.90 0.4 UK0 UK00 2540 1817. 1837. 1828. 0W W_96 2850 0 110 1.3 5 55.6 58.2 4 50.8 55.2 1 37.4 39.9 0.75 -1.1 UK00 UK0 W_12 2550 1822. 1850. 1837. 0W 7 2870 0 107 0.8 4 54.1 56.8 0 50.6 55.1 0 36.8 39.4 0.63 -1.5 UK00 UK0 W_19 7975 1822. 1811. 1816. 0W 7 8910 0 305 1.7 4 36.9 40.8 7 49.2 53.7 7 31.5 34.5 0.83 0.6 UK00 UK0 W_12 1400 1824. 1817. 1820. 0W 9 1589 0 59 0.9 0 65.3 67.6 0 50.4 54.7 3 40.7 43.0 0.91 0.4 UK00 UK0 W_12 7902 1827. 1761. 1792. 0W 0 8910 0 335 1.4 3 37.4 41.2 8 49.5 53.7 0 32.1 35.0 0.10 3.6 UK0 UK00 4310 1830. 1757. 1791. 0W W_10 4810 0 185 1.3 5 46.0 49.1 9 48.2 52.5 3 33.9 36.7 0.23 4.0 UK0 UK00 5870 1832. 1749. 1787. 0W W_6 6580 0 251 1.3 1 41.6 45.0 6 47.9 52.2 5 32.6 35.5 0.13 4.5 UK00 UK0 W_26 6010 1832. 1816. 1823. 0W 1 6820 0 233 2.0 1 41.8 45.3 5 49.6 54.0 8 32.9 35.8 0.80 0.9 UK0 UK00 2430 1833. 1862. 1848. 0W W_43 2680 0 107 0.9 7 54.0 56.7 1 51.2 55.6 7 37.0 39.6 0.61 -1.5 UK0 UK00 5040 1833. 1811. 1822. 0W W_88 5580 0 224 0.9 7 45.3 48.5 7 50.1 54.5 0 34.2 37.0 0.69 1.2 UK00 UK0 W_11 3430 1833. 1799. 1815. 0W 3 3870 0 150 0.8 7 50.8 53.7 0 49.3 53.7 2 35.6 38.3 0.58 1.9 UK0 UK00 1498 1835. 1834. 1834. 0W W_58 1670 0 66 1.7 4 65.1 67.3 5 50.7 55.1 9 40.7 43.0 0.99 0.0 UK0 UK00 4420 1835. 1819. 1826. 0W W_64 4960 0 200 1.2 4 44.2 47.5 0 50.2 54.5 6 33.9 36.7 0.72 0.9 UK00 UK0 W_28 6200 1835. 1819. 1826. 0W 2 6990 0 233 1.5 4 39.8 43.5 5 49.5 53.9 9 32.4 35.3 0.75 0.9 UK00 UK0 W_12 1924 1837. 1825. 1831. 0W 8 2142 0 81 1.2 0 59.9 62.4 8 50.5 54.8 0 38.9 41.4 0.86 0.6 UK00 UK0 W_13 7350 1840. 1819. 1828. 0W 4 8330 0 304 1.3 2 39.4 43.1 0 49.8 54.2 9 32.4 35.3 0.67 1.2 UK0 UK00 5278 1841. 1842. 1842. 0W W_67 5920 0 236 3.2 8 43.9 47.2 7 50.3 54.8 3 33.7 36.5 0.99 -0.1 UK00 UK0 W_26 2524 1841. 1731. 1782. 0W 0 2897 0 103 1.5 8 55.0 57.7 4 48.0 52.2 0 36.9 39.4 0.04 6.0 UK00 UK0 W_27 2492 1841. 1816. 1828. 0W 0 2860 0 95 0.9 8 53.0 55.7 0 50.0 54.4 1 36.5 39.1 0.62 1.4 UK0 UK00 2690 1843. 1836. 1840. 0W W_27 2940 0 115 2.4 4 54.8 57.5 9 50.9 55.3 0 37.3 39.9 0.91 0.4

161

UK00 UK0 W_28 3950 1845. 1848. 1846. 0W 7 4470 0 146 4.0 0 47.3 50.4 1 50.6 55.0 6 34.8 37.6 0.96 -0.2 UK0 UK00 2116 1848. 1801. 1823. 0W W_69 2423 0 97 1.1 2 57.4 59.9 4 49.8 54.2 2 38.0 40.5 0.41 2.5 UK00 UK0 W_14 3980 1849. 1858. 1854. 0W 8 4550 0 157 1.2 8 45.3 48.5 2 50.5 55.1 3 34.2 37.0 0.88 -0.5 UK00 UK0 W_20 5100 1849. 1813. 1830. 0W 9 5810 0 192 2.1 8 43.7 47.0 1 50.9 55.2 3 34.1 36.9 0.38 2.0 UK00 UK0 W_13 2285 1851. 1810. 1829. 0W 6 2637 0 95 1.2 4 54.6 57.3 7 49.7 54.0 7 37.0 39.6 0.54 2.2 UK00 UK0 W_15 2539 1853. 1823. 1837. 0W 9 2940 0 101 1.3 0 54.4 57.1 3 50.1 54.5 2 37.0 39.6 0.58 1.6 UK0 UK00 5220 1856. 1784. 1818. 0W W_12 5890 0 222 2.2 2 43.2 46.5 8 49.0 53.3 0 33.4 36.2 0.21 3.8 UK0 UK00 4390 1862. 1844. 1853. 0W W_38 4960 0 192 1.3 5 44.7 48.0 7 50.3 54.8 1 34.0 36.9 0.75 1.0 UK0 UK00 1142 9997 1862. 1819. 1839. 0W W_75 0 0 457 1.1 5 35.1 39.1 5 49.4 53.9 6 31.2 34.2 0.42 2.3 UK0 UK00 4320 1864. 1815. 1838. 0W W_19 4840 0 183 1.0 1 46.2 49.3 1 50.4 54.7 0 34.7 37.5 0.38 2.6 UK00 UK0 W_10 1155 1864. 1939. 1903. 0W 5 1340 0 43 0.9 1 93.0 94.6 4 59.1 63.2 3 53.7 55.5 0.32 -4.0 UK0 UK00 2340 2049 1865. 1902. 1884. 0W W_89 0 00 841 3.0 7 28.4 33.2 0 52.3 56.9 7 30.4 33.5 0.31 -1.9 UK00 UK0 W_27 3760 1867. 1820. 1842. 0W 8 4360 0 141 2.0 3 46.8 49.9 4 49.6 54.0 4 34.5 37.3 0.39 2.5 UK00 UK0 W_28 2530 1867. 1853. 1860. 0W 9 2920 0 93 2.1 3 53.6 56.3 4 50.8 55.3 0 37.0 39.6 0.81 0.7 UK00 UK0 W_22 2670 1878. 1797. 1835. 0W 8 3080 0 102 1.3 3 52.2 55.0 5 49.6 53.9 3 36.4 39.0 0.15 4.3 UK0 UK00 3840 1883. 1816. 1847. 0W W_63 4420 0 180 1.3 0 47.4 50.4 5 50.0 54.3 7 35.0 37.7 0.20 3.5 UK00 UK0 W_29 4750 1884. 1949. 1918. 0W 1 5470 0 162 1.8 6 43.4 46.7 4 52.7 57.4 2 34.1 36.9 0.28 -3.4 UK0 UK00 2619 1890. 1841. 1864. 0W W_32 2960 0 118 2.5 8 56.7 59.3 3 51.6 55.9 7 38.5 41.0 0.42 2.6 UK00 UK0 W_26 1484 1273 1893. 1837. 1864. 0W 7 0 00 482 2.8 9 32.1 36.4 4 49.9 54.4 1 30.7 33.8 0.29 3.0 UK0 UK00 1482 1897. 1872. 1884. 0W W_23 1733 0 62 0.8 0 63.2 65.5 2 51.5 56.0 0 40.6 43.0 0.67 1.3 UK00 UK0 W_12 6760 1897. 1911. 1904. 0W 3 7980 0 270 1.7 0 38.8 42.4 6 52.0 56.6 6 32.8 35.7 0.77 -0.8 UK00 UK0 W_25 6690 1898. 1958. 1929. 0W 8 7910 0 231 2.6 6 38.4 42.0 9 52.9 57.6 7 32.7 35.7 0.20 -3.2 UK0 UK00 6700 1903. 1902. 1902. 0W W_60 7750 0 286 1.9 2 39.6 43.2 0 51.5 56.1 6 32.9 35.8 0.98 0.1 UK00 UK0 W_29 6590 1904. 1866. 1884. 0W 7 7690 0 236 1.6 7 38.9 42.5 4 51.0 55.5 6 32.7 35.7 0.45 2.0 UK00 UK0 W_16 7670 1909. 1988. 1949. 0W 7 9070 0 274 1.7 4 37.5 41.2 3 53.9 58.6 9 32.7 35.8 0.10 -4.1 UK00 UK0 W_21 1909. 1787. 1844. 0W 5 1105 9200 36 0.5 4 74.4 76.4 3 50.1 54.3 4 44.6 46.8 0.06 6.4 UK00 UK0 W_22 2462 1910. 1851. 1879. 0W 2 2890 0 92 1.4 9 52.4 55.2 0 51.2 55.7 4 37.0 39.6 0.27 3.1 UK0 UK00 4310 1912. 1904. 1908. 0W W_39 5100 0 180 1.6 4 44.8 48.0 9 51.8 56.4 5 34.5 37.4 0.90 0.4

162

UK00 UK0 W_25 2180 1927. 1899. 1912. 0W 1 2540 0 79 1.2 7 55.4 58.0 2 52.1 56.6 8 38.1 40.7 0.66 1.5 UK00 UK0 W_11 1030 1939. 1819. 1876. 0W 1 1252 0 45 0.6 8 72.2 74.2 9 50.9 55.2 5 44.1 46.3 0.06 6.2 UK00 UK0 W_14 4490 1945. 1935. 1940. 0W 0 5320 0 172 0.8 8 44.4 47.5 1 52.4 57.1 2 34.6 37.5 0.86 0.5 UK00 UK0 W_14 2486 1948. 1852. 1898. 0W 1 2960 0 101 0.7 8 53.1 55.8 9 51.2 55.6 5 37.4 40.0 0.12 4.9 UK0 UK00 6840 1953. 1998. 1976. 0W W_15 8150 0 259 1.5 2 38.4 42.1 3 55.1 59.8 2 33.6 36.6 0.30 -2.3 UK0 UK00 4600 1953. 1942. 1947. 0W W_40 5500 0 190 0.9 2 43.1 46.4 2 52.6 57.3 6 34.3 37.2 0.84 0.6 UK0 UK00 5980 1954. 1846. 1897. 0W W_4 7090 0 241 0.6 7 40.1 43.6 1 50.4 54.9 8 33.1 36.1 0.05 5.6 UK0 UK00 4200 1959. 1920. 1939. 0W W_17 5020 0 169 1.8 2 46.1 49.2 7 52.6 57.2 3 35.4 38.1 0.55 2.0 UK00 UK0 W_15 2860 1965. 1891. 1926. 0W 6 3490 0 108 1.2 1 49.4 52.3 5 52.2 56.7 9 36.4 39.1 0.17 3.7 UK0 UK00 2510 1974. 1879. 1925. 0W W_51 3070 0 107 1.4 0 53.3 56.0 9 51.3 55.8 0 37.5 40.1 0.14 4.8 UK00 UK0 W_11 2790 1987. 1972. 1979. 0W 9 3410 0 109 1.5 1 50.9 53.7 2 53.2 57.9 5 36.9 39.7 0.80 0.8 UK00 UK0 W_20 1527 1991. 2024. 2008. 0W 5 1861 0 51 1.5 5 62.5 64.8 7 56.0 60.7 3 41.7 44.2 0.57 -1.7 UK0 UK00 2641 1998. 1976. 1987. 0W W_76 3240 0 107 1.2 7 50.6 53.4 0 53.5 58.2 1 37.0 39.7 0.71 1.1 UK00 UK0 W_12 2004. 1870. 1935. 0W 5 789 6680 27 1.0 5 81.0 82.8 8 52.5 56.9 0 48.3 50.4 0.02 6.7 UK0 UK00 6490 2010. 1977. 1993. 0W W_41 7940 0 266 0.7 3 38.3 41.9 9 53.2 58.0 8 33.2 36.2 0.60 1.6 UK00 UK0 W_26 4820 2028. 1959. 1993. 0W 8 6160 0 169 1.8 8 41.5 44.8 9 53.4 58.1 6 34.4 37.3 0.15 3.4 UK0 UK00 1876 2052. 1999. 2025. 0W W_72 2391 0 76 0.6 7 55.7 58.2 7 54.5 59.2 9 39.2 41.8 0.35 2.6 UK00 UK0 W_25 1645 1272 2059. 1978. 2018. 0W 0 0 00 444 4.2 6 30.3 34.7 4 53.6 58.4 4 31.4 34.6 0.05 3.9 UK0 UK00 2155 2069. 2028. 2048. 0W W_70 2779 0 86 1.3 3 53.8 56.4 0 55.2 60.0 5 38.8 41.4 0.45 2.0 UK0 UK00 3780 2083. 2044. 2063. 0W W_83 4880 0 146 0.7 0 43.4 46.6 0 55.0 59.9 5 35.2 38.2 0.44 1.9 UK0 UK00 1108 8580 2084. 2094. 2089. 0W W_53 0 0 325 1.3 4 34.9 38.8 9 56.0 61.0 6 32.8 36.0 0.85 -0.5 UK0 UK00 2273 2087. 2055. 2071. 0W W_55 2930 0 89 0.9 1 54.7 57.3 7 55.8 60.7 4 39.3 41.9 0.56 1.5 UK00 UK0 W_15 1870 2099. 2141. 2120. 0W 8 2430 0 61 0.7 3 56.0 58.5 8 59.8 64.6 2 40.7 43.3 0.44 -2.0 UK0 UK00 1538 2111. 2072. 2092. 0W W_93 2020 0 58 0.9 4 59.6 61.9 5 57.0 61.9 1 41.5 44.0 0.57 1.8 UK0 UK00 4150 2132. 2096. 2114. 0W W_66 5440 0 159 2.0 7 42.3 45.5 3 56.6 61.6 7 35.4 38.3 0.49 1.7 UK00 UK0 W_29 2296. 2247. 2272. 0W 2 887 6090 17 1.8 1 82.1 83.7 3 61.5 66.6 9 52.4 54.5 0.52 2.1 UK0 UK00 1042 7070 2314. 2303. 2309. 0W W_84 0 0 238 1.4 8 33.8 37.6 5 60.6 66.0 5 33.7 36.9 0.81 0.5 UK00 UK0 W_14 2007 2328. 2213. 2273. 0W 7 3090 0 66 1.8 7 49.2 51.9 1 58.9 64.1 7 38.7 41.5 0.04 5.0 UK00 UK0 W_16 4570 2333. 2278. 2307. 0W 6 6800 0 139 2.8 3 39.1 42.4 6 60.4 65.7 6 35.4 38.5 0.30 2.3 UK0 UK00 3900 2382. 2367. 2375. 0W W_45 6020 0 128 1.6 0 39.8 43.0 6 62.5 68.0 3 36.0 39.1 0.80 0.6

163

UK0 UK00 1910 1201 2447. 2373. 2413. 0W W_28 0 00 385 1.0 2 27.7 32.1 0 62.4 67.9 1 32.7 36.1 0.11 3.0 UK00 UK0 W_25 1380 8320 2494. 2453. 2475. 0W 7 0 0 225 1.6 2 31.4 35.3 7 63.8 69.5 9 33.7 37.1 0.48 1.6 UK0 UK00 1110 6770 2499. 2400. 2454. 0W W_54 0 0 208 2.1 4 35.0 38.6 6 63.9 69.4 4 35.2 38.4 0.05 4.0 UK0 UK00 2950 2517. 2441. 2483. 0W W_14 4910 0 89 0.8 7 41.7 44.7 8 64.4 70.0 4 37.3 40.4 0.17 3.0 UK00 UK0 W_13 1137 2533. 2508. 2522. 0W 7 1944 0 32 2.0 8 57.2 59.4 9 67.7 73.3 7 43.9 46.5 0.70 1.0 UK00 UK0 W_18 1220 7170 2550. 2472. 2515. 0W 8 0 0 190 1.8 7 30.9 34.9 1 64.4 70.2 5 33.9 37.2 0.10 3.1 UK00 UK0 W_28 4500 2566. 2517. 2544. 0W 6 7850 0 115 1.5 5 36.3 39.7 2 65.4 71.2 6 35.6 38.8 0.41 1.9 UK0 UK00 4240 2571. 2609. 2588. 0W W_97 7210 0 121 2.2 4 38.6 41.8 9 67.8 73.7 3 36.6 39.8 0.53 -1.5 UK0 UK00 2330 1347 2581. 2552. 2568. 0W W_59 0 00 412 2.0 1 25.9 30.4 5 65.7 71.6 5 32.5 36.0 0.52 1.1 UK00 UK0 W_22 1332 7620 2582. 2592. 2586. 0W 0 0 0 190 12.7 0 30.7 34.6 3 67.6 73.5 5 34.3 37.6 0.82 -0.4 UK00 UK0 W_16 1146 6570 2584. 2510. 2552. 0W 4 0 0 178 1.9 9 31.9 35.7 7 65.0 70.8 0 34.2 37.5 0.19 2.9 UK00 UK0 W_17 5060 2584. 2572. 2579. 0W 0 8720 0 132 2.0 9 35.1 38.5 8 66.4 72.4 6 35.3 38.5 0.83 0.5 UK0 UK00 1444 8330 2585. 2563. 2576. 0W W_85 0 0 253 1.6 9 29.5 33.6 7 66.3 72.2 1 33.7 37.1 0.65 0.9 UK00 UK0 W_28 1100 6220 2588. 2539. 2567. 0W 1 0 0 160 1.9 8 32.9 36.5 9 66.2 72.0 2 34.7 38.0 0.26 1.9 UK0 UK00 5600 2610. 2539. 2579. 0W W_34 9850 0 168 1.0 8 33.1 36.7 0 66.1 72.0 1 34.9 38.1 0.13 2.7 UK00 UK0 W_22 1242 7020 2624. 2625. 2624. 0W 5 0 0 173 1.5 0 32.4 36.1 0 68.1 74.0 4 34.8 38.1 0.99 0.0 UK0 UK00 4160 2629. 2591. 2612. 0W W_91 7430 0 125 1.1 6 37.9 41.1 4 68.4 74.2 9 36.9 40.0 0.47 1.5 UK00 UK0 W_21 1199 6690 2637. 2659. 2646. 0W 8 0 0 159 3.3 1 31.7 35.5 2 68.7 74.7 7 34.7 38.0 0.69 -0.8 UK0 UK00 3400 2660. 2576. 2623. 0W W_36 6130 0 101 13.1 2 39.6 42.7 7 66.7 72.6 7 37.1 40.2 0.17 3.1 UK0 UK00 2540 1400 2672. 2619. 2649. 0W W_30 0 00 397 1.6 1 25.4 29.9 8 67.6 73.6 4 32.9 36.4 0.33 2.0 UK0 UK00 1743 9600 2684. 2595. 2645. 0W W_33 0 0 277 1.1 8 28.1 32.2 3 66.8 72.8 9 33.5 36.9 0.06 3.3 UK00 UK0 W_22 1960 1049 2687. 2588. 2644. 0W 7 0 00 264 1.4 5 26.7 31.0 4 66.6 72.6 4 33.1 36.6 0.04 3.7 UK00 UK0 W_15 4040 2701. 2675. 2690. 0W 5 7480 0 103 0.5 8 36.9 40.2 4 69.0 75.1 4 36.5 39.7 0.68 1.0 UK00 UK0 W_28 1154 6150 2701. 2717. 2708. 0W 8 0 0 139 3.1 8 31.8 35.5 8 69.5 75.7 6 34.8 38.1 0.78 -0.6 UK0 UK00 2180 2704. 2638. 2676. 0W W_79 4106 0 63 1.9 4 44.3 47.1 7 68.7 74.7 1 39.2 42.2 0.32 2.4 UK00 UK0 W_17 4760 2714. 2634. 2679. 0W 8 8850 0 121 1.1 2 34.2 37.7 4 68.8 74.8 8 35.8 39.1 0.09 2.9 UK0 UK00 3420 1811 2743. 2650. 2703. 0W W_16 0 00 487 1.9 9 22.6 27.6 6 67.9 73.9 9 32.2 35.8 0.04 3.4 UK0 UK00 3830 1980 2763. 2649. 2714. 0W W_92 0 00 575 6.2 6 22.3 27.3 8 68.0 74.1 9 32.3 35.9 0.03 4.1 UK0 UK00 4700 2794. 2762. 2780. 0W W_9 9080 0 123 2.2 0 35.4 38.7 5 72.1 78.2 7 36.8 40.0 0.59 1.1 UK0 UK00 4530 2826. 2754. 2796. 0W W_26 8870 0 119 1.7 2 34.1 37.5 5 70.6 76.8 1 35.9 39.2 0.18 2.5

164

UK00 UK0 W_20 1571 7750 2827. 2759. 2798. 0W 4 0 0 180 2.0 0 28.6 32.6 5 70.3 76.6 7 34.2 37.6 0.20 2.4 UK00 UK0 W_15 1484 7070 2903. 2849. 2881. 0W 1 0 0 167 4.4 2 28.4 32.4 7 72.0 78.4 1 34.3 37.7 0.31 1.8 UK00 UK0 W_11 3760 1724 2963. 2880. 2929. 0W 6 0 00 423 0.6 0 21.7 26.7 3 72.7 79.2 2 32.7 36.3 0.08 2.8 UK0 UK00 8350 1693. 1472. 1565. 0W W_3 8730 0 431 2.2 2 38.8 42.7 4 42.9 46.5 4 31.0 33.7 0.00 13.0 UK0 UK00 6700 1684. 1527. 1594. 0W W_21 6910 0 353 3.2 2 41.0 44.7 6 42.6 46.4 6 30.9 33.6 0.00 9.3 UK0 UK00 1152 1358. 0W W_31 9990 00 1137 4.9 3 43.0 46.8 835.0 25.5 27.6 992.3 25.0 27.1 0.00 38.5 UK0 UK00 1716 0W W_35 953 0 1920 1.1 483.8 98.2 100.5 83.9 2.8 3.0 99.2 5.3 5.5 0.00 82.7 UK0 UK00 4050 1662. 1392. 1503. 0W W_49 4130 0 258 2.4 6 49.1 52.2 9 40.5 43.9 4 32.8 35.3 0.00 16.2 UK0 UK00 1111 9260 1933. 1289. 0W W_52 0 0 838 3.0 7 34.6 38.6 938.4 30.0 32.2 4 28.8 31.2 0.00 51.5 UK0 UK00 4230 1938. 1797. 1863. 0W W_68 5040 0 193 0.4 3 44.2 47.4 1 49.5 53.8 4 34.2 37.0 0.00 7.3 UK0 UK00 7350 1963. 1651. 1793. 0W W_78 8830 0 363 1.7 6 37.6 41.3 5 46.8 50.8 9 32.4 35.2 0.00 15.9 UK00 UK0 W_12 1433 1164 2020. 1929. 1973. 0W 4 0 00 466 18.1 3 39.3 42.8 8 56.8 61.1 8 35.4 38.2 0.00 4.5 UK00 UK0 W_12 1013 1267 1197. 1106. 1137. 0W 6 0 00 933 2.1 0 39.4 43.7 2 33.0 35.7 2 26.1 28.4 0.00 7.6 UK00 UK0 W_13 5510 1875. 1293. 1530. 0W 1 6370 0 347 1.8 2 43.1 46.4 5 39.4 42.5 4 32.6 35.2 0.00 31.0 UK00 UK0 W_14 3570 1442. 0W 4 3120 0 1250 1.7 4 86.0 87.9 241.0 8.2 8.8 396.0 18.6 19.4 0.00 83.3 UK00 UK0 W_14 1026 5640 2659. 2531. 2603. 0W 9 0 0 155 1.0 3 32.6 36.3 2 67.1 72.8 0 35.2 38.5 0.00 4.8 UK00 UK0 W_15 1395 8680 2435. 2606. 2511. 0W 0 0 0 222 2.6 4 31.9 35.8 5 67.4 73.4 4 34.1 37.4 0.01 -7.0 UK00 UK0 W_15 1330 4722. 1606. 3389. 0W 7 9900 0 49 0.6 5 31.2 34.1 5 70.1 72.7 2 52.8 55.2 0.00 66.0 UK00 UK0 W_16 4440 0W 3 3100 0 454 2.9 934.2 59.4 62.6 762.1 22.7 24.7 807.4 23.9 25.6 0.00 18.4 UK00 UK0 W_16 4321 1471. 0W 8 4000 0 752 5.7 5 53.9 56.9 474.0 19.4 20.4 688.4 25.5 26.9 0.00 67.8 UK00 - UK0 W_17 3770 2874. 383. 129. 0W 6 18 119 3 6.4 3 6 383.9 241.7 18.9 19.2 746.1 6 129.9 0.00 91.6 UK00 UK0 W_17 3510 1659. 1532. 1586. 0W 7 3610 0 165 1.0 0 51.5 54.5 2 43.3 47.1 3 33.9 36.4 0.01 7.6 UK00 UK0 W_17 1126 1176 1526. 1199. 1321. 0W 9 0 00 696 8.9 1 38.6 42.6 4 34.4 37.5 8 27.8 30.3 0.00 21.4 UK00 UK0 W_18 4360 1825. 1211. 1452. 0W 0 4830 0 250 2.5 6 46.3 49.4 7 36.6 39.5 8 32.3 34.7 0.00 33.6 UK00 UK0 W_19 180. 0W 4 163 2850 192 2.4 408.2 8 182.1 116.7 3.8 4.1 131.5 10.7 10.9 0.01 71.4 UK00 UK0 W_20 2120 1193 2599. 2192. 2409. 0W 1 0 00 359 1.2 4 26.8 31.2 0 74.6 78.7 8 39.8 42.7 0.00 15.7 UK00 UK0 W_20 1681 153. 0W 2 1050 0 1370 0.6 790.4 9 155.2 98.8 3.7 3.9 132.6 10.2 10.4 0.00 87.5

165

UK00 UK0 W_20 1547 1100 2219. 1760. 1980. 0W 3 0 00 428 2.8 8 30.8 35.0 4 52.0 56.0 9 33.2 36.2 0.00 20.7 UK00 UK0 W_20 5080 1693. 1505. 1585. 0W 6 5320 0 238 2.8 2 45.4 48.8 2 42.7 46.4 1 32.3 34.9 0.00 11.1 UK00 UK0 W_21 3360 2290 2286. 1219. 1666. 0W 0 0 00 1323 2.6 6 24.2 29.2 2 36.6 39.5 1 29.3 32.3 0.00 46.7 UK00 UK0 W_21 4480 2329. 2173. 2254. 0W 1 6740 0 138 1.5 9 38.8 42.1 2 58.1 63.2 9 35.1 38.2 0.00 6.7 UK00 UK0 W_21 1374 1305 1712. 1621. 1661. 0W 7 0 00 553 2.2 6 33.3 37.6 0 47.0 50.9 3 30.7 33.5 0.00 5.3 UK00 UK0 W_21 7210 1942. 1108. 1428. 0W 9 8240 0 449 2.2 8 37.4 41.2 9 33.0 35.7 3 29.6 32.2 0.00 42.9 UK00 UK0 W_22 1192 6080 2799. 2658. 2739. 0W 6 0 0 146 1.8 0 31.1 34.8 8 68.8 74.8 2 34.9 38.3 0.00 5.0 UK00 UK0 W_22 6180 2426. 1470. 1909. 0W 9 9750 0 282 1.6 8 34.7 38.3 9 43.1 46.6 7 33.3 36.2 0.00 39.4 UK00 UK0 W_23 6120 2376. 1535. 1925. 0W 0 9340 0 281 5.4 4 37.8 41.2 7 56.6 59.5 8 40.6 43.0 0.00 35.4 UK00 UK0 W_23 2390 1260 2721. 2310. 2535. 0W 3 0 00 356 2.2 2 25.3 29.8 7 63.5 68.7 8 33.6 37.0 0.00 15.1 UK00 UK0 W_23 3270 0W 5 1880 0 787 1.9 479.9 79.4 82.2 329.9 13.9 14.5 349.2 16.6 17.3 0.00 31.3 UK00 UK0 W_23 2400 0W 6 1740 0 468 3.9 951.6 81.7 84.1 393.8 12.6 13.6 486.7 20.0 21.0 0.00 58.6 UK00 UK0 W_24 1175 2202. 108. 1084. 1524. 0W 0 1660 0 78 0.9 3 6 109.9 4 35.1 37.6 0 56.6 58.1 0.00 50.8 UK00 UK0 W_24 4700 2497. 1831. 2164. 0W 2 8400 0 177 1.2 3 83.0 84.6 1 50.3 54.8 4 52.4 54.5 0.00 26.7 UK00 UK0 W_24 3930 1500. 1289. 1371. 0W 6 3590 0 224 2.9 1 57.9 60.6 8 37.2 40.4 1 33.2 35.5 0.00 14.0 UK00 UK0 W_24 1094 115. 0W 7 580 0 795 1.3 289.8 9 117.9 109.9 3.7 4.0 118.2 6.8 7.1 0.01 62.1 UK00 UK0 W_26 1656 9050 2629. 2428. 2539. 0W 6 0 0 242 2.6 6 32.2 35.9 1 64.9 70.5 4 35.0 38.2 0.00 7.7 UK00 UK0 W_27 5030 1710. 1123. 0W 2 5430 0 453 1.6 8 44.4 47.8 845.2 31.0 32.8 7 31.3 33.2 0.00 50.6 UK00 UK0 W_27 1695 9170 2687. 2408. 2563. 0W 3 0 0 250 1.0 5 28.7 32.8 6 63.6 69.1 0 33.7 37.1 0.00 10.4 UK00 UK0 W_27 2540 0W 5 1300 0 1960 3.5 276.6 87.3 90.0 102.8 3.4 3.7 110.3 5.3 5.6 0.00 62.8 UK00 UK0 W_27 125. 0W 7 406 6710 277 1.9 556.0 0 126.8 190.7 6.1 6.6 220.8 13.1 13.5 0.00 65.7 UK00 UK0 W_27 4310 2508. 2383. 2451. 0W 9 7280 0 118 2.6 6 37.2 40.6 2 63.5 69.0 5 35.9 39.0 0.00 5.0

166

Table 2-4: Dates of grains from PR-1-Wave collected from Detrital Zircon U-Pb-Th data results from LA-ICP- MS seen in Table 3. 4 = Accepted dates have probability of concordance >1%. Data collected from the Center for Pure and Applied Tectonics and Thermochronology, Department of Geoscience, University of Calgary. Accepted Ages4

Date 2sx 2sx 2stotal 2stotal (Ma) (ABS) (%) (ABS) (%) 103.9 3.7 3.5 3.9 3.8 108.2 3.5 3.2 3.8 3.5 108.6 4.0 3.6 4.2 3.8 109.2 3.8 3.5 4.1 3.7 109.5 3.6 3.3 3.9 3.6 110.3 3.5 3.2 3.8 3.4 111.3 3.7 3.3 4.0 3.5 111.4 3.6 3.2 3.9 3.5 111.5 3.5 3.2 3.8 3.4 111.5 3.5 3.2 3.8 3.4 111.6 3.6 3.2 3.9 3.5 111.6 3.6 3.3 3.9 3.5 111.7 3.6 3.2 3.9 3.4 111.9 3.7 3.3 4.0 3.5 112.1 3.5 3.2 3.8 3.4 112.3 3.6 3.2 3.9 3.4 112.5 3.6 3.2 3.9 3.4 113.2 4.0 3.6 4.3 3.8 113.3 3.6 3.2 3.9 3.4 113.7 3.6 3.2 3.9 3.4 114.1 3.6 3.1 3.9 3.4 114.8 3.6 3.1 3.9 3.4 115.0 3.7 3.2 4.0 3.5 115.1 3.7 3.2 4.0 3.5 115.2 3.7 3.2 4.0 3.4 115.3 3.7 3.2 4.0 3.5 115.4 3.6 3.1 3.9 3.4 115.4 3.6 3.1 3.9 3.4 115.8 3.7 3.2 4.0 3.5 115.8 3.7 3.2 4.0 3.5 115.8 3.7 3.2 4.0 3.4 115.8 3.7 3.2 4.0 3.4 115.8 3.8 3.3 4.1 3.5 116.0 3.8 3.3 4.1 3.5 116.1 3.6 3.1 3.9 3.3 116.3 3.8 3.3 4.1 3.5 116.5 3.8 3.3 4.1 3.5

167

116.9 3.9 3.3 4.2 3.6 117.1 3.7 3.2 4.0 3.4 117.2 3.7 3.2 4.0 3.4 117.2 3.9 3.3 4.2 3.6 117.4 3.8 3.3 4.1 3.5 117.4 3.7 3.2 4.0 3.4 117.5 3.9 3.3 4.2 3.6 117.6 4.2 3.6 4.5 3.8 117.9 3.7 3.1 4.0 3.4 117.9 3.8 3.2 4.1 3.5 118.2 3.8 3.2 4.1 3.5 118.4 3.8 3.2 4.1 3.4 119.1 3.8 3.2 4.2 3.5 119.4 4.4 3.7 4.7 3.9 119.6 3.8 3.2 4.1 3.4 119.7 3.9 3.3 4.3 3.5 120.7 4.0 3.3 4.3 3.5 121.9 3.8 3.1 4.2 3.5 123.5 4.5 3.7 4.8 3.9 123.9 4.3 3.5 4.6 3.7 190.9 6.2 3.2 6.7 3.5 206.7 6.5 3.1 7.0 3.4 223.7 7.4 3.3 8.0 3.6 241.7 8.2 3.4 8.8 3.7 344.1 10.6 3.1 11.5 3.3 345.3 10.7 3.1 11.7 3.4 346.1 10.8 3.1 11.7 3.4 351.3 11.1 3.2 12.0 3.4 353.7 11.1 3.1 12.0 3.4 361.7 11.1 3.1 12.1 3.3 364.4 11.3 3.1 12.2 3.4 384.7 12.1 3.1 13.1 3.4 410.2 12.7 3.1 13.8 3.4 425.5 12.9 3.0 14.1 3.3 443.4 13.7 3.1 14.8 3.3 448.2 13.7 3.1 14.9 3.3 537.8 16.4 3.1 17.8 3.3 557.3 18.1 3.2 19.5 3.5 560.3 17.0 3.0 18.5 3.3 598.6 18.3 3.1 19.9 3.3 606.2 18.4 3.0 20.0 3.3

168

611.5 19.0 3.1 20.5 3.4 658.8 20.1 3.0 21.8 3.3 661.7 20.0 3.0 21.7 3.3 765.6 24.2 3.2 26.1 3.4 829.4 25.5 3.1 27.6 3.3 993.4 29.3 2.9 31.8 3.2 1001.1 29.0 2.9 31.6 3.1 1012.7 31.0 3.1 33.5 3.3 1015.4 29.6 2.9 32.2 3.1 1020.9 29.6 2.9 32.2 3.1 1035.8 30.4 2.9 33.0 3.2 1040.1 30.8 3.0 33.5 3.2 1045.1 31.3 3.0 33.9 3.2 1048.9 30.6 2.9 33.3 3.2 1054.4 30.6 2.9 33.3 3.1 1054.4 31.0 2.9 33.7 3.1 1060.4 31.3 2.9 34.0 3.2 1068.6 31.3 2.9 34.0 3.2 1075.2 31.9 3.0 34.6 3.2 1080.6 31.4 2.9 34.1 3.1 1084.4 31.3 2.9 34.1 3.1 1113.8 33.4 3.0 36.1 3.2 1136.5 33.1 2.9 36.0 3.2 1161.9 33.4 2.9 36.4 3.1 1178.0 33.9 2.9 36.9 3.1 1317.2 37.3 2.8 40.7 3.1 1434.9 40.2 2.8 43.8 3.0 1609.1 51.8 3.2 54.7 3.5 1627.8 54.8 3.4 57.6 3.6 1659.0 58.5 3.5 61.1 3.8 1705.5 51.7 3.0 54.6 3.2 1709.1 39.2 2.3 43.0 2.6 1712.6 48.0 2.8 51.1 3.0 1731.7 48.5 2.8 51.6 3.0 1742.1 49.4 2.8 52.4 3.0 1747.2 62.7 3.6 65.2 3.7 1750.6 37.9 2.2 41.8 2.4 1754.1 36.0 2.1 40.0 2.3 1760.9 39.1 2.2 42.8 2.5 1760.9 33.7 1.9 38.0 2.1 1765.9 37.2 2.1 41.1 2.3

169

1767.6 49.5 2.8 52.5 3.0 1772.7 54.4 3.1 57.1 3.3 1772.7 33.8 1.9 38.0 2.2 1774.4 56.6 3.2 59.3 3.3 1776.1 36.2 2.0 40.2 2.3 1787.8 73.6 4.1 75.6 4.4 1791.1 36.8 2.1 40.7 2.3 1791.1 55.3 3.1 58.0 3.3 1792.8 54.4 3.0 57.1 3.2 1796.1 41.9 2.3 45.4 2.5 1797.7 61.4 3.4 63.8 3.5 1799.4 45.0 2.5 48.3 2.7 1804.4 43.6 2.4 46.9 2.6 1806.0 39.8 2.2 43.4 2.4 1806.0 40.6 2.2 44.2 2.5 1809.3 51.6 2.9 54.4 3.0 1810.9 34.5 1.9 38.6 2.1 1812.6 37.8 2.1 41.6 2.4 1812.6 62.8 3.5 65.1 3.6 1812.6 51.6 2.8 54.4 3.0 1817.5 55.6 3.1 58.2 3.2 1822.4 54.1 3.0 56.8 3.1 1822.4 36.9 2.0 40.8 2.2 1824.0 65.3 3.6 67.6 3.7 1827.3 37.4 2.0 41.2 2.3 1830.5 46.0 2.5 49.1 2.8 1832.1 41.6 2.3 45.0 2.5 1832.1 41.8 2.3 45.3 2.5 1833.7 54.0 2.9 56.7 3.1 1833.7 45.3 2.5 48.5 2.7 1833.7 50.8 2.8 53.7 3.0 1835.4 65.1 3.5 67.3 3.7 1835.4 44.2 2.4 47.5 2.6 1835.4 39.8 2.2 43.5 2.4 1837.0 59.9 3.3 62.4 3.4 1840.2 39.4 2.1 43.1 2.4 1841.8 43.9 2.4 47.2 2.6 1841.8 55.0 3.0 57.7 3.3 1841.8 53.0 2.9 55.7 3.1 1843.4 54.8 3.0 57.5 3.1 1845.0 47.3 2.6 50.4 2.7

170

1848.2 57.4 3.1 59.9 3.3 1849.8 45.3 2.5 48.5 2.6 1849.8 43.7 2.4 47.0 2.6 1851.4 54.6 2.9 57.3 3.1 1853.0 54.4 2.9 57.1 3.1 1856.2 43.2 2.3 46.5 2.6 1862.5 44.7 2.4 48.0 2.6 1862.5 35.1 1.9 39.1 2.1 1864.1 46.2 2.5 49.3 2.7 1864.1 93.0 5.0 94.6 4.9 1865.7 28.4 1.5 33.2 1.8 1867.3 46.8 2.5 49.9 2.7 1867.3 53.6 2.9 56.3 3.0 1878.3 52.2 2.8 55.0 3.0 1883.0 47.4 2.5 50.4 2.7 1884.6 43.4 2.3 46.7 2.4 1890.8 56.7 3.0 59.3 3.2 1893.9 32.1 1.7 36.4 2.0 1897.0 63.2 3.3 65.5 3.5 1897.0 38.8 2.0 42.4 2.2 1898.6 38.4 2.0 42.0 2.2 1903.2 39.6 2.1 43.2 2.3 1904.7 38.9 2.0 42.5 2.3 1909.4 37.5 2.0 41.2 2.1 1909.4 74.4 3.9 76.4 4.2 1910.9 52.4 2.7 55.2 2.9 1912.4 44.8 2.3 48.0 2.5 1927.7 55.4 2.9 58.0 3.0 1939.8 72.2 3.7 74.2 4.0 1945.8 44.4 2.3 47.5 2.5 1948.8 53.1 2.7 55.8 3.0 1953.2 38.4 2.0 42.1 2.1 1953.2 43.1 2.2 46.4 2.4 1954.7 40.1 2.1 43.6 2.3 1959.2 46.1 2.4 49.2 2.5 1965.1 49.4 2.5 52.3 2.7 1974.0 53.3 2.7 56.0 2.9 1987.1 50.9 2.6 53.7 2.7 1991.5 62.5 3.1 64.8 3.2 1998.7 50.6 2.5 53.4 2.7 2004.5 81.0 4.0 82.8 4.3

171

2010.3 38.3 1.9 41.9 2.1 2028.8 41.5 2.0 44.8 2.3 2052.7 55.7 2.7 58.2 2.9 2059.6 30.3 1.5 34.7 1.7 2069.3 53.8 2.6 56.4 2.8 2083.0 43.4 2.1 46.6 2.3 2084.4 34.9 1.7 38.8 1.9 2087.1 54.7 2.6 57.3 2.8 2099.3 56.0 2.7 58.5 2.8 2111.4 59.6 2.8 61.9 3.0 2132.7 42.3 2.0 45.5 2.2 2296.1 82.1 3.6 83.7 3.7 2314.8 33.8 1.5 37.6 1.6 2328.7 49.2 2.1 51.9 2.3 2333.3 39.1 1.7 42.4 1.8 2382.0 39.8 1.7 43.0 1.8 2447.2 27.7 1.1 32.1 1.3 2494.2 31.4 1.3 35.3 1.4 2499.4 35.0 1.4 38.6 1.6 2517.7 41.7 1.7 44.7 1.8 2533.8 57.2 2.3 59.4 2.4 2550.7 30.9 1.2 34.9 1.4 2566.5 36.3 1.4 39.7 1.6 2571.4 38.6 1.5 41.8 1.6 2581.1 25.9 1.0 30.4 1.2 2582.0 30.7 1.2 34.6 1.3 2584.9 31.9 1.2 35.7 1.4 2584.9 35.1 1.4 38.5 1.5 2585.9 29.5 1.1 33.6 1.3 2588.8 32.9 1.3 36.5 1.4 2610.8 33.1 1.3 36.7 1.4 2624.0 32.4 1.2 36.1 1.4 2629.6 37.9 1.4 41.1 1.6 2637.1 31.7 1.2 35.5 1.3 2660.2 39.6 1.5 42.7 1.6 2672.1 25.4 0.9 29.9 1.1 2684.8 28.1 1.0 32.2 1.2 2687.5 26.7 1.0 31.0 1.2 2701.8 36.9 1.4 40.2 1.5 2701.8 31.8 1.2 35.5 1.3 2704.4 44.3 1.6 47.1 1.8

172

2714.2 34.2 1.3 37.7 1.4 2743.9 22.6 0.8 27.6 1.0 2763.6 22.3 0.8 27.3 1.0 2794.0 35.4 1.3 38.7 1.4 2826.2 34.1 1.2 37.5 1.3 2827.0 28.6 1.0 32.6 1.2 2903.2 28.4 1.0 32.4 1.1 2963.0 21.7 0.7 26.7 0.9

173

Table 2-5: Detrital Zircon U-Pb-Th data results for AOS-1 from LA-ICP-MS. 1 = Concentration uncertainty 20%; calibrated against reference material 91500 (80 mg/kg U); 3 = Concordance calculated as (206Pb/238U age/207Pb-206Pb Age)*100; Data collected from the Center for Pure and Applied Tectonics and

Thermochronology, Department of Geoscience, University of Calgary.

AOS-1 Dates U Prob. % 207Pb 206Pb U/ (pp 207 2sx 206 2sx 207 2sx Conc. con Sam CPS CPS Th Pb/ 2stotal Pb 2stotal Pb/ 2stotal Spot 1 (ABS (ABS (ABS 3 ple m) 206Pb (ABS) /238U (ABS) 235Pb (ABS) (%) c ) ) ) UK0 UK001 - 01 _23 49 970 196 3.5 NA NA NA 113.1 4.8 5.1 111.8 69.0 69.1 0.97 34.0 - UK0 UK001 178. 01 _276 96 2106 372 1.5 NA NA NA 137.2 3.5 3.9 132.5 41.4 41.4 0.82 7 UK0 UK001 01 _150 123 2330 307 0.8 NA NA NA 164.8 4.0 4.6 174.5 42.0 42.1 0.65 46.4 - UK0 UK001 107. 01 _189 206 4320 684 1.7 NA NA NA 165.2 3.7 4.3 159.7 23.2 23.4 0.64 9 UK0 UK001 01 _131 205 4020 440 1.2 NA NA NA 193.7 4.3 5.0 202.9 28.8 29.0 0.50 37.8 UK0 UK001 188. 251. 01 _221 35 797 76 0.7 NA NA NA 271.4 10.3 10.9 229.6 0 188.1 0.65 4 UK0 UK001 172. - 01 _229 46 864 70 1.0 NA NA NA 296.7 9.6 10.3 284.0 9 173.0 0.88 63.9 - UK0 UK001 152. 01 _281 127 2750 188 0.6 NA NA NA 325.0 7.6 8.8 302.0 66.1 66.3 0.48 7 UK0 UK001 01 _5 203 3840 181 0.9 NA NA NA 353.1 10.2 11.2 359.9 50.4 50.7 0.78 12.6 UK0 UK001 01 _249 179 3380 229 2.4 NA NA NA 364.1 8.9 10.1 362.7 55.0 55.2 0.96 -2.8 UK0 UK001 01 _69 383 6890 344 1.6 NA NA NA 388.4 10.7 11.8 405.3 36.0 36.4 0.36 22.8 UK0 UK001 336. 01 _85 219 4050 205 3.0 420.3 4 337.1 403.5 9.0 10.4 406.0 50.4 50.7 0.92 4.0 UK0 UK001 161. 01 _279 526 9270 461 2.9 479.9 7 163.1 404.1 8.5 10.1 415.6 26.0 26.6 0.39 15.8 UK0 UK001 168. 01 _176 448 8360 474 5.5 464.2 8 170.2 406.0 7.5 9.2 414.8 26.7 27.3 0.52 12.5 UK0 UK001 424. 01 _21 167 3020 144 1.6 563.4 4 424.9 406.6 9.0 10.5 430.9 67.5 67.7 0.46 27.8 UK0 UK001 209. 01 _128 343 6080 300 1.4 628.6 3 210.4 407.2 8.4 9.9 442.2 35.5 36.0 0.05 35.2 UK0 UK001 359. 01 _232 197 3310 209 1.9 607.2 5 360.2 407.2 9.0 10.5 438.6 58.9 59.2 0.29 32.9 UK0 UK001 770. 103. - 01 _31 101 2030 113 1.6 281.0 9 771.3 411.4 10.8 12.1 392.3 3 103.4 0.70 46.4 UK0 UK001 792. 116. 01 _49 95 1880 109 2.0 487.7 8 793.1 411.4 12.4 13.5 423.2 6 116.8 0.84 15.6 UK0 UK001 468. 01 _169 158 3020 162 3.2 383.5 8 469.4 413.2 10.8 12.1 408.7 69.1 69.3 0.90 -7.7 UK0 UK001 307. 01 _170 236 4150 223 2.3 460.3 1 307.9 421.7 9.2 10.7 427.7 48.5 48.8 0.80 8.4 UK0 UK001 186. 01 _125 400 7380 342 1.2 416.3 5 187.8 430.1 8.8 10.4 428.0 30.0 30.5 0.88 -3.3 UK0 UK001 506. 01 _167 142 2520 129 1.0 548.5 9 507.4 438.0 11.0 12.4 456.1 83.4 83.6 0.67 20.2 UK0 UK001 399. 01 _43 181 3350 173 0.8 592.7 9 400.5 442.2 11.0 12.4 467.3 68.5 68.8 0.48 25.4 UK0 UK001 2358 2358. 01 _78 12 187 8 1.1 NA NA NA 442.2 43.7 44.1 456.6 .1 6 0.98 16.5 UK0 UK001 151. 01 _260 480 8280 420 1.4 578.1 1 152.5 453.6 8.4 10.3 474.7 27.3 28.0 0.12 21.5 UK0 UK001 258. - 01 _76 294 5940 270 0.6 267.7 8 259.7 454.2 10.4 11.9 424.7 39.7 40.1 0.14 69.7 UK0 UK001 470. - 01 _119 157 3010 135 1.1 358.5 5 471.1 464.4 11.2 12.7 447.0 74.1 74.4 0.62 29.5 UK0 UK001 568. 01 _242 126 2080 113 2.5 600.0 7 569.1 466.8 10.7 12.3 490.0 98.9 99.1 0.63 22.2 UK0 UK001 424. 01 _273 168 2600 110 1.0 656.8 8 425.3 473.4 16.0 17.1 506.1 78.6 78.9 0.40 27.9

174

UK0 UK001 376. - 01 _194 194 3480 174 1.2 350.1 7 377.4 480.6 11.3 12.9 458.6 61.2 61.5 0.46 37.3 UK0 UK001 410. 01 _238 175 3100 162 0.8 503.1 7 411.3 486.6 11.1 12.8 489.5 71.7 72.0 0.93 3.3 UK0 UK001 150. 01 _268 493 8490 391 1.4 556.0 7 152.2 513.4 9.6 11.7 521.3 29.2 30.0 0.59 7.7 UK0 UK001 297. 01 _291 243 4050 164 1.0 526.0 6 298.4 523.5 11.2 13.1 524.0 55.8 56.2 0.99 0.5 UK0 UK001 189. 01 _191 458 8290 323 0.9 499.3 5 190.7 525.9 13.1 14.8 520.9 36.5 37.1 0.81 -5.3 UK0 UK001 279. 01 _19 255 4560 162 1.6 552.3 4 280.2 536.6 10.8 12.9 539.6 53.8 54.3 0.91 2.8 UK0 UK001 1453 01 _202 897 0 570 4.5 684.4 92.3 94.6 549.6 10.3 12.6 576.6 20.9 22.1 0.02 19.7 UK0 UK001 1162 140. 01 _68 684 0 363 1.7 701.5 7 142.2 574.4 11.8 14.0 600.8 31.5 32.3 0.08 18.1 UK0 UK001 255. 01 _70 277 4740 171 1.3 646.3 1 256.0 586.2 11.1 13.4 598.7 54.1 54.6 0.63 9.3 UK0 UK001 1120 121. 01 _13 638 0 338 2.4 548.5 2 123.0 593.3 11.4 13.7 584.1 26.2 27.2 0.52 -8.2 UK0 UK001 147. 01 _220 491 8010 311 1.3 687.8 9 149.3 602.7 11.9 14.2 620.9 33.5 34.4 0.27 12.4 UK0 UK001 169. 01 _164 430 7160 248 1.3 621.5 7 171.0 625.5 11.9 14.3 624.7 37.7 38.5 0.96 -0.6 UK0 UK001 139. - 01 _158 550 9090 297 2.0 559.7 4 141.0 633.1 12.1 14.6 617.3 31.0 31.9 0.31 13.1 UK0 UK001 160. 01 _288 483 8200 228 1.5 607.2 8 162.1 634.3 13.4 15.7 628.4 36.3 37.1 0.75 -4.5 UK0 UK001 1068. 422. 114. 01 _215 158 2090 77 2.3 5 2 422.6 695.4 18.3 20.4 790.3 2 114.6 0.12 34.9 UK0 UK001 345. 01 _32 200 2980 80 4.1 825.3 8 346.4 762.7 29.1 30.7 778.8 91.7 92.1 0.70 7.6 UK0 UK001 251. 01 _99 280 4430 112 2.3 751.5 0 251.8 797.0 18.2 20.8 785.1 65.9 66.5 0.72 -6.1 UK0 UK001 477. 126. 01 _171 144 2210 54 1.6 790.4 3 477.7 841.3 21.8 24.2 827.4 7 127.1 0.82 -6.4 UK0 UK001 1121. 165. 01 _149 410 5420 120 0.4 2 4 166.5 920.0 19.9 23.0 981.3 54.1 55.1 0.04 17.9 UK0 UK001 1159. 313. 1008. 101. 01 _116 208 2740 54 1.0 6 8 314.4 940.6 22.5 25.4 7 5 102.1 0.20 18.9 UK0 UK001 1033. 221. 01 _157 301 4270 92 2.4 3 8 222.7 941.2 23.7 26.5 969.2 70.3 71.0 0.42 8.9 UK0 UK001 241. 01 _264 278 3760 94 2.3 963.2 1 241.9 948.4 20.3 23.5 952.9 73.9 74.6 0.91 1.5 UK0 UK001 205. 01 _143 332 4640 95 0.8 951.6 2 206.1 966.8 22.2 25.3 962.2 64.0 64.8 0.89 -1.6 UK0 UK001 310. 01 _106 216 3250 64 1.4 907.7 0 310.6 973.4 21.6 24.8 953.5 93.3 93.9 0.66 -7.2 UK0 UK001 2650 1000. 01 _80 1820 0 538 6.8 0 46.5 50.4 976.2 17.0 21.0 983.6 18.6 21.4 0.49 2.4 UK0 UK001 118. 01 _66 611 8730 188 7.7 988.8 0 119.6 976.8 17.0 21.0 980.5 38.3 39.7 0.84 1.2 UK0 UK001 1184. 266. 1043. 01 _146 244 3080 64 3.7 6 2 266.9 977.3 21.1 24.4 4 88.6 89.2 0.15 17.5 UK0 UK001 1063. 207. 1006. 01 _277 317 4330 93 2.4 1 6 208.5 980.1 19.3 22.9 1 67.0 67.8 0.41 7.8 UK0 UK001 1410 - 01 _117 945 0 282 3.6 883.7 77.6 80.1 981.2 17.2 21.2 951.6 25.9 27.9 0.02 11.0 UK0 UK001 1033. 163. 01 _209 419 5810 138 2.3 3 0 164.1 981.7 18.7 22.4 997.8 52.7 53.8 0.57 5.0 UK0 UK001 1126. 106. 1029. 01 _77 660 8900 162 2.6 4 5 108.2 984.0 19.9 23.4 1 37.3 38.8 0.02 12.6 UK0 UK001 1219. 572. 1060. 187. 01 _239 114 1460 36 2.6 0 8 573.2 984.5 34.1 36.3 0 4 187.7 0.42 19.2 UK0 UK001 1196 1060. 1010. 01 _50 884 0 272 4.0 4 83.5 85.7 987.3 16.9 21.0 3 29.1 30.9 0.19 6.9 UK0 UK001 448. 133. 01 _180 151 2200 50 2.3 913.6 1 448.6 988.4 22.8 25.9 965.5 9 134.3 0.72 -8.2 UK0 UK001 126. 01 _123 547 7920 141 3.6 971.7 7 128.2 991.7 18.4 22.2 985.5 41.1 42.4 0.78 -2.1 UK0 UK001 1242 1105. 1027. 01 _196 936 0 280 2.9 6 79.9 82.2 991.7 17.0 21.0 8 28.5 30.4 0.02 10.3

175

UK0 UK001 1214. 449. 1067. 149. 01 _205 144 1780 42 1.8 1 3 449.8 996.7 29.5 32.0 1 4 149.8 0.33 17.9 UK0 UK001 1084. 223. 1025. 01 _11 301 4120 75 3.4 5 8 224.7 997.8 21.5 24.9 3 73.3 74.0 0.46 8.0 UK0 UK001 1118. 259. 1001. 1039. 01 _35 248 3390 73 2.3 6 9 260.6 6 19.4 23.1 0 85.3 86.0 0.39 10.5 UK0 UK001 1121 1038. 1002. 1013. 01 _12 793 0 209 2.5 7 91.7 93.7 2 17.3 21.3 7 31.5 33.2 0.51 3.5 UK0 UK001 3190 1073. 1007. 1028. 01 _46 2310 0 681 4.1 9 43.3 47.4 2 16.2 20.5 4 17.9 20.9 0.06 6.2 UK0 UK001 1154. 161. 1007. 1054. 01 _216 469 6000 121 2.9 5 2 162.3 2 23.8 26.9 7 55.7 56.8 0.10 12.8 UK0 UK001 1025. 106. 1011. 1015. 01 _182 655 8870 209 3.3 0 1 107.8 6 18.8 22.6 8 36.0 37.5 0.82 1.3 UK0 UK001 1780 1079. 1012. 1033. 01 _7 1297 0 320 2.8 2 60.0 63.0 7 17.0 21.2 9 22.7 25.1 0.09 6.2 UK0 UK001 3620 1063. 1013. 1029. 01 _65 2630 0 669 1.4 1 43.9 48.0 2 18.0 22.0 1 18.8 21.7 0.14 4.7 UK0 UK001 1126. 164. 1014. 1050. 01 _253 400 5210 115 1.4 4 3 165.4 9 20.8 24.3 8 55.7 56.8 0.23 9.9 UK0 UK001 1169. 150. 1015. 1065. 01 _83 446 5780 111 2.4 6 8 152.0 4 24.0 27.2 5 52.9 54.0 0.05 13.2 UK0 UK001 3520 1038. 1016. 1023. 01 _148 2590 0 684 4.7 7 35.7 40.6 0 18.1 22.1 2 16.8 19.9 0.43 2.2 UK0 UK001 1090 1076. 1016. 1035. 01 _165 811 0 219 2.8 5 87.8 89.9 5 19.0 22.8 7 31.3 33.1 0.24 5.6 UK0 UK001 1071. 105. 1018. 1035. 01 _105 635 8740 165 2.0 2 9 107.7 7 19.6 23.4 5 36.8 38.3 0.35 4.9 UK0 UK001 1060. 542. 1023. 1035. 171. 01 _64 123 1723 38 2.0 4 6 543.0 1 31.6 34.1 1 5 171.8 0.89 3.5 UK0 UK001 1110. 267. 1023. 1051. 01 _236 250 3310 78 3.7 8 9 268.6 1 26.2 29.1 5 89.1 89.8 0.53 7.9 UK0 UK001 1076. 104. 1023. 1040. 01 _74 655 8710 175 3.0 5 1 105.9 7 21.4 25.0 7 36.8 38.4 0.32 4.9 UK0 UK001 2750 1016. 1024. 1021. 01 _286 2030 0 525 5.2 7 40.7 45.1 2 16.1 20.6 8 17.0 20.0 0.80 -0.7 UK0 UK001 1415 1033. 1025. 1027. 01 _212 1034 0 321 2.6 3 69.5 72.2 3 18.9 22.8 9 25.7 27.8 0.85 0.8 UK0 UK001 2230 1065. 1025. 1038. 01 _59 1620 0 482 3.0 8 48.6 52.2 9 18.0 22.1 7 20.0 22.7 0.18 3.7 UK0 UK001 1154. 222. 1027. 1069. 01 _246 291 3940 93 1.4 5 5 223.3 5 21.1 24.7 0 75.2 76.0 0.24 11.0 UK0 UK001 1306 1028. 1007. 01 _94 924 0 230 2.5 963.2 78.7 81.1 6 19.5 23.3 9 27.9 29.8 0.16 -6.8 UK0 UK001 1187 1065. 1029. 1041. 01 _162 879 0 244 0.9 8 82.3 84.5 2 19.1 23.0 0 29.7 31.6 0.49 3.4 UK0 UK001 2200 1079. 1031. 1046. 01 _58 1600 0 409 3.6 2 53.2 56.6 4 18.7 22.7 8 21.6 24.1 0.19 4.4 UK0 UK001 1033. 165. 1032. 1032. 01 _124 406 5860 101 3.6 3 8 167.0 5 21.1 24.7 7 55.0 56.0 0.99 0.1 UK0 UK001 1296 1108. 1032. 1057. 01 _152 961 0 244 2.6 2 75.5 77.9 5 18.6 22.6 1 27.9 29.9 0.15 6.8 UK0 UK001 1073. 132. 1032. 1045. 01 _298 520 6840 153 0.9 9 0 133.4 5 19.5 23.4 8 44.9 46.2 0.57 3.9 UK0 UK001 1476 1008. 1034. 1026. 01 _257 1091 0 322 3.1 4 64.4 67.3 7 17.7 21.9 3 23.8 26.1 0.50 -2.6 UK0 UK001 1990 1008. 1035. 1026. 01 _240 1419 0 456 3.4 4 54.7 58.1 2 17.1 21.4 6 20.9 23.5 0.41 -2.7 UK0 UK001 1027. 181. 1041. 1036. 01 _113 375 5200 98 1.2 8 3 182.3 2 22.4 25.9 9 60.0 61.0 0.88 -1.3 UK0 UK001 1045 1068. 1041. 1050. 01 _290 804 0 185 1.4 5 90.0 92.1 2 19.0 23.0 1 32.0 33.8 0.59 2.6 UK0 UK001 1331 1081. 1042. 1055. 01 _161 993 0 248 2.1 8 75.8 78.2 9 20.0 23.8 6 28.3 30.3 0.36 3.6 UK0 UK001 1063. 112. 1042. 1049. 01 _296 600 8060 149 2.2 1 5 114.1 9 19.2 23.2 5 38.8 40.3 0.75 1.9 UK0 UK001 1108. 331. 1044. 1065. 109. 01 _144 197 2730 49 1.1 2 4 332.0 0 25.6 28.7 0 7 110.2 0.70 5.8 UK0 UK001 1068. 882. 1044. 1052. 268. 01 _200 80 1182 25 1.1 5 4 882.7 5 30.6 33.3 3 3 268.6 0.95 2.2 UK0 UK001 1036. 400. 1045. 1042. 128. 01 _96 165 2280 42 1.8 0 3 400.8 6 27.7 30.6 5 5 129.0 0.96 -0.9

176

UK0 UK001 136. 1047. 1020. 01 _30 527 7700 140 1.7 963.2 9 138.3 3 19.2 23.3 4 44.9 46.2 0.25 -8.7 UK0 UK001 1266. 178. 1047. 1121. 01 _127 369 4600 83 3.7 9 3 179.3 8 24.0 27.3 4 64.1 65.0 0.03 17.3 UK0 UK001 1128. 734. 1050. 1076. 234. 01 _137 92 1215 23 0.9 9 8 735.1 6 36.7 39.0 3 1 234.3 0.82 6.9 UK0 UK001 205. 1051. 1028. 01 _114 335 4620 83 2.5 980.3 0 206.0 7 23.1 26.6 7 66.6 67.5 0.47 -7.3 UK0 UK001 1033. 111. 1051. 1045. 01 _147 628 8730 173 3.2 3 4 113.1 7 22.1 25.7 7 38.9 40.4 0.75 -1.8 UK0 UK001 2960 20. 1060. 1052. 1054. 01 _61 2130 0 634 7 4 40.9 45.2 2 19.7 23.6 9 18.8 21.7 0.79 0.8 UK0 UK001 1105. 108. 1054. 1071. 01 _219 632 8430 191 2.7 6 3 110.0 9 20.1 24.0 6 38.3 39.9 0.38 4.6 UK0 UK001 1033. 111. 1057. 1049. 01 _52 618 8750 176 2.2 3 0 112.7 7 20.7 24.5 7 38.5 40.0 0.65 -2.4 UK0 UK001 1470 1022. 1063. 1050. 01 _108 1020 0 233 2.1 3 73.5 76.0 7 20.3 24.3 2 27.3 29.4 0.27 -4.1 UK0 UK001 2300 1019. 1070. 1053. 01 _173 1685 0 455 1.9 5 50.1 53.7 3 20.0 24.0 7 21.0 23.6 0.18 -5.0 UK0 UK001 241. 1071. 1043. 01 _134 277 3950 72 1.3 983.1 8 242.6 9 21.6 25.4 0 78.3 79.0 0.44 -9.0 UK0 UK001 3770 1131. 1079. 1096. 01 _44 2790 0 773 8.0 5 35.2 40.0 5 17.7 22.2 9 16.8 20.2 0.06 4.6 UK0 UK001 1062 1073. 1082. 1079. 01 _213 792 0 201 3.4 9 97.8 99.7 8 20.5 24.5 8 35.1 36.8 0.88 -0.8 UK0 UK001 2690 1123. 1085. 1098. 01 _172 2050 0 509 1.9 8 38.9 43.4 0 18.7 23.0 0 18.1 21.3 0.18 3.5 UK0 UK001 1146. 1090. 1109. 01 _27 737 9900 164 2.7 9 96.1 98.0 4 20.5 24.6 4 35.4 37.1 0.20 4.9 UK0 UK001 1033. 193. 1092. 1073. 01 _225 343 4670 99 3.7 3 0 194.0 6 22.5 26.3 0 64.8 65.7 0.53 -5.7 UK0 UK001 1065. 135. 1093. 1084. 01 _42 495 6950 142 2.0 8 6 137.0 7 19.8 24.0 4 46.7 48.0 0.69 -2.6 UK0 UK001 1425 1144. 1093. 1110. 01 _168 1093 0 293 3.1 3 66.0 68.7 7 20.2 24.3 8 26.2 28.5 0.19 4.4 UK0 UK001 1113. 124. 1093. 1100. 01 _254 552 7060 151 1.2 4 5 125.9 7 20.0 24.2 3 43.9 45.3 0.78 1.8 UK0 UK001 1103. 263. 1097. 1099. 01 _233 246 3240 69 3.3 0 7 264.4 5 23.4 27.1 3 89.3 90.0 0.97 0.5 UK0 UK001 1084. 188. 1102. 1096. 01 _192 349 4580 96 2.7 5 4 189.4 4 22.6 26.4 4 64.6 65.5 0.85 -1.6 UK0 UK001 1238. 109. 1106. 1151. 01 _100 600 7520 129 8.1 3 7 111.3 2 25.9 29.3 7 42.3 43.8 0.03 10.7 UK0 UK001 1128. 129. 1108. 1115. 01 _222 522 6600 141 2.7 9 3 130.7 9 22.6 26.5 7 46.4 47.7 0.77 1.8 UK0 UK001 2870 1139. 1110. 1120. 01 _37 2190 0 424 4.1 2 43.0 47.0 5 18.8 23.3 3 19.2 22.3 0.37 2.5 UK0 UK001 1240. 121. 1110. 1155. 01 _185 536 6690 135 1.8 7 8 123.2 5 21.4 25.5 5 45.2 46.6 0.04 10.5 UK0 UK001 212. 1113. 1072. - 01 _22 315 4590 76 1.8 991.6 8 213.7 2 26.6 29.9 8 71.1 72.0 0.23 12.3 UK0 UK001 1872 39 1174. 1113. 1134. 01 _84 1457 0 323 3.9 6 49.5 53.0 2 18.9 23.4 2 21.3 24.1 0.05 5.2 UK0 UK001 2750 1172. 1114. 1134. 01 _38 2130 0 472 8.0 1 39.1 43.5 9 17.7 22.5 5 18.0 21.2 0.06 4.9 UK0 UK001 1291 1092. 1114. 1107. 01 _206 983 0 240 4.2 4 75.3 77.7 9 23.7 27.5 3 29.8 31.8 0.63 -2.1 UK0 UK001 1060. 112. 1115. 1096. 01 _207 616 8290 169 3.1 4 4 114.1 4 19.5 23.9 9 39.5 41.1 0.35 -5.2 UK0 UK001 1158 1116. 1117. 1117. 01 _151 872 0 212 2.5 0 82.3 84.5 6 21.7 25.7 0 31.4 33.3 0.97 -0.1 UK0 UK001 2240 1084. 1121. 1108. 01 _140 1640 0 373 3.7 5 47.9 51.6 4 19.5 24.0 9 20.6 23.4 0.28 -3.4 UK0 UK001 1182. 101. 1121. 1142. 01 _282 665 8310 150 2.3 1 4 103.2 9 20.6 24.8 6 37.7 39.4 0.24 5.1 UK0 UK001 2005 1095. 1124. 1114. 01 _198 1518 0 406 4.1 1 54.4 57.7 1 19.4 23.9 2 22.3 25.0 0.52 -2.6 UK0 UK001 1238. 175. 1129. 1167. 01 _175 366 4560 86 2.5 3 0 176.0 5 25.1 28.7 4 64.0 65.0 0.23 8.8 UK0 UK001 1019 1052. 1131. 1104. 01 _272 745 0 196 3.2 3 97.2 99.1 7 20.3 24.7 8 35.0 36.8 0.19 -7.5

177

UK0 UK001 1237 1182. 1140. 1155. 01 _9 942 0 192 2.4 1 76.3 78.6 8 20.2 24.7 2 29.8 31.9 0.33 3.5 UK0 UK001 1211. 101. 1140. 1165. 01 _142 661 8160 126 1.7 7 7 103.5 8 21.9 26.0 5 38.6 40.3 0.21 5.8 UK0 UK001 1742 1169. 1145. 1154. 01 _203 1374 0 393 2.3 6 58.6 61.6 7 19.9 24.4 0 24.2 26.8 0.56 2.0 UK0 UK001 417. 1147. 1035. 128. - 01 _40 165 2660 47 1.3 806.4 3 417.8 9 27.0 30.5 8 4 128.9 0.06 42.3 UK0 UK001 2128 1136. 1149. 1145. 01 _269 1655 0 414 4.5 7 47.6 51.3 5 20.3 24.8 0 21.1 24.0 0.69 -1.1 UK0 UK001 1154. 118. 1152. 1153. 01 _210 572 7420 144 2.7 5 0 119.5 2 22.7 26.8 0 43.5 45.0 0.97 0.2 UK0 UK001 1197. 121. 1158. 1171. 01 _179 578 7210 133 2.3 0 0 122.5 1 21.1 25.5 7 44.8 46.2 0.53 3.2 UK0 UK001 1126. 454. 1159. 1147. 154. 01 _45 144 1974 37 1.0 4 2 454.6 2 26.8 30.4 8 7 155.1 0.88 -2.9 UK0 UK001 1280. 112. 1161. 1204. 01 _36 600 7530 135 3.2 9 1 113.7 9 23.6 27.6 2 43.5 45.0 0.04 9.3 UK0 UK001 2720 1149. 1164. 1158. 01 _292 2140 0 422 3.7 4 34.4 39.3 0 17.7 22.8 9 16.6 20.2 0.62 -1.3 UK0 UK001 1179. 1167. 1172. 01 _115 721 9310 144 0.9 6 95.6 97.5 8 22.8 27.0 0 36.7 38.5 0.82 1.0 UK0 UK001 1116. 152. 1168. 1150. 01 _155 446 5910 98 1.7 0 2 153.4 9 22.1 26.4 5 54.3 55.5 0.51 -4.7 UK0 UK001 4030 1231. 1171. 1192. 01 _102 3220 0 643 3.5 1 30.9 36.2 0 20.3 24.9 3 17.3 20.8 0.04 4.9 UK0 UK001 1204. 191. 1174. 1184. 01 _75 343 4530 77 1.1 4 6 192.6 2 22.9 27.1 9 69.4 70.4 0.77 2.5 UK0 UK001 1016 1182. 1181. 1181. 01 _186 806 0 194 3.2 1 91.1 93.1 2 21.4 25.9 5 35.0 36.9 0.99 0.1 UK0 UK001 1287. 241. 1181. 1219. 01 _224 271 3130 63 2.1 9 8 242.6 8 28.9 32.4 9 89.8 90.5 0.41 8.2 UK0 UK001 1413 1255. 1183. 1209. 01 _184 1146 0 277 2.8 0 67.5 70.1 9 20.4 25.1 3 27.8 30.2 0.10 5.7 UK0 UK001 1199. 326. 1191. 1194. 116. 01 _18 196 2470 37 1.5 5 9 327.4 4 25.9 29.7 3 5 117.1 0.96 0.7 UK0 UK001 2112 11. 1201. 1216. 1211. 01 _153 1682 0 354 6 9 50.3 53.7 6 23.6 27.9 3 23.5 26.3 0.66 -1.2 UK0 UK001 1134. 1218. 1188. 01 _130 737 9590 150 1.7 1 91.5 93.5 2 22.4 27.0 2 35.2 37.0 0.10 -7.4 UK0 UK001 1152. 445. 1224. 1198. 156. 01 _280 147 1890 33 1.2 0 1 445.5 0 31.6 35.0 2 1 156.6 0.73 -6.3 UK0 UK001 1037 1216. 1228. 1224. 01 _88 836 0 177 2.2 6 87.2 89.2 3 21.5 26.2 0 34.4 36.3 0.82 -1.0 UK0 UK001 1371. 224. 1237. 1287. 01 _223 285 3520 67 1.8 5 7 225.5 9 26.7 30.8 6 86.6 87.4 0.25 9.7 UK0 UK001 2430 1162. 1239. 1211. 01 _226 1880 0 450 2.9 1 44.7 48.6 5 21.6 26.4 5 20.9 24.0 0.02 -6.7 UK0 UK001 1380 1299. 1251. 1269. 01 _101 1140 0 221 2.5 5 66.7 69.2 7 26.6 30.7 4 30.1 32.4 0.32 3.7 UK0 UK001 2880 1308. 1268. 1283. 01 _139 2390 0 410 4.8 7 44.1 47.8 7 22.1 27.1 6 21.7 24.8 0.32 3.1 UK0 UK001 1382. 570. 1271. 1313. 215. 01 _234 117 1322 23 0.6 5 8 571.2 3 49.3 51.7 3 1 215.5 0.69 8.0 UK0 UK001 3380 1301. 1272. 1283. 01 _187 2880 0 511 2.4 8 40.9 45.0 9 25.3 29.7 7 22.2 25.2 0.39 2.2 UK0 UK001 1860 1250. 1282. 1270. 01 _154 1530 0 283 1.6 3 52.0 55.2 4 22.4 27.4 5 23.8 26.6 0.39 -2.6 UK0 UK001 1480 1269. 1284. 1278. 01 _278 1200 0 242 2.5 2 59.6 62.4 0 20.4 25.8 5 25.6 28.3 0.70 -1.2 UK0 UK001 1520 1297. 1288. 1291. 01 _178 1267 0 276 5.7 2 62.7 65.4 2 23.2 28.0 6 27.7 30.2 0.82 0.7 UK0 UK001 1214. 188. 1296. 1265. 01 _248 351 4340 80 1.9 1 3 189.3 1 25.5 30.0 6 70.8 71.8 0.40 -6.8 UK0 UK001 1425. 183. 1315. 1358. 01 _56 342 4030 62 1.4 5 3 184.3 6 25.4 30.1 1 73.4 74.5 0.28 7.7 UK0 UK001 1533 1313. 1316. 1315. 01 _252 1291 0 258 1.6 3 57.2 60.2 7 21.3 26.7 4 25.4 28.2 0.93 -0.3 UK0 UK001 1406. 1321. 1354. 01 _195 789 9060 153 3.9 3 86.7 88.7 9 22.6 27.8 5 36.7 38.7 0.13 6.0 UK0 UK001 3013 1356. 1322. 1335. 01 _54 2543 0 492 2.1 1 31.7 36.6 4 20.9 26.4 3 17.8 21.7 0.21 2.5

178

UK0 UK001 3000 1362. 1329. 1342. 01 _112 2620 0 411 2.9 7 32.7 37.5 8 24.0 29.0 5 19.5 23.1 0.18 2.4 UK0 UK001 1560 1324. 1341. 1334. 01 _297 1350 0 216 2.9 6 53.3 56.5 3 23.8 28.8 9 25.1 28.0 0.61 -1.3 UK0 UK001 1618 1320. 1351. 1339. 01 _204 1388 0 296 2.2 1 55.2 58.3 2 23.5 28.7 2 25.6 28.4 0.40 -2.4 UK0 UK001 1369. 228. 1357. 1362. 01 _275 283 3320 53 1.2 3 7 229.5 5 32.3 36.2 1 90.9 91.8 0.92 0.9 UK0 UK001 1386. 232. 1360. 1370. 01 _218 275 3140 50 2.0 8 5 233.3 7 32.5 36.5 9 92.9 93.7 0.83 1.9 UK0 UK001 1328 1386. 1377. 1381. 01 _188 1154 0 211 2.2 8 61.0 63.7 3 24.0 29.3 1 28.1 30.8 0.82 0.7 UK0 UK001 1438. 122. 1379. 1402. 01 _145 531 6070 81 1.1 2 0 123.4 4 27.1 31.9 7 51.4 52.9 0.40 4.1 UK0 UK001 1982 1436. 1388. 1407. 01 _138 1789 0 231 2.8 1 51.6 54.7 3 26.8 31.7 2 26.3 29.2 0.25 3.3 UK0 UK001 1187 1434. 1399. 1413. 01 _201 1078 0 193 2.3 0 63.8 66.4 2 23.6 29.0 0 29.2 31.9 0.39 2.4 UK0 UK001 1402. 121. 1530. 1477. 01 _265 539 6010 90 2.2 0 5 122.9 1 30.3 35.5 2 52.3 53.8 0.05 -9.1 UK0 UK001 1995 1395. 1410. 1404. 01 _284 1856 0 284 1.7 5 46.7 50.2 6 24.8 30.1 6 23.8 26.9 0.66 -1.1 UK0 UK001 1470 1399. 1415. 1409. 01 _55 1260 0 232 3.5 8 64.3 66.9 2 24.8 30.2 1 29.6 32.2 0.74 -1.1 UK0 UK001 3720 1412. 1416. 1415. 01 _174 3310 0 542 5.5 7 29.0 34.3 8 24.2 29.7 2 18.6 22.5 0.89 -0.3 UK0 UK001 1538. 1417. 1466. 01 _53 791 8700 145 2.0 0 83.6 85.5 8 24.5 30.0 6 37.6 39.7 0.02 7.8 UK0 UK001 1930 1506. 1432. 1462. 01 _285 1821 0 259 1.0 1 48.1 51.3 8 23.2 29.0 6 24.2 27.4 0.08 4.9 UK0 UK001 1410. 111. 1440. 1428. 01 _251 580 6790 103 0.7 6 4 112.9 5 24.5 30.1 5 46.9 48.6 0.60 -2.1 UK0 UK001 1473. 1458. 1464. 01 _259 916 9830 148 1.0 6 78.2 80.3 0 25.5 31.0 4 35.3 37.6 0.74 1.1 UK0 UK001 1230 1475. 1465. 1469. 01 _15 1100 0 152 3.2 6 63.3 65.9 2 26.6 32.0 5 30.3 32.9 0.82 0.7 UK0 UK001 1384. 1465. 1432. 01 _34 812 9530 130 3.3 7 86.6 88.6 2 24.7 30.4 7 37.5 39.6 0.10 -5.8 UK0 UK001 1642. 430. 1474. 1544. 183. 01 _214 143 1427 22 1.0 6 8 431.2 5 46.5 49.8 9 7 184.1 0.45 10.2 UK0 UK001 1607 1429. 1475. 1456. 01 _208 1455 0 249 2.2 8 53.8 56.8 5 25.3 30.9 9 26.4 29.3 0.25 -3.2 UK0 UK001 1477. 100. 1523. 1504. 01 _237 649 7160 103 1.1 7 8 102.4 0 30.1 35.2 1 45.2 47.0 0.38 -3.1 UK0 UK001 2030 1487. 1510. 1501. 01 _29 1800 0 244 1.3 9 42.8 46.4 3 22.7 29.1 0 22.1 25.6 0.52 -1.5 UK0 UK001 2790 1481. 1494. 1489. 01 _62 2470 0 390 3.2 8 32.8 37.5 4 25.1 30.9 2 20.0 23.8 0.64 -0.9 UK0 UK001 2010 1467. 1497. 1485. 01 _136 1780 0 246 1.4 4 45.5 49.0 5 25.6 31.4 1 24.0 27.2 0.38 -2.1 UK0 UK001 1534. 192. 1510. 1520. 01 _103 334 3620 41 1.1 0 9 193.7 3 41.8 45.6 2 84.2 85.2 0.80 1.5 UK0 UK001 3450 1565. 1556. 1560. 01 _98 3250 0 382 2.4 3 28.0 33.3 5 24.8 31.0 2 18.6 22.8 0.73 0.6 UK0 UK001 1364 1590. 1567. 1577. 01 _28 1313 0 160 1.2 2 56.6 59.4 6 26.0 32.1 3 28.5 31.4 0.56 1.4 UK0 UK001 1592. 189. 1676. 1639. 01 _156 328 3340 38 1.3 1 6 190.4 4 33.8 39.2 3 84.4 85.5 0.39 -5.3 UK0 UK001 1608 1627. 1644. 1636. 01 _166 1595 0 188 1.3 8 50.1 53.2 0 28.9 34.9 9 27.2 30.4 0.65 -1.0 UK0 UK001 1682 1649. 1652. 1651. 01 _181 1697 0 223 8.8 9 41.9 45.5 0 25.6 32.3 1 23.3 27.0 0.95 -0.1 UK0 UK001 2330 1649. 1624. 1635. 01 _230 2350 0 326 1.3 9 34.2 38.6 5 26.5 32.8 6 21.2 25.1 0.48 1.5 UK0 UK001 1985 1659. 1614. 1633. 01 _87 1980 0 244 4.0 0 40.0 43.7 5 26.0 32.3 9 22.9 26.6 0.16 2.7 UK0 UK001 2830 1675. 1635. 1653. 01 _227 2960 0 388 1.2 3 28.5 33.5 5 26.1 32.6 0 19.4 23.6 0.08 2.4 UK0 UK001 1684. 153. 1857. 1777. - 01 _261 401 4010 44 2.1 2 0 154.0 7 46.5 51.3 4 73.5 74.8 0.02 10.3 UK0 UK001 2670 1686. 1692. 1689. 01 _8 2660 0 385 1.5 0 43.9 47.3 3 29.2 35.5 5 25.4 28.8 0.88 -0.4

179

UK0 UK001 1710. 110. 1735. 1724. 01 _120 625 6030 63 4.1 8 1 111.5 8 34.0 39.8 5 53.0 54.7 0.71 -1.5 UK0 UK001 2570 1721. 1691. 1704. 01 _63 2670 0 328 1.2 3 32.6 37.1 3 28.1 34.5 7 21.4 25.4 0.35 1.7 UK0 UK001 1726. 1680. 1701. 01 _121 823 7910 83 2.0 5 78.6 80.5 4 33.0 38.6 0 39.8 42.1 0.32 2.7 UK0 UK001 1782. 303. 1666. 1718. 140. 01 _97 197 1826 21 0.8 8 1 303.6 5 53.3 56.8 6 1 140.8 0.43 6.5 UK0 UK001 1797. 131. 1748. 1771. 01 _109 464 4200 44 3.9 7 0 132.2 6 33.9 39.7 1 63.1 64.6 0.47 2.7 UK0 UK001 1797. 1829. 1814. 01 _294 1099 9830 99 0.6 7 62.1 64.5 7 31.3 38.0 8 33.3 36.1 0.46 -1.8 UK0 UK001 3804 1820. 1752. 1783. 01 _39 4130 0 516 1.8 8 28.4 33.3 0 27.1 34.1 6 19.8 24.2 0.02 3.8 UK0 UK001 1857. 1838. 1847. 01 _3 796 7140 66 1.8 8 83.9 85.7 4 38.3 44.0 5 44.4 46.6 0.74 1.0 UK0 UK001 1868. 1836. 1851. 01 _228 957 8400 100 5.7 9 70.7 72.7 4 33.0 39.4 7 37.7 40.2 0.42 1.7 UK0 UK001 2840 1875. 1867. 1871. 01 _122 3230 0 271 2.8 2 27.0 32.0 4 29.4 36.7 1 20.1 24.6 0.79 0.4 UK0 UK001 1005 1890. 1862. 1876. 01 _132 1144 0 100 2.6 8 55.7 58.3 6 36.5 42.5 0 32.8 35.7 0.43 1.5 UK0 UK001 1798 1893. 1830. 1860. 01 _266 2106 0 211 1.0 9 36.4 40.3 6 29.3 36.4 4 23.3 27.3 0.04 3.3 UK0 UK001 1499 1895. 1857. 1875. 01 _67 1710 0 148 1.1 5 93.3 94.9 7 50.8 55.2 6 51.9 53.8 0.55 2.0 UK0 UK001 1940 1895. 1874. 1884. 01 _73 2230 0 186 2.5 5 34.3 38.3 1 31.6 38.5 3 23.3 27.3 0.46 1.1 UK0 UK001 1500 1898. 1827. 1860. 01 _41 1720 0 159 2.9 6 45.0 48.2 2 30.6 37.4 8 26.9 30.4 0.05 3.8 UK0 UK001 1523 1927. 1838. 1880. 01 _160 1760 0 153 8.6 7 44.0 47.2 4 32.6 39.1 7 27.3 30.8 0.01 4.6 UK0 UK001 1951 1979. 2012. 1996. 01 _33 2310 0 186 0.9 8 34.2 38.2 0 32.8 40.3 2 23.6 27.6 0.37 -1.6 UK0 UK001 2223 2016. 2035. 2025. 01 _126 2732 0 201 1.3 0 32.4 36.6 0 32.5 40.2 6 22.9 27.1 0.59 -0.9 UK0 UK001 5380 2198. 2173. 2186. 01 _287 7450 0 474 2.1 5 23.7 29.0 2 34.0 42.2 2 20.6 25.4 0.37 1.2 UK0 UK001 2470. 2448. 2460. 01 _2 786 5140 34 2.0 4 74.0 75.7 4 47.4 54.8 4 45.9 48.4 0.61 0.9 UK0 UK001 2567. 2483. 2530. 01 _71 1146 6760 59 0.6 5 79.1 80.7 6 47.4 55.0 0 49.0 51.4 0.21 3.3 UK0 UK001 2652. 2699. 2672. 01 _129 731 4140 26 1.0 9 87.1 88.6 2 51.3 59.3 8 54.1 56.3 0.41 -1.7 UK0 UK001 3450 2707. 2665. 2689. 01 _256 6520 0 237 4.4 1 17.7 23.7 2 39.4 49.2 1 19.8 25.2 0.16 1.5 UK0 UK001 2170 2714. 2703. 2709. 01 _89 4060 0 132 2.0 2 23.0 27.9 4 40.9 50.6 6 21.9 26.9 0.74 0.4 UK0 UK001 1855 2722. 2821. 2763. 01 _159 3400 0 132 1.1 1 32.8 36.4 0 53.1 61.4 7 29.0 33.0 0.01 -3.6 UK0 UK001 2724. 2690. 134. 2710. 01 _82 1670 9190 56 1.8 7 86.4 87.9 7 8 138.0 2 76.3 77.9 0.69 1.2 UK0 UK001 1696 2761. 2686. 2729. 01 _57 3210 0 139 1.4 9 35.9 39.2 4 49.6 57.8 7 29.8 33.6 0.06 2.7 UK0 UK001 2850 2763. 2758. 2761. 01 _244 5490 0 218 1.6 6 20.9 26.1 3 41.2 51.1 4 21.2 26.4 0.86 0.2 UK0 UK001 2767. 2758. 2763. 01 _135 1703 9000 54 0.7 9 35.9 39.2 3 43.8 53.3 8 27.8 31.9 0.75 0.3 UK0 UK001 1254 2812. 2733. 2778. 01 _183 2440 0 89 1.7 3 28.5 32.5 0 45.1 54.2 8 25.4 29.9 0.01 2.8 UK0 UK001 4300 1901. 1832. 1865. 01 _1 4850 0 396 5.7 7 20.1 26.4 6 27.9 35.3 1 17.7 22.7 0.00 3.6 UK0 UK001 3820 2135. 1937. 2035. 01 _4 5010 0 325 2.1 3 18.2 24.8 9 28.0 36.0 2 17.3 22.6 0.00 9.2 UK0 UK001 3040 1324. 1217. 1256. 01 _6 2570 0 479 2.8 6 40.8 44.8 6 20.4 25.3 8 20.2 23.4 0.00 8.1 UK0 UK001 3550 1079. 1018. 01 _10 2570 0 685 4.9 2 36.2 41.0 991.1 17.3 21.3 9 16.8 19.9 0.00 8.2 UK0 UK001 2540 2844. 2656. 2764. 01 _14 5020 0 159 2.2 0 19.2 24.8 6 40.6 50.1 4 20.9 26.2 0.00 6.6 UK0 UK001 4290 37. 1653. 1062. 01 _16 4320 0 1125 5 6 55.8 58.6 798.7 20.3 22.7 6 26.7 28.8 0.00 51.7

180

UK0 UK001 1240 2028. 1818. 1918. 01 _17 1486 0 118 1.7 8 45.7 48.8 0 31.7 38.2 4 28.2 31.6 0.00 10.4 UK0 UK001 1942 1467. 1254. 1335. 01 _20 1688 0 282 1.8 4 44.7 48.3 9 23.1 27.8 6 23.1 26.1 0.00 14.5 UK0 UK001 1719. 212. 1230. 1421. 01 _24 289 2810 45 0.7 6 2 212.9 9 27.6 31.5 4 90.0 90.9 0.00 28.4 UK0 UK001 2724. 120. 1450. 2051. 01 _25 1750 9530 150 3.6 7 6 121.6 8 30.7 35.4 6 67.7 69.3 0.00 46.8 UK0 UK001 2043 17. 2000. 157. 1148. 1482. 01 _26 2280 0 335 8 2 9 158.8 4 39.3 41.8 7 75.1 76.2 0.00 42.6 UK0 UK001 1173 1255. 100. 01 _47 930 0 591 1.9 0 4 102.1 472.2 8.1 10.1 632.0 25.5 26.7 0.00 62.4 UK0 UK001 1645 1335. 1041. 01 _48 1372 0 437 3.0 9 53.9 57.0 906.6 17.7 21.1 3 22.7 25.1 0.00 32.1 UK0 UK001 2220 2652. 1193. 1827. 01 _51 4210 0 389 3.3 9 67.3 69.1 0 22.3 26.7 0 38.5 41.0 0.00 55.0 UK0 UK001 1602 1243. 1139. 1175. 01 _60 1275 0 257 1.9 1 66.3 68.9 8 20.9 25.2 9 27.4 29.7 0.00 8.3 UK0 UK001 1001 1660. 1395. 1504. 01 _72 979 0 133 1.5 8 70.5 72.7 5 26.5 31.4 2 34.2 36.6 0.00 16.0 UK0 UK001 1748 8270 13. 2963. 2372. 2705. 01 _79 0 0 629 8 8 14.3 21.1 5 36.6 45.4 0 19.3 24.9 0.00 19.9 UK0 UK001 1879 1113. 1024. 1053. 01 _81 1442 0 375 1.7 4 50.1 53.6 8 18.3 22.4 5 20.8 23.4 0.00 8.0 UK0 UK001 1490 1395. 1250. 1305. 01 _86 1297 0 226 2.3 5 51.5 54.6 6 20.5 25.6 0 23.8 26.7 0.00 10.4 UK0 UK001 2070 3417. 1489. 2470. 01 _90 5840 0 386 1.8 6 42.0 44.6 8 35.1 39.4 7 35.0 38.2 0.00 56.4 UK0 UK001 2310 1664. 1191. 01 _91 2320 0 458 5.0 5 43.6 47.1 948.4 25.9 28.5 6 26.4 28.9 0.00 43.0 UK0 UK001 1720 1386. 1309. 1339. 01 _92 1460 0 232 3.6 8 50.3 53.5 8 23.3 28.3 3 24.4 27.3 0.01 5.6 UK0 UK001 156. 01 _93 457 7170 334 1.8 834.7 4 157.7 409.0 9.5 10.9 479.9 30.1 30.7 0.00 51.0 UK0 UK001 2020 1287. 1136. 1189. 01 _95 1677 0 336 3.9 9 46.3 49.9 0 22.0 26.1 4 22.3 25.1 0.00 11.8 UK0 UK001 2820 2956. 2417. 2721. 01 _104 6040 0 221 0.9 3 21.1 26.1 4 49.1 56.1 9 26.1 30.5 0.00 18.2 UK0 UK001 3440 1944. 1648. 1782. 01 _107 4020 0 368 4.2 3 22.9 28.6 0 26.0 32.6 7 18.4 23.1 0.00 15.2 UK0 UK001 3430 1299. 1020. 1113. 01 _110 2850 0 680 4.6 5 75.1 77.4 4 20.6 24.2 3 30.0 32.0 0.00 21.5 UK0 UK001 3890 1502. 1012. 1179. 01 _111 3610 0 756 1.9 1 57.1 59.9 1 17.9 21.9 9 24.9 27.5 0.00 32.6 UK0 UK001 2049. 1169. 1520. 01 _118 811 6440 109 2.2 9 80.0 81.8 9 41.8 44.2 6 47.2 48.9 0.00 42.9 UK0 UK001 1820 1868. 1050. 1352. 01 _133 2180 0 345 1.7 9 61.3 63.7 0 21.4 25.1 3 30.3 32.7 0.00 43.8 UK0 UK001 1370 1423. 01 _141 1193 0 650 1.6 4 81.0 83.0 422.3 8.3 10.0 618.7 21.7 23.1 0.00 70.3 UK0 UK001 1450 2672. 2518. 2604. 01 _163 2620 0 113 1.5 1 29.2 33.2 5 41.2 49.9 5 24.8 29.3 0.00 5.7 UK0 UK001 2340 2692. 2364. 2545. 01 _177 4310 0 284 2.6 8 35.1 38.5 1 43.7 51.2 2 28.6 32.5 0.00 12.2 UK0 UK001 1170 1475. 1207. 1307. 01 _190 1170 0 164 1.3 6 81.3 83.3 5 65.2 66.9 5 53.8 55.1 0.00 18.2 UK0 UK001 2650 1427. 1325. 1365. 01 _193 2360 0 438 2.9 7 37.5 41.7 6 23.8 28.8 2 21.0 24.4 0.00 7.1 UK0 UK001 4410 14. 2742. 133. 1244. 1913. 01 _197 8900 0 1048 2 2 7 134.6 8 62.3 64.2 0 84.6 85.8 0.00 54.6 UK0 UK001 1446. 1569. 1517. 01 _199 896 9930 137 1.5 6 72.8 75.1 2 29.1 34.6 7 34.3 36.7 0.00 -8.5 UK0 UK001 1986 1233. 1159. 1185. 01 _211 1625 0 414 3.2 5 43.1 47.0 2 18.2 23.2 4 19.5 22.7 0.01 6.0 UK0 UK001 4890 17. 1417. 1116. 1223. 01 _217 4370 0 1050 6 0 23.8 30.0 0 19.0 23.5 0 15.9 19.7 0.00 21.2 UK0 UK001 3270. 1573. 01 _231 1850 7270 301 1.3 7 52.7 54.8 625.5 12.7 15.0 4 31.7 34.4 0.00 80.9 UK0 UK001 3740 2784. 2505. 2662. 01 _235 7350 0 287 4.8 8 15.0 21.7 5 39.7 48.6 9 20.0 25.3 0.00 10.0 UK0 UK001 2778. 2600. 2702. 01 _241 1707 8700 70 2.0 9 40.6 43.6 9 41.6 50.7 2 29.8 33.6 0.00 6.4

181

UK0 UK001 1962 2900. 2635. 2787. 01 _243 4180 0 155 1.4 1 28.0 32.0 2 40.5 49.9 8 24.2 28.9 0.00 9.1 UK0 UK001 1660. 1504. 1570. 01 _245 957 9540 147 1.0 8 72.2 74.3 7 27.0 32.6 8 35.1 37.5 0.00 9.4 UK0 UK001 4270 1498. 1144. 1273. 01 _247 4110 0 862 2.7 0 33.2 37.8 6 30.2 33.3 4 24.5 27.2 0.00 23.6 UK0 UK001 4590 2778. 1179. 1881. 01 _250 8920 0 912 4.1 9 22.3 27.3 6 22.5 26.8 6 21.4 25.6 0.00 57.6 UK0 UK001 2801. 106. 1217. 1922. 01 _255 1020 4710 101 0.8 5 0 107.2 1 29.7 33.3 9 60.5 62.1 0.00 56.6 UK0 UK001 1588. 1441. 1501. 01 _258 803 8170 127 2.6 3 85.1 86.9 1 25.7 31.1 7 38.9 41.1 0.01 9.3 UK0 UK001 1580. 120. 01 _262 586 6160 350 4.6 7 2 121.6 426.5 9.4 11.0 663.1 33.2 34.1 0.00 73.0 UK0 UK001 2123. 1929. 2025. 01 _263 672 5090 57 3.8 4 92.7 94.3 8 36.8 43.1 0 50.3 52.4 0.00 9.1 UK0 UK001 1239 1052. 1167. 1127. - 01 _267 912 0 225 3.6 3 80.4 82.7 3 20.3 24.9 7 30.1 32.1 0.00 10.9 UK0 UK001 1517 2334. 1250. 1711. 01 _270 2390 0 397 1.2 5 40.1 43.3 1 34.5 37.7 7 31.7 34.5 0.00 46.5 UK0 UK001 1255. 1128. 1172. 01 _271 781 9500 192 2.3 0 85.8 87.8 4 30.1 33.2 6 36.6 38.4 0.00 10.1 UK0 UK001 1161 2794. 2385. 2613. 01 _274 2302 0 96 1.1 0 30.2 34.0 9 37.5 46.2 0 24.7 29.2 0.00 14.6 UK0 UK001 2000. 138. 01 _283 950 7830 433 3.5 2 8 139.8 437.4 14.7 15.8 796.2 47.1 48.0 0.00 78.1 UK0 UK001 1238. 231. 01 _289 297 3680 138 0.5 3 9 232.7 580.9 12.3 14.4 734.9 62.6 63.2 0.00 53.1 UK0 UK001 4290 1326. 1069. 1157. 01 _293 3710 0 784 1.7 9 36.2 40.6 2 17.4 21.9 5 17.8 21.1 0.00 19.4 UK0 UK001 2990 2893. 2108. 2533. 01 _295 6350 0 272 1.2 9 22.9 27.7 9 41.1 47.7 7 25.0 29.4 0.00 27.1 UK0 UK001 1288 1382. 1520. 1463. 01 _299 1131 0 162 1.9 5 61.4 64.1 0 25.3 31.3 5 28.7 31.4 0.00 -9.9 UK0 UK001 1841. 115. 1061. 1349. 01 _300 544 4650 93 1.0 8 9 117.2 0 20.9 24.7 5 50.4 51.9 0.00 42.4

182

Table 2-6: Dates of grains from AOS-1 collected from Detrital Zircon U-Pb-Th data results from LA-ICP-MS seen in Table 3. 4 = Accepted dates have probability of concordance >1%. Data collected from the Center for

Pure and Applied Tectonics and Thermochronology, Department of Geoscience, University of Calgary. Accepted Ages4

Date 2sx 2sx 2stotal 2stotal (Ma) (ABS) (%) (ABS) (%) 113.1 4.8 4.3 5.1 4.5 137.2 3.5 2.5 3.9 2.9 164.8 4.0 2.5 4.6 2.8 165.2 3.7 2.2 4.3 2.6 193.7 4.3 2.2 5.0 2.6 271.4 10.3 3.8 10.9 4.0 296.7 9.6 3.2 10.3 3.5 325.0 7.6 2.3 8.8 2.7 353.1 10.2 2.9 11.2 3.2 364.1 8.9 2.5 10.1 2.8 388.4 10.7 2.7 11.8 3.0 403.5 9.0 2.2 10.4 2.6 404.1 8.5 2.1 10.1 2.5 406.0 7.5 1.9 9.2 2.3 406.6 9.0 2.2 10.5 2.6 407.2 8.4 2.1 9.9 2.4 407.2 9.0 2.2 10.5 2.6 411.4 10.8 2.6 12.1 2.9 411.4 12.4 3.0 13.5 3.3 413.2 10.8 2.6 12.1 2.9 421.7 9.2 2.2 10.7 2.5 430.1 8.8 2.0 10.4 2.4 438.0 11.0 2.5 12.4 2.8 442.2 11.0 2.5 12.4 2.8 442.2 43.7 9.9 44.1 10.0 453.6 8.4 1.9 10.3 2.3 454.2 10.4 2.3 11.9 2.6 464.4 11.2 2.4 12.7 2.7 466.8 10.7 2.3 12.3 2.6 473.4 16.0 3.4 17.1 3.6 480.6 11.3 2.3 12.9 2.7 486.6 11.1 2.3 12.8 2.6 513.4 9.6 1.9 11.7 2.3 523.5 11.2 2.1 13.1 2.5 525.9 13.1 2.5 14.8 2.8 536.6 10.8 2.0 12.9 2.4 549.6 10.3 1.9 12.6 2.3

183

574.4 11.8 2.1 14.0 2.4 586.2 11.1 1.9 13.4 2.3 593.3 11.4 1.9 13.7 2.3 602.7 11.9 2.0 14.2 2.3 625.5 11.9 1.9 14.3 2.3 633.1 12.1 1.9 14.6 2.3 634.3 13.4 2.1 15.7 2.5 695.4 18.3 2.6 20.4 2.9 762.7 29.1 3.8 30.7 4.0 797.0 18.2 2.3 20.8 2.6 841.3 21.8 2.6 24.2 2.9 920.0 19.9 2.2 23.0 2.5 940.6 22.5 2.4 25.4 2.7 941.2 23.7 2.5 26.5 2.8 948.4 20.3 2.1 23.5 2.5 966.8 22.2 2.3 25.3 2.6 973.4 21.6 2.2 24.8 2.5 976.2 17.0 1.7 21.0 2.1 976.8 17.0 1.7 21.0 2.1 977.3 21.1 2.2 24.4 2.5 980.1 19.3 2.0 22.9 2.3 981.2 17.2 1.8 21.2 2.2 981.7 18.7 1.9 22.4 2.3 984.0 19.9 2.0 23.4 2.4 984.5 34.1 3.5 36.3 3.7 987.3 16.9 1.7 21.0 2.1 988.4 22.8 2.3 25.9 2.6 991.7 18.4 1.9 22.2 2.2 991.7 17.0 1.7 21.0 2.1 996.7 29.5 3.0 32.0 3.2 997.8 21.5 2.2 24.9 2.5 1001.6 19.4 1.9 23.1 2.3 1002.2 17.3 1.7 21.3 2.1 1007.2 16.2 1.6 20.5 2.0 1007.2 23.8 2.4 26.9 2.7 1011.6 18.8 1.9 22.6 2.2 1012.7 17.0 1.7 21.2 2.1 1013.2 18.0 1.8 22.0 2.2 1014.9 20.8 2.0 24.3 2.4 1015.4 24.0 2.4 27.2 2.7 1016.0 18.1 1.8 22.1 2.2

184

1016.5 19.0 1.9 22.8 2.2 1018.7 19.6 1.9 23.4 2.3 1023.1 31.6 3.1 34.1 3.3 1023.1 26.2 2.6 29.1 2.8 1023.7 21.4 2.1 25.0 2.4 1024.2 16.1 1.6 20.6 2.0 1025.3 18.9 1.8 22.8 2.2 1025.9 18.0 1.8 22.1 2.1 1027.5 21.1 2.0 24.7 2.4 1028.6 19.5 1.9 23.3 2.3 1029.2 19.1 1.9 23.0 2.2 1031.4 18.7 1.8 22.7 2.2 1032.5 21.1 2.0 24.7 2.4 1032.5 18.6 1.8 22.6 2.2 1032.5 19.5 1.9 23.4 2.3 1034.7 17.7 1.7 21.9 2.1 1035.2 17.1 1.7 21.4 2.1 1041.2 22.4 2.2 25.9 2.5 1041.2 19.0 1.8 23.0 2.2 1042.9 20.0 1.9 23.8 2.3 1042.9 19.2 1.8 23.2 2.2 1044.0 25.6 2.4 28.7 2.7 1044.5 30.6 2.9 33.3 3.2 1045.6 27.7 2.6 30.6 2.9 1047.3 19.2 1.8 23.3 2.2 1047.8 24.0 2.3 27.3 2.6 1050.6 36.7 3.5 39.0 3.7 1051.7 23.1 2.2 26.6 2.5 1051.7 22.1 2.1 25.7 2.4 1052.2 19.7 1.9 23.6 2.2 1054.9 20.1 1.9 24.0 2.3 1057.7 20.7 2.0 24.5 2.3 1063.7 20.3 1.9 24.3 2.3 1070.3 20.0 1.9 24.0 2.3 1071.9 21.6 2.0 25.4 2.4 1079.5 17.7 1.6 22.2 2.0 1082.8 20.5 1.9 24.5 2.3 1085.0 18.7 1.7 23.0 2.1 1090.4 20.5 1.9 24.6 2.3 1092.6 22.5 2.1 26.3 2.4 1093.7 19.8 1.8 24.0 2.2

185

1093.7 20.2 1.8 24.3 2.2 1093.7 20.0 1.8 24.2 2.2 1097.5 23.4 2.1 27.1 2.5 1102.4 22.6 2.0 26.4 2.4 1106.2 25.9 2.3 29.3 2.6 1108.9 22.6 2.0 26.5 2.4 1110.5 18.8 1.7 23.3 2.1 1110.5 21.4 1.9 25.5 2.3 1113.2 26.6 2.4 29.9 2.7 1113.2 18.9 1.7 23.4 2.1 1114.9 17.7 1.6 22.5 2.0 1114.9 23.7 2.1 27.5 2.5 1115.4 19.5 1.7 23.9 2.1 1117.6 21.7 1.9 25.7 2.3 1121.4 19.5 1.7 24.0 2.1 1121.9 20.6 1.8 24.8 2.2 1124.1 19.4 1.7 23.9 2.1 1129.5 25.1 2.2 28.7 2.5 1131.7 20.3 1.8 24.7 2.2 1140.8 20.2 1.8 24.7 2.2 1140.8 21.9 1.9 26.0 2.3 1145.7 19.9 1.7 24.4 2.1 1147.9 27.0 2.3 30.5 2.7 1149.5 20.3 1.8 24.8 2.2 1152.2 22.7 2.0 26.8 2.3 1158.1 21.1 1.8 25.5 2.2 1159.2 26.8 2.3 30.4 2.6 1161.9 23.6 2.0 27.6 2.4 1164.0 17.7 1.5 22.8 2.0 1167.8 22.8 2.0 27.0 2.3 1168.9 22.1 1.9 26.4 2.3 1171.0 20.3 1.7 24.9 2.1 1174.2 22.9 1.9 27.1 2.3 1181.2 21.4 1.8 25.9 2.2 1181.8 28.9 2.4 32.4 2.7 1183.9 20.4 1.7 25.1 2.1 1191.4 25.9 2.2 29.7 2.5 1216.6 23.6 1.9 27.9 2.3 1218.2 22.4 1.8 27.0 2.2 1224.0 31.6 2.6 35.0 2.9 1228.3 21.5 1.7 26.2 2.1

186

1237.9 26.7 2.2 30.8 2.5 1239.5 21.6 1.7 26.4 2.2 1251.7 26.6 2.1 30.7 2.4 1268.7 22.1 1.7 27.1 2.1 1271.3 49.3 3.9 51.7 4.1 1272.9 25.3 2.0 29.7 2.3 1282.4 22.4 1.7 27.4 2.1 1284.0 20.4 1.6 25.8 2.0 1288.2 23.2 1.8 28.0 2.2 1296.1 25.5 2.0 30.0 2.3 1315.6 25.4 1.9 30.1 2.3 1316.7 21.3 1.6 26.7 2.0 1321.9 22.6 1.7 27.8 2.1 1322.4 20.9 1.6 26.4 2.0 1329.8 24.0 1.8 29.0 2.2 1341.3 23.8 1.8 28.8 2.2 1351.2 23.5 1.7 28.7 2.1 1357.5 32.3 2.4 36.2 2.7 1360.7 32.5 2.4 36.5 2.7 1377.3 24.0 1.7 29.3 2.1 1379.4 27.1 2.0 31.9 2.3 1388.3 26.8 1.9 31.7 2.3 1399.2 23.6 1.7 29.0 2.1 1402.0 121.5 8.7 122.9 8.1 1410.6 24.8 1.8 30.1 2.1 1415.2 24.8 1.8 30.2 2.1 1416.8 24.2 1.7 29.7 2.1 1417.8 24.5 1.7 30.0 2.1 1432.8 23.2 1.6 29.0 2.0 1440.5 24.5 1.7 30.1 2.1 1458.0 25.5 1.7 31.0 2.1 1465.2 26.6 1.8 32.0 2.2 1465.2 24.7 1.7 30.4 2.1 1474.5 46.5 3.2 49.8 3.4 1475.5 25.3 1.7 30.9 2.1 1477.7 100.8 6.8 102.4 6.7 1487.9 42.8 2.9 46.4 3.1 1494.4 25.1 1.7 30.9 2.1 1497.5 25.6 1.7 31.4 2.1 1534.0 192.9 12.6 193.7 12.8 1565.3 28.0 1.8 33.3 2.1

187

1590.2 56.6 3.6 59.4 3.8 1592.1 189.6 11.9 190.4 11.4 1627.8 50.1 3.1 53.2 3.2 1649.9 41.9 2.5 45.5 2.8 1649.9 34.2 2.1 38.6 2.4 1659.0 40.0 2.4 43.7 2.7 1675.3 28.5 1.7 33.5 2.0 1684.2 153.0 9.1 154.0 8.4 1686.0 43.9 2.6 47.3 2.8 1710.8 110.1 6.4 111.5 6.4 1721.3 32.6 1.9 37.1 2.2 1726.5 78.6 4.6 80.5 4.8 1782.8 303.1 17.0 303.6 18.2 1797.7 131.0 7.3 132.2 7.5 1797.7 62.1 3.5 64.5 3.5 1820.8 28.4 1.6 33.3 1.9 1857.8 83.9 4.5 85.7 4.7 1868.9 70.7 3.8 72.7 3.9 1875.2 27.0 1.4 32.0 1.7 1890.8 55.7 2.9 58.3 3.1 1893.9 36.4 1.9 40.3 2.2 1895.5 93.3 4.9 94.9 5.1 1895.5 34.3 1.8 38.3 2.0 1898.6 45.0 2.4 48.2 2.6 1927.7 44.0 2.3 47.2 2.5 1979.8 34.2 1.7 38.2 1.9 2016.0 32.4 1.6 36.6 1.8 2198.5 23.7 1.1 29.0 1.3 2470.4 74.0 3.0 75.7 3.1 2567.5 79.1 3.1 80.7 3.2 2652.9 87.1 3.3 88.6 3.3 2707.1 17.7 0.7 23.7 0.9 2714.2 23.0 0.8 27.9 1.0 2722.1 32.8 1.2 36.4 1.3 2724.7 86.4 3.2 87.9 3.2 2761.9 35.9 1.3 39.2 1.4 2763.6 20.9 0.8 26.1 0.9 2767.9 35.9 1.3 39.2 1.4 2812.3 28.5 1.0 32.5 1.2

188

Table 2-7: Detrital Zircon U-Pb-Th data results for AOS-2 from LA-ICP-MS. 1 = Concentration uncertainty 20%; calibrated against reference material 91500 (80 mg/kg U); 3 = Concordance calculated as (206Pb/238U age/207Pb-206Pb Age)*100; Data collected from the Center for Pure and Applied Tectonics and

Thermochronology, Department of Geoscience, University of Calgary.

AOS-2 Dates U Prob. % 207Pb 206Pb U/ (pp 207 2sx 206 2sx 207 2sx Conc. con Sam CPS CPS Th Pb/ 2stotal Pb 2stotal Pb/ 2stotal Spot 1 (ABS (ABS (ABS 3 ple m) 206Pb (ABS) /238U (ABS) 235Pb (ABS) (%) c ) ) ) UK0 UK002 02 _185 30 547 69 0.9 NA NA NA 131.4 4.9 5.2 139.9 26.3 26.4 0.53 53.9 UK0 UK002 02 _294 210 3780 402 0.4 NA NA NA 156.8 3.7 4.3 166.5 12.1 12.4 0.14 49.0 UK0 UK002 02 _198 86 1652 158 0.9 NA NA NA 174.9 4.6 5.2 180.8 18.5 18.7 0.50 32.4 - UK0 UK002 121. 02 _216 239 4960 381 1.3 NA NA NA 198.1 4.8 5.5 189.9 14.4 14.7 0.26 6 UK0 UK002 02 _14 177 3390 205 1.9 NA NA NA 242.3 10.8 11.3 243.4 26.8 27.1 0.94 4.7 UK0 UK002 02 _248 292 5100 254 0.6 NA NA NA 305.3 10.5 11.2 325.9 20.4 20.9 0.02 35.9 UK0 UK002 1076 02 _179 619 0 485 1.0 NA NA NA 345.1 7.6 8.8 364.2 15.8 16.6 0.03 29.2 UK0 UK002 02 _289 310 5590 273 1.8 NA NA NA 351.3 7.6 8.9 361.6 19.5 20.2 0.33 18.0 UK0 UK002 - 02 _109 131 2560 103 1.2 NA NA NA 364.7 8.9 10.1 342.0 25.8 26.2 0.07 91.6 UK0 UK002 02 _6 489 8460 329 9.7 NA NA NA 388.4 6.8 8.5 403.0 16.8 17.6 0.10 20.4 UK0 UK002 02 _195 535 9600 369 4.1 NA NA NA 389.0 7.7 9.3 395.9 17.9 18.7 0.48 10.9 UK0 UK002 1240 02 _100 717 0 520 1.1 NA NA NA 398.7 7.6 9.3 412.1 15.6 16.6 0.11 18.2 UK0 UK002 104. 02 _61 487 8610 333 1.8 416.3 2 106.4 404.1 9.0 10.5 406.0 17.4 18.3 0.83 2.9 UK0 UK002 120. 02 _176 378 6410 263 0.7 526.0 0 121.8 413.2 9.1 10.6 430.8 20.8 21.6 0.07 21.4 UK0 UK002 132. 02 _76 557 9760 319 5.7 522.2 8 134.5 415.0 9.3 10.8 431.8 22.8 23.5 0.18 20.5 UK0 UK002 175. 02 _86 180 3270 132 1.3 400.0 0 176.3 416.2 10.6 11.9 413.8 27.9 28.5 0.86 -4.1 UK0 UK002 142. 02 _193 233 4060 143 3.3 472.1 9 144.4 419.9 10.6 11.9 428.0 24.3 25.0 0.50 11.1 UK0 UK002 123. 02 _133 365 6190 237 2.3 495.4 7 125.5 420.5 8.7 10.3 432.2 21.1 21.9 0.25 15.1 UK0 UK002 150. 02 _140 256 4420 170 1.1 499.3 5 151.9 421.1 8.7 10.3 433.4 25.2 25.9 0.37 15.7 UK0 UK002 1199 02 _191 641 0 443 1.1 424.4 91.4 93.9 423.5 8.3 10.0 423.6 15.8 16.8 0.99 0.2 UK0 UK002 134. 02 _199 312 5230 197 3.1 585.4 2 135.8 423.5 9.2 10.7 449.6 23.8 24.6 0.05 27.7 UK0 UK002 130. 02 _283 306 5280 212 1.0 510.8 3 132.0 423.5 9.9 11.3 437.3 22.7 23.5 0.20 17.1 UK0 UK002 183. 02 _214 163 2950 111 1.5 464.2 0 184.2 426.5 10.6 12.0 432.4 30.4 30.9 0.71 8.1 UK0 UK002 198. 02 _103 147 2480 96 0.6 544.8 3 199.4 430.7 12.0 13.2 449.2 34.4 34.9 0.32 20.9 UK0 UK002 1181 02 _200 673 0 472 5.4 510.8 88.7 91.1 430.7 8.4 10.1 443.6 16.2 17.2 0.14 15.7 UK0 UK002 121. - 02 _264 364 6770 253 1.8 350.1 2 123.2 434.3 10.2 11.7 421.2 20.3 21.1 0.20 24.1 UK0 UK002 1241 02 _240 691 0 475 2.2 428.4 84.7 87.4 441.6 8.9 10.6 439.5 15.4 16.5 0.75 -3.1 UK0 UK002 1023 02 _174 579 0 371 1.3 479.9 98.7 101.0 445.2 9.8 11.4 450.9 18.2 19.2 0.53 7.2 UK0 UK002 104. 02 _252 506 8960 338 1.2 440.4 4 106.6 447.0 9.4 11.0 445.9 18.6 19.6 0.91 -1.5 UK0 UK002 1168 101. 02 _175 637 0 412 1.6 420.3 8 104.0 448.2 9.6 11.3 443.7 18.2 19.2 0.68 -6.6

189

UK0 UK002 133. - 02 _138 317 5870 202 1.1 371.0 5 135.3 448.8 8.5 10.4 436.3 22.1 22.9 0.28 21.0 UK0 UK002 161. 02 _297 375 6750 249 2.4 563.4 9 163.3 448.8 15.6 16.7 468.0 30.9 31.5 0.21 20.3 UK0 UK002 236. 02 _212 94 1530 48 0.9 653.3 8 237.7 451.8 17.9 18.8 486.5 45.2 45.7 0.14 30.8 UK0 UK002 222. 02 _234 113 1900 69 1.7 448.4 1 223.1 454.8 12.4 13.7 453.7 37.8 38.3 0.96 -1.4 UK0 UK002 140. 02 _90 266 4370 156 1.4 581.8 1 141.6 457.8 9.7 11.4 479.0 26.0 26.7 0.10 21.3 UK0 UK002 1149 02 _152 651 0 417 3.2 428.4 88.7 91.2 459.0 8.7 10.5 453.9 16.2 17.3 0.51 -7.1 UK0 UK002 142. 02 _141 251 4010 131 0.9 628.6 7 144.2 462.6 10.0 11.7 491.5 27.2 27.9 0.06 26.4 UK0 UK002 202. 02 _292 166 3070 106 1.0 432.4 6 203.7 467.4 12.2 13.6 461.5 35.0 35.6 0.77 -8.1 UK0 UK002 142. - 02 _180 306 5290 172 0.8 432.4 4 144.0 515.2 12.5 14.2 500.2 27.1 27.9 0.28 19.1 UK0 UK002 226. 02 _237 129 2070 60 2.1 649.8 4 227.4 515.2 15.3 16.7 540.7 45.8 46.4 0.29 20.7 UK0 UK002 159. - 02 _290 312 5460 153 1.0 460.3 9 161.3 527.7 16.7 18.1 515.2 32.0 32.7 0.45 14.6 UK0 UK002 127. 02 _134 365 6270 182 1.5 503.1 0 128.7 552.6 11.9 13.8 543.0 26.0 26.9 0.48 -9.8 UK0 UK002 187. 02 _29 135 2036 57 2.0 834.7 6 188.7 571.5 14.1 15.9 627.4 43.7 44.4 0.01 31.5 UK0 UK002 122. 02 _18 507 8160 184 0.9 704.9 1 123.8 589.7 16.8 18.4 614.1 29.7 30.7 0.15 16.3 UK0 UK002 111. 02 _126 398 6720 178 0.8 653.3 2 113.1 598.6 13.1 15.2 610.1 26.0 27.1 0.36 8.4 UK0 UK002 118. 02 _66 369 5530 144 2.1 738.3 0 119.7 608.5 12.3 14.6 636.8 28.2 29.2 0.07 17.6 UK0 UK002 102. 02 _251 468 7800 195 1.2 603.6 9 105.0 615.0 13.7 15.8 612.6 24.4 25.5 0.83 -1.9 UK0 UK002 1255 02 _217 757 0 320 2.2 628.6 89.9 92.2 620.3 12.2 14.6 622.1 21.6 23.0 0.88 1.3 UK0 UK002 165. - 02 _98 194 3340 85 1.8 503.1 1 166.5 639.0 13.2 15.6 609.9 35.7 36.5 0.12 27.0 UK0 UK002 184. - 02 _266 138 2400 58 2.0 556.0 7 185.9 639.6 17.5 19.4 621.4 41.4 42.2 0.34 15.0 UK0 UK002 1237 - 02 _281 786 0 309 2.1 607.2 81.7 84.3 695.4 13.9 16.5 674.9 21.3 22.8 0.08 14.5 UK0 UK002 169. 02 _34 165 2730 60 1.2 691.3 5 170.7 710.4 16.7 19.0 705.8 42.2 43.1 0.83 -2.8 UK0 UK002 1382. 484. 155. 02 _205 20 359 8 1.5 5 1 484.5 759.3 42.5 43.6 937.1 0 155.3 0.04 45.1 UK0 UK002 144. 02 _291 582 8690 175 2.2 828.4 9 146.3 782.7 26.7 28.5 794.7 43.1 44.1 0.57 5.5 UK0 UK002 114. 02 _242 371 5290 95 4.5 889.7 0 115.7 883.6 26.9 29.2 885.3 37.8 39.1 0.91 0.7 UK0 UK002 108. 02 _131 393 5470 97 2.0 954.5 7 110.5 886.4 16.9 20.3 906.1 34.1 35.5 0.29 7.1 UK0 UK002 1008. 02 _33 600 8220 146 3.2 4 95.7 97.6 903.2 19.6 22.6 934.3 32.1 33.6 0.11 10.4 UK0 UK002 02 _228 670 9100 156 2.8 974.6 78.4 80.8 912.7 18.2 21.5 931.0 26.8 28.6 0.17 6.3 UK0 UK002 1076. 138. 02 _209 248 3210 55 2.7 5 5 139.9 918.3 18.4 21.7 966.1 45.0 46.1 0.04 14.7 UK0 UK002 102. 02 _276 505 7330 123 2.9 910.7 1 103.9 925.6 18.3 21.7 921.2 32.6 34.1 0.80 -1.6 UK0 UK002 170. - 02 _225 164 2490 41 2.7 859.4 3 171.5 945.7 25.2 27.8 920.1 52.5 53.4 0.34 10.0 UK0 UK002 1294 1044. 02 _144 958 0 190 2.3 2 69.2 71.9 948.4 15.5 19.5 977.8 24.2 26.3 0.02 9.2 UK0 UK002 1121. 160. 1003. 02 _243 176 2230 37 2.6 2 3 161.4 950.1 25.9 28.5 2 54.4 55.4 0.08 15.3 UK0 UK002 100. 02 _137 455 6530 98 1.8 910.7 0 101.9 956.8 18.5 22.1 942.9 32.4 34.0 0.37 -5.1 UK0 UK002 121. - 02 _91 324 4730 79 2.6 856.3 3 122.9 962.9 20.4 23.7 931.0 38.2 39.5 0.11 12.4 UK0 UK002 126. 02 _182 461 6230 85 2.8 945.9 2 127.8 980.1 22.3 25.4 969.6 41.4 42.7 0.60 -3.6

190

UK0 UK002 1000. 02 _227 522 7260 115 2.3 0 93.7 95.7 985.1 19.3 22.9 989.7 32.1 33.7 0.78 1.5 UK0 UK002 5450 1036. 1002. 02 _45 4030 0 806 5.0 0 40.1 44.5 986.7 16.9 21.0 1 17.3 20.2 0.14 4.8 UK0 UK002 1002. 106. 02 _20 398 5320 83 1.4 8 6 108.4 987.3 20.4 23.8 992.1 36.1 37.6 0.79 1.5 UK0 UK002 1547 02 _206 1092 0 235 7.9 951.6 67.5 70.3 993.4 19.0 22.7 980.4 24.5 26.6 0.30 -4.4 UK0 UK002 1038. 1011. 02 _273 646 9150 145 2.5 7 88.2 90.3 998.9 21.9 25.3 4 31.8 33.5 0.44 3.8 UK0 UK002 127. 1002. 02 _101 244 3290 51 2.0 974.6 7 129.2 2 24.2 27.3 993.6 42.9 44.2 0.69 -2.8 UK0 UK002 123. 1003. 02 _71 279 4030 58 2.1 966.0 4 124.9 3 22.4 25.7 991.7 41.1 42.5 0.60 -3.9 UK0 UK002 3380 1025. 1004. 1010. 02 _21 2530 0 483 2.6 0 43.1 47.3 4 15.9 20.3 9 17.5 20.5 0.47 2.0 UK0 UK002 1325 1087. 1007. 1032. 02 _190 1015 0 200 2.8 1 71.1 73.7 2 20.5 24.1 7 27.0 29.1 0.09 7.4 UK0 UK002 2820 1068. 1009. 1028. 02 _127 2104 0 410 6.4 5 48.5 52.1 9 15.8 20.3 6 19.0 21.9 0.07 5.5 UK0 UK002 2940 1022. 1010. 1014. 02 _207 2180 0 429 4.0 3 45.4 49.4 5 18.4 22.3 2 19.1 21.9 0.70 1.2 UK0 UK002 11. 1113. 103. 1012. 1044. 02 _173 426 5510 83 8 4 1 104.8 1 21.4 24.8 7 36.8 38.4 0.08 9.1 UK0 UK002 1126. 104. 1013. 1049. 02 _220 428 5690 83 2.3 4 9 106.6 2 23.1 26.4 7 38.0 39.5 0.09 10.0 UK0 UK002 1055. 122. 1013. 1026. 02 _93 343 4700 71 3.4 0 7 124.3 8 22.2 25.6 9 42.2 43.5 0.54 3.9 UK0 UK002 1482 1019. 02 _47 1054 0 218 1.7 957.4 68.2 70.9 3 17.3 21.4 999.8 24.2 26.4 0.19 -6.5 UK0 UK002 1757 1057. 1020. 1032. 02 _172 1349 0 270 3.6 7 60.3 63.3 4 22.1 25.5 3 24.6 26.9 0.38 3.5 UK0 UK002 1052. 113. 1020. 1031. 02 _300 389 5200 90 1.6 3 3 114.9 9 20.8 24.4 0 39.1 40.5 0.63 3.0 UK0 UK002 1100 1033. 1022. 1026. 02 _41 821 0 146 2.7 3 90.4 92.5 6 21.9 25.3 0 32.5 34.2 0.84 1.0 UK0 UK002 1022. 1022. 1022. 02 _232 526 7130 107 2.1 3 97.0 99.0 6 20.0 23.7 5 33.7 35.4 1.00 0.0 UK0 UK002 3030 1024. 1015. 02 _122 2270 0 446 3.9 994.4 49.5 53.1 8 17.5 21.7 1 19.6 22.3 0.43 -3.1 UK0 UK002 1011. 1029. 1023. 02 _107 603 8210 114 2.9 2 88.3 90.4 2 20.3 24.0 4 31.2 33.0 0.69 -1.8 UK0 UK002 1491 1128. 1030. 1062. 02 _9 1178 0 216 3.2 9 64.6 67.4 3 19.7 23.5 4 25.3 27.6 0.02 8.7 UK0 UK002 1146. 124. 1031. 1069. 02 _106 300 3800 58 1.6 9 5 126.0 9 22.8 26.2 5 44.3 45.6 0.10 10.0 UK0 UK002 1121. 200. 1033. 1062. 02 _229 117 1521 24 2.7 2 7 201.7 6 29.4 32.1 1 69.1 69.9 0.45 7.8 UK0 UK002 1288 1002. 1035. 1025. 02 _74 939 0 188 4.8 8 71.4 74.0 8 18.4 22.5 2 25.9 28.0 0.34 -3.3 UK0 UK002 2670 1046. 1035. 1039. 02 _110 1970 0 361 2.1 9 46.1 49.9 8 17.3 21.6 4 18.9 21.8 0.70 1.1 UK0 UK002 1027. 1036. 1033. 02 _218 723 9660 128 2.3 8 85.7 87.8 3 28.6 31.4 6 33.6 35.3 0.85 -0.8 UK0 UK002 3170 1073. 1038. 1049. 02 _51 2410 0 468 2.0 9 48.2 51.9 0 16.8 21.2 6 19.4 22.3 0.29 3.3 UK0 UK002 2230 1100. 1041. 1060. 02 _42 1720 0 307 2.6 3 53.5 56.9 2 18.6 22.7 5 21.7 24.3 0.08 5.4 UK0 UK002 170. 1045. 1028. 02 _163 159 2200 33 2.4 994.4 8 171.9 1 31.6 34.2 8 58.2 59.2 0.61 -5.1 UK0 UK002 1136. 1046. 1075. 02 _278 481 6280 92 2.8 7 96.9 98.8 2 19.8 23.7 9 35.0 36.7 0.11 8.0 UK0 UK002 2160 18. 1076. 1046. 1056. 02 _298 1640 0 360 3 5 56.5 59.6 7 17.2 21.6 4 21.9 24.4 0.41 2.8 UK0 UK002 5490 1044. 1047. 1046. 02 _12 4060 0 740 5.4 2 38.9 43.4 3 19.6 23.6 3 18.3 21.2 0.92 -0.3 UK0 UK002 1242 1154. 1053. 1087. 02 _201 961 0 179 3.5 5 71.4 73.9 8 19.7 23.7 2 27.6 29.7 0.01 8.7 UK0 UK002 1073. 104. 1054. 1060. 02 _295 483 6250 106 3.9 9 8 106.5 4 21.0 24.8 8 37.1 38.7 0.74 1.8 UK0 UK002 1084. 1057. 1066. 02 _69 585 7400 100 2.4 5 89.5 91.6 1 18.8 22.9 1 32.1 33.9 0.63 2.5

191

UK0 UK002 2547 1089. 1057. 1067. 02 _156 1934 0 368 3.5 8 50.2 53.8 1 20.1 24.0 8 21.4 24.1 0.36 3.0 UK0 UK002 1105. 134. 1057. 1073. 02 _238 284 3780 56 1.0 6 3 135.7 1 25.6 28.8 1 47.7 49.0 0.54 4.4 UK0 UK002 1182. 1059. 1100. 02 _60 471 5920 88 1.8 1 92.7 94.6 3 20.5 24.4 3 34.5 36.2 0.01 10.4 UK0 UK002 1192 1108. 1064. 1079. 02 _40 912 0 169 2.5 2 73.7 76.2 8 20.7 24.6 1 28.2 30.3 0.42 3.9 UK0 UK002 1819 1014. 1068. 1050. 02 _282 1323 0 282 0.7 0 57.5 60.7 1 18.4 22.7 4 22.2 24.7 0.12 -5.3 UK0 UK002 1494 1065. 1070. 1069. 02 _7 1109 0 195 1.1 8 65.6 68.4 8 18.6 22.9 2 24.9 27.2 0.91 -0.5 UK0 UK002 2222 1055. 1071. 1066. 02 _62 1660 0 300 5.2 0 56.7 59.9 3 16.8 21.4 0 21.7 24.3 0.65 -1.5 UK0 UK002 1087. 188. 1071. 1076. 02 _186 147 2000 28 1.4 1 7 189.7 3 30.4 33.2 6 65.6 66.5 0.88 1.5 UK0 UK002 2670 1110. 1075. 1087. 02 _178 2030 0 363 6.7 8 52.5 55.9 7 21.8 25.6 4 22.9 25.4 0.32 3.2 UK0 UK002 1065. 124. 1076. 1073. 02 _65 277 3690 54 1.5 8 7 126.1 8 25.9 29.2 2 44.5 45.9 0.86 -1.0 UK0 UK002 1110. 1081. 1091. 02 _224 590 7880 123 1.5 8 92.7 94.6 7 27.4 30.5 4 36.0 37.7 0.63 2.6 UK0 UK002 1055. 1085. 1075. 02 _96 632 8600 132 1.4 0 83.4 85.6 5 22.7 26.4 4 31.3 33.2 0.47 -2.9 UK0 UK002 1316 1076. 1089. 1085. 02 _145 992 0 173 2.1 5 67.0 69.7 3 18.2 22.7 1 25.3 27.6 0.77 -1.2 UK0 UK002 1095. 117. 1092. 1093. 02 _146 333 4420 57 1.3 1 1 118.6 1 24.0 27.6 1 42.2 43.7 0.96 0.3 UK0 UK002 1255. 142. 1094. 1149. 02 _79 249 2930 51 0.9 0 8 144.0 2 34.2 36.8 4 55.3 56.5 0.05 12.8 UK0 UK002 115. 1094. 1054. - 02 _94 359 4960 69 2.2 971.7 6 117.3 2 22.7 26.5 1 40.0 41.4 0.08 12.6 UK0 UK002 1329. 191. 1105. 1183. 02 _128 114 1370 18 0.8 2 6 192.6 1 34.2 36.9 3 72.9 73.8 0.06 16.9 UK0 UK002 1159. 1121. 1134. 02 _203 758 9630 131 1.2 6 76.1 78.4 4 20.8 25.0 5 29.6 31.7 0.38 3.3 UK0 UK002 2590 1167. 1123. 1138. 02 _269 2070 0 350 3.8 1 49.5 53.0 5 21.9 26.0 5 22.5 25.2 0.19 3.7 UK0 UK002 1157. 1123. 1135. 02 _288 633 7850 114 2.0 0 83.8 85.9 5 24.0 27.7 0 32.9 34.8 0.48 2.9 UK0 UK002 1184. 1130. 1149. 02 _132 620 7720 106 1.7 6 82.9 85.1 6 20.5 24.8 2 31.9 33.9 0.29 4.6 UK0 UK002 1245. 1132. 1172. 02 _1 472 5700 73 2.5 5 94.9 96.8 7 23.6 27.5 1 37.2 38.9 0.05 9.1 UK0 UK002 1206. 102. 1133. 1158. 02 _159 417 5210 69 2.0 8 2 104.0 3 23.4 27.3 8 39.1 40.7 0.19 6.1 UK0 UK002 1187. 141. 1144. 1159. 02 _5 526 6040 65 1.3 1 4 142.7 6 24.3 28.1 4 51.9 53.2 0.60 3.6 UK0 UK002 1360 1177. 1144. 1155. 02 _169 1088 0 185 1.9 1 69.2 71.7 6 21.0 25.3 9 27.8 30.1 0.50 2.8 UK0 UK002 1194. 138. 1147. 1163. 02 _105 263 3160 42 3.0 5 9 140.1 3 28.3 31.7 8 52.1 53.4 0.61 4.0 UK0 UK002 1092. 1147. 1128. 02 _202 771 9830 127 3.7 4 78.8 81.1 9 22.5 26.6 8 30.5 32.5 0.28 -5.1 UK0 UK002 1730 1065. 1148. 1120. 02 _92 1297 0 227 3.5 8 60.0 63.1 9 21.2 25.5 5 24.4 26.9 0.02 -7.8 UK0 UK002 1699 1136. 1150. 1145. 02 _23 1308 0 211 1.9 7 59.3 62.3 6 19.9 24.5 7 24.3 26.8 0.71 -1.2 UK0 UK002 2573 1159. 1156. 1157. 02 _97 2031 0 341 3.6 6 49.1 52.7 0 20.2 24.7 2 21.6 24.4 0.93 0.3 UK0 UK002 2350 1084. 1159. 1133. 02 _19 1830 0 292 2.5 5 51.2 54.7 2 19.1 23.9 5 21.3 24.1 0.05 -6.9 UK0 UK002 1343 1201. 1159. 1174. 02 _36 1058 0 176 2.6 9 69.1 71.7 7 21.3 25.6 5 28.1 30.4 0.33 3.5 UK0 UK002 1231. 101. 1160. 1185. 02 _221 448 5580 74 1.7 1 4 103.1 3 24.8 28.7 2 39.6 41.3 0.24 5.8 UK0 UK002 1157. 1160. 1159. 02 _149 565 7040 89 1.5 0 88.5 90.5 8 23.4 27.4 5 34.4 36.2 0.94 -0.3 UK0 UK002 1327 1255. 1162. 1195. 02 _88 1124 0 172 2.1 0 70.7 73.2 4 21.8 26.1 2 29.2 31.4 0.08 7.4 UK0 UK002 1231. 1162. 1186. 02 _259 750 9340 121 1.9 1 79.0 81.2 4 23.8 27.8 7 32.2 34.2 0.16 5.6

192

UK0 UK002 2197 1136. 1171. 1159. 02 _151 1706 0 280 2.1 7 51.5 54.9 6 20.8 25.4 4 22.4 25.1 0.24 -3.1 UK0 UK002 1815 1105. 1174. 1150. 02 _155 1385 0 268 3.6 6 68.6 71.3 8 23.5 27.6 7 28.0 30.3 0.11 -6.3 UK0 UK002 1126. 122. 1174. 1157. 02 _253 320 4120 56 1.6 4 2 123.7 8 23.1 27.3 9 44.8 46.3 0.52 -4.3 UK0 UK002 1283 1116. 1178. 1156. 02 _142 1009 0 152 2.5 0 66.6 69.3 0 19.9 24.6 4 26.3 28.7 0.15 -5.6 UK0 UK002 1273. 101. 1185. 1217. 02 _10 484 5770 70 2.6 9 5 103.2 5 24.0 28.1 2 40.1 41.7 0.18 6.9 UK0 UK002 1226. 157. 1186. 1200. 02 _215 166 2170 31 1.6 3 9 159.0 6 31.5 34.7 7 60.1 61.2 0.65 3.2 UK0 UK002 1060. 175. 1190. 1145. - 02 _54 149 2060 26 1.6 4 6 176.7 3 28.0 31.7 1 62.3 63.4 0.14 12.2 UK0 UK002 1273. 140. 1193. 1222. 02 _171 199 2400 32 1.7 9 5 141.8 0 30.1 33.5 1 54.8 56.0 0.32 6.3 UK0 UK002 1856 1221. 1194. 1204. 02 _121 1509 0 237 6.3 4 54.4 57.6 6 20.8 25.5 2 23.7 26.5 0.38 2.2 UK0 UK002 1904 1149. 1196. 1179. 02 _111 1477 0 222 3.7 4 53.9 57.2 2 19.9 24.8 7 22.8 25.6 0.16 -4.1 UK0 UK002 1315. 108. 1196. 1239. 02 _189 428 5010 64 2.1 5 9 110.5 2 25.5 29.4 5 43.5 45.1 0.04 9.1 UK0 UK002 4760 63. 1226. 1203. 1211. 02 _115 3940 0 600 2 3 37.5 41.9 7 19.8 24.7 8 18.6 22.0 0.42 1.8 UK0 UK002 1285. 1204. 1234. 02 _153 434 5090 62 1.8 6 99.9 101.6 8 24.5 28.6 1 39.9 41.6 0.18 6.3 UK0 UK002 1040 1214. 1208. 1210. 02 _22 866 0 123 3.4 1 70.9 73.4 5 21.3 26.0 6 28.9 31.2 0.89 0.5 UK0 UK002 3230 1273. 1210. 1233. 02 _158 2750 0 347 6.2 9 44.0 47.8 7 26.0 29.9 6 23.3 26.1 0.04 5.0 UK0 UK002 2360 1235. 1214. 1222. 02 _13 1950 0 267 3.4 9 49.3 52.7 4 22.4 26.9 2 22.9 25.8 0.58 1.7 UK0 UK002 1236 1240. 1214. 1223. 02 _293 1006 0 169 2.5 7 64.9 67.5 4 21.3 26.1 9 27.2 29.7 0.51 2.1 UK0 UK002 1211. 1215. 1214. 02 _165 542 6790 84 3.0 7 87.5 89.5 5 26.6 30.5 1 35.8 37.7 0.94 -0.3 UK0 UK002 1197. 1217. 1210. 02 _150 710 8500 105 1.6 0 83.6 85.7 6 25.8 29.8 2 34.2 36.1 0.64 -1.7 UK0 UK002 1688 1243. 1218. 1227. 02 _85 1394 0 222 2.8 1 55.5 58.6 2 23.2 27.6 2 25.1 27.7 0.46 2.0 UK0 UK002 1630 1179. 1221. 1206. 02 _75 1303 0 185 4.7 6 57.2 60.2 9 20.6 25.5 7 24.2 26.9 0.27 -3.6 UK0 UK002 1950 1264. 1221. 1237. 02 _247 1640 0 235 4.0 5 53.7 56.9 9 22.5 27.0 4 24.4 27.1 0.25 3.4 UK0 UK002 1283. 1229. 1249. 02 _84 494 5880 74 2.7 3 96.7 98.5 9 24.2 28.6 4 38.9 40.7 0.32 4.2 UK0 UK002 1458 1187. 1236. 1218. 02 _35 1180 0 181 1.2 1 60.4 63.3 3 24.1 28.5 5 26.5 29.0 0.16 -4.1 UK0 UK002 1338. 137. 1266. 1293. 02 _44 216 2360 29 2.3 2 3 138.6 0 36.9 40.0 0 56.9 58.2 0.34 5.4 UK0 UK002 1262. 1273. 1269. 02 _235 495 5840 69 2.3 1 91.0 92.9 4 25.5 29.9 2 37.3 39.2 0.83 -0.9 UK0 UK002 1304. 1279. 1288. 02 _157 796 9220 106 2.9 1 70.4 72.8 8 24.2 28.8 9 30.5 32.8 0.50 1.9 UK0 UK002 1269. 1290. 1282. 02 _160 759 8950 108 2.7 2 72.3 74.7 3 23.2 28.1 4 30.6 32.9 0.60 -1.7 UK0 UK002 1215 1238. 1294. 1273. 02 _222 1009 0 140 2.6 3 69.2 71.7 0 25.6 30.1 2 30.1 32.4 0.25 -4.5 UK0 UK002 2351 1384. 1298. 1331. 02 _257 2109 0 282 2.1 7 48.6 51.9 8 25.9 30.4 5 24.9 27.7 0.01 6.2 UK0 UK002 2855 1351. 1300. 1319. 02 _50 2486 0 321 2.5 6 44.0 47.8 3 21.8 27.0 8 21.7 24.9 0.10 3.8 UK0 UK002 1351. 1329. 1337. 02 _59 711 8130 93 1.3 6 81.4 83.5 3 25.3 30.1 8 35.1 37.2 0.69 1.7 UK0 UK002 1476 1364. 1329. 1343. 02 _245 1282 0 160 2.5 9 61.1 63.8 8 23.7 28.7 3 27.8 30.4 0.40 2.6 UK0 UK002 1444. 1331. 1375. 02 _55 661 7340 83 2.5 5 78.2 80.3 9 28.3 32.6 7 35.6 37.8 0.02 7.8 UK0 UK002 1311. 1339. 1328. 02 _143 761 8800 97 1.9 0 78.8 80.9 7 26.9 31.5 7 34.3 36.4 0.52 -2.2 UK0 UK002 3107 1399. 1347. 1367. 02 _184 2735 0 353 6.5 8 42.8 46.6 1 22.8 28.1 6 21.9 25.2 0.10 3.8

193

UK0 UK002 1481. 1409. 1438. 02 _261 826 8890 95 2.6 8 77.3 79.4 0 26.4 31.4 3 35.2 37.4 0.11 4.9 UK0 UK002 1310 1516. 1412. 1454. 02 _239 1229 0 137 1.6 1 59.4 62.1 6 26.6 31.6 5 29.2 31.9 0.02 6.8 UK0 UK002 2171 1417. 1425. 1421. 02 _102 1958 0 226 2.4 0 48.4 51.7 1 23.3 29.0 8 23.9 27.0 0.82 -0.6 UK0 UK002 1442. 1426. 1432. 02 _280 771 8570 91 1.2 4 74.4 76.7 1 25.4 30.8 6 33.6 36.0 0.72 1.1 UK0 UK002 1554 1496. 1426. 1454. 02 _53 1489 0 160 2.6 0 56.5 59.4 6 25.6 30.9 7 27.8 30.6 0.11 4.6 UK0 UK002 1637 1473. 1433. 1449. 02 _194 1505 0 168 2.0 6 52.3 55.4 3 26.6 31.7 6 26.6 29.5 0.27 2.7 UK0 UK002 3530 1461. 1439. 1448. 02 _24 3200 0 331 2.7 2 39.4 43.4 0 22.0 28.1 0 20.7 24.4 0.48 1.5 UK0 UK002 1027 1393. 1439. 1420. 02 _170 922 0 106 2.6 4 67.0 69.5 0 25.4 30.8 7 30.7 33.2 0.24 -3.3 UK0 UK002 1329. 1450. 1402. 02 _113 469 5620 58 2.3 2 96.1 97.9 8 29.1 34.0 3 41.4 43.3 0.05 -9.2 UK0 UK002 1475. 1464. 1468. 02 _277 851 9280 98 1.4 6 67.8 70.2 2 31.0 35.7 9 33.3 35.7 0.81 0.8 UK0 UK002 1432 1455. 1477. 1468. 02 _57 1292 0 142 2.2 0 61.1 63.8 6 29.7 34.6 3 30.4 33.0 0.63 -1.6 UK0 UK002 1331 1459. 1484. 1473. 02 _192 1234 0 131 3.2 1 64.6 67.1 2 30.3 35.2 9 31.8 34.4 0.54 -1.7 UK0 UK002 1070 1473. 1487. 1481. 02 _210 994 0 106 1.6 6 69.6 71.9 8 29.3 34.4 9 33.4 35.8 0.78 -1.0 UK0 UK002 1450. 1489. 1473. 02 _167 882 9910 90 2.1 8 70.6 72.9 3 28.8 33.9 5 33.4 35.8 0.44 -2.7 UK0 UK002 1446. 1498. 1477. 02 _236 823 8950 86 1.9 6 76.2 78.4 5 30.0 35.0 2 35.7 38.0 0.25 -3.6 UK0 UK002 1522. 104. 1545. 1535. 02 _223 396 4020 38 3.3 1 8 106.4 9 35.3 39.9 9 48.4 50.2 0.68 -1.6 UK0 UK002 2990 1571. 1518. 1540. 02 _166 2940 0 289 2.1 1 38.3 42.3 9 26.3 32.0 9 22.4 25.9 0.09 3.3 UK0 UK002 1607. 1568. 1584. 02 _77 698 6990 61 1.9 2 72.6 74.8 2 30.2 35.6 9 35.8 38.2 0.35 2.4 UK0 UK002 1222 1607. 1520. 1557. 02 _246 1251 0 111 1.2 2 68.4 70.7 5 33.1 37.8 1 35.1 37.5 0.08 5.4 UK0 UK002 1704 1609. 1557. 1579. 02 _64 1693 0 168 1.5 1 51.2 54.2 0 30.3 35.6 3 28.1 31.1 0.21 3.2 UK0 UK002 1620. 1623. 1621. 02 _46 737 7280 64 1.3 4 74.3 76.4 0 32.7 38.1 9 37.2 39.6 0.95 -0.2 UK0 UK002 1638. 100. 1525. 1573. 02 _4 441 4370 42 1.7 9 0 101.5 6 33.1 37.9 7 47.3 49.1 0.05 6.9 UK0 UK002 1439 1638. 1560. 1593. 02 _268 1447 0 137 1.8 9 54.3 57.1 1 27.3 33.1 9 28.3 31.3 0.03 4.8 UK0 UK002 2770 1649. 1602. 1623. 02 _161 2850 0 259 2.2 9 42.5 46.1 4 29.5 35.1 1 25.1 28.4 0.13 2.9 UK0 UK002 2760 1657. 1630. 1641. 02 _230 2800 0 236 1.3 2 37.9 41.8 0 27.5 33.7 9 22.8 26.5 0.36 1.6 UK0 UK002 1710 1682. 1590. 1630. 02 _108 1770 0 146 2.0 5 48.2 51.3 4 25.9 32.2 4 25.9 29.2 0.02 5.5 UK0 UK002 1484 1684. 1665. 1673. 02 _233 1579 0 133 1.9 2 53.8 56.7 5 29.7 35.7 8 29.1 32.1 0.57 1.1 UK0 UK002 1696. 1696. 1696. 02 _177 768 7300 64 2.0 7 79.7 81.6 3 33.9 39.4 5 40.3 42.5 0.99 0.0 UK0 UK002 2670 1724. 1756. 1742. 02 _125 2870 0 210 1.8 8 36.8 40.8 9 27.7 34.6 3 22.5 26.4 0.25 -1.9 UK0 UK002 5870 1754. 1801. 1779. 02 _52 6500 0 491 8.8 1 29.4 34.2 4 31.9 38.3 6 21.7 25.8 0.14 -2.7 UK0 UK002 1427 1765. 1787. 1777. 02 _116 1540 0 117 2.4 9 47.8 50.9 3 32.0 38.3 5 27.9 31.1 0.50 -1.2 UK0 UK002 1776. 101. 1701. 1735. 02 _241 370 3420 29 1.4 1 2 102.7 2 37.8 42.9 0 50.7 52.5 0.16 4.2 UK0 UK002 1799. 1852. 1827. 02 _63 803 7040 52 1.0 4 69.8 72.0 9 34.6 40.9 8 37.3 39.8 0.16 -3.0 UK0 UK002 1960 1806. 1767. 1785. 02 _139 2190 0 150 0.7 0 44.9 48.2 2 31.0 37.4 1 26.7 30.2 0.30 2.1 UK0 UK002 1229 1817. 1823. 1820. 02 _196 1344 0 95 2.0 5 54.0 56.8 8 33.6 39.9 9 30.9 33.9 0.85 -0.3 UK0 UK002 1118 1822. 1877. 1851. 02 _120 1258 0 86 1.1 4 58.1 60.7 0 34.7 41.1 2 32.8 35.7 0.22 -3.0

194

UK0 UK002 1211 1827. 1833. 1830. 02 _15 1385 0 92 1.8 3 55.9 58.6 5 36.4 42.3 6 32.5 35.4 0.88 -0.3 UK0 UK002 1850 1833. 1835. 1834. 02 _119 2100 0 143 3.2 7 46.1 49.2 0 32.4 39.0 4 27.6 31.0 0.97 -0.1 UK0 UK002 1283 1835. 1916. 1877. 02 _48 1457 0 96 1.9 4 53.9 56.6 4 32.2 39.2 8 30.4 33.5 0.06 -4.4 UK0 UK002 1390 1861. 1784. 1820. 02 _244 1590 0 139 3.3 0 58.9 61.4 8 40.1 45.3 2 35.1 37.8 0.08 4.1 UK0 UK002 1401 1873. 1910. 1893. 02 _267 1626 0 120 3.0 6 55.4 58.0 7 38.5 44.5 0 33.1 36.0 0.34 -2.0 UK0 UK002 1876. 1784. 1827. 02 _162 935 7910 62 2.7 7 62.6 65.0 8 34.3 40.2 6 34.9 37.6 0.03 4.9 UK0 UK002 1886. 1872. 1879. 02 _25 948 8140 65 4.2 1 62.2 64.5 7 33.0 39.6 1 34.3 37.1 0.74 0.7 UK0 UK002 1900. 1857. 1877. 02 _28 379 3350 25 5.9 1 97.2 98.7 7 36.5 42.5 8 50.1 52.1 0.49 2.2 UK0 UK002 4890 1953. 1963. 1958. 02 _31 6000 0 400 5.5 2 28.3 33.0 2 36.9 43.4 3 23.4 27.5 0.72 -0.5 UK0 UK002 1982. 109. 1891. 1935. 02 _129 316 2400 18 1.5 8 5 110.9 5 55.1 59.4 4 60.6 62.3 0.17 4.6 UK0 UK002 1045 2541. 2501. 2523. 02 _99 1763 0 59 1.0 8 46.8 49.5 1 45.8 53.7 6 33.1 36.6 0.26 1.6 UK0 UK002 2566. 2479. 2527. 02 _263 1119 6460 37 1.6 5 55.3 57.6 2 44.1 52.1 5 36.7 39.8 0.02 3.4 UK0 UK002 2816 2602. 2534. 2572. 02 _148 4920 0 142 0.9 2 27.7 32.0 7 37.4 46.9 4 22.8 27.6 0.04 2.6 UK0 UK002 3850 2611. 2551. 2585. 02 _72 6730 0 188 1.3 7 26.1 30.5 2 38.5 47.9 1 22.5 27.3 0.05 2.3 UK0 UK002 4730 2667. 2665. 2666. 02 _219 8660 0 230 1.4 5 24.7 29.4 2 46.3 54.9 5 24.5 29.0 0.94 0.1 UK0 UK002 2668. 2673. 2670. 02 _117 1804 9710 48 1.8 4 47.6 50.2 7 46.4 55.0 7 33.6 37.1 0.90 -0.2 UK0 UK002 1270 2669. 2622. 2649. 02 _27 2330 0 65 1.6 4 37.1 40.3 4 41.7 50.9 0 27.8 31.9 0.15 1.8 UK0 UK002 1986 2677. 2749. 2708. 02 _112 3670 0 89 1.4 5 32.8 36.4 9 41.1 51.0 4 25.5 30.0 0.04 -2.7 UK0 UK002 2698. 2665. 2684. 02 _130 678 3760 19 0.7 2 69.8 71.6 2 56.4 63.6 0 46.7 49.3 0.51 1.2 UK0 UK002 1194 2706. 2745. 2723. 02 _95 2302 0 59 1.1 2 39.0 42.0 7 45.2 54.3 0 29.4 33.3 0.29 -1.5 UK0 UK002 1347 2708. 2724. 2715. 02 _39 2557 0 65 1.2 9 36.1 39.4 6 42.3 51.8 6 27.4 31.6 0.64 -0.6 UK0 UK002 2670 2736. 2800. 2763. 02 _80 5080 0 117 0.8 1 24.5 29.1 2 41.4 51.5 1 22.3 27.3 0.02 -2.3 UK0 UK002 2042 2770. 2690. 2736. 02 _2 3950 0 96 2.7 4 31.4 35.1 7 43.5 52.7 5 26.1 30.4 0.02 2.9 UK0 UK002 1586 2782. 2745. 2766. 02 _188 3048 0 80 1.8 3 38.6 41.7 7 46.6 55.6 8 29.9 33.7 0.36 1.3 UK0 UK002 1611 2796. 2858. 2822. 02 _11 3180 0 72 0.9 5 32.8 36.4 4 45.6 55.3 2 26.8 31.1 0.06 -2.2 UK0 UK002 2803. 2883. 2836. 02 _154 1445 7270 33 1.6 2 47.5 50.0 1 54.8 63.2 3 35.7 39.0 0.05 -2.9 UK0 UK002 4200 38 3087. 2779. 2961. 02 _3 9700 0 182 0.0 8 22.6 27.2 3 46.7 55.8 5 24.1 28.9 0.00 10.0 UK0 UK002 2920 2813. 2514. 2683. 02 _8 5770 0 152 2.5 9 28.1 32.1 2 47.5 55.2 6 26.9 31.2 0.00 10.7 UK0 UK002 1670 1810. 1717. 1759. 02 _16 1850 0 137 2.5 9 46.6 49.8 0 30.7 36.8 8 27.4 30.7 0.00 5.2 UK0 UK002 1640 2328. 1530. 1898. 02 _17 2480 0 169 1.6 7 49.2 51.8 6 35.2 39.7 6 33.2 36.1 0.00 34.3 UK0 UK002 1270 1408. 1285. 1332. 02 _26 1150 0 138 1.3 5 60.9 63.6 0 24.2 28.9 1 28.2 30.8 0.00 8.8 UK0 UK002 2720 2613. 2483. 2555. 02 _30 4810 0 142 1.0 6 27.8 32.0 6 41.0 49.6 8 24.3 28.8 0.00 5.0 UK0 UK002 1093. 1058. - 02 _32 657 9010 123 3.8 985.9 80.2 82.6 7 20.0 24.2 3 29.0 31.0 0.01 10.9 UK0 UK002 1344 1360. 102. 1060. 02 _37 1220 0 192 4.8 5 2 103.8 921.1 28.1 30.4 8 41.0 42.4 0.00 32.3 UK0 UK002 3580 1721. 1436. 1555. 02 _38 3830 0 428 1.8 3 41.8 45.3 4 26.0 31.3 5 24.2 27.6 0.00 16.6 UK0 UK002 1214 1675. 1395. 1510. 02 _43 1260 0 164 2.7 3 58.3 60.9 0 25.9 31.0 0 29.6 32.4 0.00 16.7

195

UK0 UK002 2035 2969. 1651. 2317. 02 _49 4470 0 187 1.0 7 27.1 31.2 5 48.7 52.5 2 34.1 37.3 0.00 44.4 UK0 UK002 3730 2753. 2536. 2658. 02 _56 7150 0 201 5.4 4 24.9 29.5 0 42.8 51.3 7 23.9 28.6 0.00 7.9 UK0 UK002 1547 1771. 1903. 1840. 02 _58 1665 0 117 5.4 0 51.4 54.3 0 34.2 40.8 7 29.7 32.9 0.00 -7.5 UK0 UK002 02 _67 588 8650 360 1.3 850.2 97.8 99.8 402.3 8.5 10.0 476.3 19.7 20.7 0.00 52.7 UK0 UK002 1636 1041. 1138. 1105. 02 _68 1218 0 212 3.6 5 61.8 64.7 1 19.5 24.1 4 24.1 26.6 0.01 -9.3 UK0 UK002 2147 1141. 1080. - 02 _70 1582 0 255 3.5 957.4 55.0 58.4 9 19.1 23.7 1 21.6 24.2 0.00 19.3 UK0 UK002 1113. 106. 02 _73 400 5280 83 1.6 4 0 107.7 943.4 20.3 23.5 995.9 36.7 38.2 0.00 15.3 UK0 UK002 1320. 1166. 1221. 02 _78 547 6440 74 2.3 1 90.5 92.4 2 20.9 25.4 3 36.0 37.9 0.01 11.7 UK0 UK002 4540 1182. 1064. 1104. 02 _81 3640 0 662 3.7 1 36.5 41.1 8 25.9 29.1 0 21.7 24.4 0.00 9.9 UK0 UK002 2671. 1789. 2234. 02 _82 760 4430 36 0.9 2 87.5 89.0 7 40.1 45.3 4 53.1 55.1 0.00 33.0 UK0 UK002 3685 1360. 1071. 1171. 02 _83 3192 0 551 1.9 5 38.7 42.9 3 18.1 22.5 1 18.9 22.1 0.00 21.3 UK0 UK002 6090 2072. 1915. 1991. 02 _87 7900 0 451 4.5 1 25.2 30.3 5 40.5 46.2 8 24.7 28.6 0.00 7.6 UK0 UK002 1280. 1127. 1181. 02 _89 743 8900 119 1.9 9 84.1 86.1 9 22.4 26.4 5 33.7 35.6 0.00 11.9 UK0 UK002 1485 1806. 1716. 1757. 02 _104 1630 0 123 2.0 0 47.2 50.3 5 30.0 36.3 3 27.3 30.6 0.01 5.0 UK0 UK002 4320 1373. 1023. 02 _114 3840 0 856 4.1 7 39.6 43.7 867.8 16.2 19.6 6 18.5 21.4 0.00 36.8 UK0 UK002 1144 1192. 1007. 1067. 02 _118 907 0 173 2.8 0 75.0 77.3 7 18.2 22.1 6 28.2 30.2 0.00 15.5 UK0 UK002 1115 7900 2250. 1635. 1923. 02 _123 0 0 750 1.7 5 35.2 38.9 0 28.0 34.1 5 24.2 28.1 0.00 27.3 UK0 UK002 5270 1192. 1114. 1141. 02 _124 4190 0 687 4.2 0 34.9 39.7 3 17.6 22.4 0 16.9 20.4 0.00 6.5 UK0 UK002 2256 2589. 2487. 2544. 02 _135 3870 0 123 2.0 8 28.8 32.9 9 39.6 48.5 4 24.1 28.6 0.00 3.9 UK0 UK002 3110 2080. 1456. 1730. 02 _136 4090 0 335 4.8 3 65.9 68.0 5 28.6 33.6 7 36.0 38.6 0.00 30.0 UK0 UK002 1440 1920. 1823. 1869. 02 _147 1690 0 105 0.8 1 47.3 50.3 8 29.7 36.6 2 27.6 31.0 0.01 5.0 UK0 UK002 2271 1738. 1637. 1682. 02 _164 2440 0 192 2.8 6 44.7 48.0 5 30.0 35.8 3 26.3 29.6 0.00 5.8 UK0 UK002 1331. 1472. 1416. - 02 _168 624 7260 75 1.6 4 84.5 86.5 9 27.4 32.6 0 36.9 39.0 0.00 10.6 UK0 UK002 161. 02 _181 187 2650 74 1.4 922.5 0 162.2 580.3 14.9 16.7 655.2 39.9 40.7 0.00 37.1 UK0 UK002 1124 1876. 1656. 1756. 02 _183 1260 0 96 3.6 7 55.1 57.7 5 31.8 37.4 1 31.3 34.3 0.00 11.7 UK0 UK002 1487. 194. 1072. 02 _187 106 1140 20 1.8 9 1 195.0 880.2 27.4 29.6 6 71.2 72.0 0.00 40.8 UK0 UK002 1324 1356. 1060. 02 _197 1164 0 226 1.3 1 70.6 73.0 922.2 18.6 22.0 1 28.0 30.0 0.00 32.0 UK0 UK002 1121 1292. 1172. 1215. 02 _204 934 0 142 2.1 6 68.9 71.4 1 21.4 25.8 2 28.8 31.1 0.00 9.3 UK0 UK002 2213 14. 1055. 02 _208 1634 0 354 5 0 52.8 56.2 940.1 17.8 21.4 975.2 20.8 23.2 0.00 10.9 UK0 UK002 1027 1846. 1659. 1743. 02 _211 1160 0 94 1.3 6 60.1 62.5 0 30.7 36.5 6 32.7 35.5 0.00 10.2 UK0 UK002 2070 1832. 1303. 1518. 02 _213 2350 0 264 1.0 1 48.2 51.2 0 32.3 36.0 0 30.1 32.8 0.00 28.9 UK0 UK002 2944 2743. 2553. 2661. 02 _226 5640 0 159 3.0 9 29.1 33.0 3 44.4 52.7 0 25.9 30.2 0.00 6.9 UK0 UK002 1228. 140. 1032. 02 _231 249 2910 53 1.2 7 1 141.3 942.9 19.8 23.1 9 48.4 49.6 0.00 23.3 UK0 UK002 4250 36. 1146. 1000. 1047. 02 _249 3360 0 718 4 9 42.9 47.0 5 18.1 22.0 5 19.0 21.9 0.00 12.8 UK0 UK002 1576. 1386. 1463. 02 _250 846 8530 96 2.7 8 68.1 70.5 2 27.8 32.5 2 33.1 35.5 0.00 12.1 UK0 UK002 3330 2921. 1520. 2205. 02 _254 7140 0 342 1.1 7 24.5 28.9 5 32.3 37.1 8 25.4 29.4 0.00 48.0

196

UK0 UK002 1990 1781. 1517. 1631. 02 _255 2150 0 205 1.5 1 53.4 56.2 9 27.8 33.3 5 29.1 32.0 0.00 14.8 UK0 UK002 1375 1897. 1730. 1807. 02 _256 1584 0 116 2.7 0 53.1 55.8 9 37.9 43.1 5 32.6 35.5 0.00 8.8 UK0 UK002 1670 1144. 1286. 1234. - 02 _258 1310 0 190 3.0 3 59.2 62.1 1 23.9 28.6 1 25.8 28.4 0.00 12.4 UK0 UK002 2780 2831. 2435. 2657. 02 _260 5700 0 156 0.7 1 28.0 32.0 1 45.6 53.2 3 26.6 30.9 0.00 14.0 UK0 UK002 1976 1915. 1820. 1865. 02 _262 2296 0 156 2.8 5 41.2 44.7 4 32.9 39.2 2 26.4 30.0 0.00 5.0 UK0 UK002 1467. 192. 02 _265 126 1390 33 2.5 4 4 193.3 754.1 25.8 27.6 960.1 66.6 67.4 0.00 48.6 UK0 UK002 1564 1489. 1241. 1335. 02 _270 1435 0 204 1.7 9 65.2 67.7 6 28.1 31.9 7 31.5 33.9 0.00 16.7 UK0 UK002 1545. 138. 1202. 1331. 02 _271 182 1899 25 1.7 8 8 140.0 1 34.4 37.4 4 59.4 60.7 0.00 22.2 UK0 UK002 3310 1479. 1168. 1282. 02 _272 3080 0 444 2.3 7 39.6 43.6 3 26.2 29.9 7 23.4 26.4 0.00 21.0 UK0 UK002 1412 1375. 1270. 1310. 02 _274 1249 0 172 1.9 9 58.6 61.4 2 23.9 28.6 1 27.1 29.7 0.00 7.7 UK0 UK002 3810 1262. 1039. 1114. 02 _275 3180 0 714 4.1 1 40.9 45.0 6 18.1 22.3 0 19.1 22.1 0.00 17.6 UK0 UK002 1770 1194. 1053. 02 _279 1347 0 289 1.1 5 60.7 63.6 987.3 19.3 23.0 9 24.5 26.8 0.00 17.4 UK0 UK002 2700 1084. 1013. 02 _284 2050 0 478 3.8 5 49.4 53.0 981.2 15.9 20.1 7 19.4 22.1 0.00 9.5 UK0 UK002 1758 1121. 1013. 02 _285 1362 0 323 2.7 2 56.6 59.7 964.0 17.4 21.2 2 22.1 24.5 0.00 14.0 UK0 UK002 2790 1897. 1017. 1338. 02 _286 3270 0 486 1.8 0 43.0 46.4 6 20.6 24.2 7 24.1 27.1 0.00 46.4 UK0 UK002 02 _287 518 8500 670 1.3 704.9 93.7 95.9 216.8 4.8 5.6 263.7 11.5 12.1 0.00 69.2 UK0 UK002 3130 1807. 1718. 1759. 02 _296 3450 0 296 0.9 7 35.9 39.9 5 26.4 33.4 1 22.1 26.0 0.01 4.9 UK0 UK002 1530 1404. 1198. 1274. 02 _299 1304 0 210 2.4 2 56.6 59.5 4 21.2 25.9 1 25.7 28.3 0.00 14.7

197

Table 2-8: Dates of grains from AOS-2 collected from Detrital Zircon U-Pb-Th data results from LA-ICP-MS seen in Table 3. 4 = Accepted dates have probability of concordance >1%. Data collected from the Center for

Pure and Applied Tectonics and Thermochronology, Department of Geoscience, University of Calgary. Accepted Ages4

Date 2sx 2sx 2stotal 2stotal (Ma) (ABS) (%) (ABS) (%) 131.4 4.9 3.8 5.2 4.0 156.8 3.7 2.4 4.3 2.7 174.9 4.6 2.7 5.2 3.0 198.1 4.8 2.4 5.5 2.8 242.3 10.8 4.5 11.3 4.6 305.3 10.5 3.4 11.2 3.7 345.1 7.6 2.2 8.8 2.5 351.3 7.6 2.2 8.9 2.5 364.7 8.9 2.5 10.1 2.8 388.4 6.8 1.7 8.5 2.2 389.0 7.7 2.0 9.3 2.4 398.7 7.6 1.9 9.3 2.3 404.1 9.0 2.2 10.5 2.6 413.2 9.1 2.2 10.6 2.6 415.0 9.3 2.2 10.8 2.6 416.2 10.6 2.5 11.9 2.9 419.9 10.6 2.5 11.9 2.8 420.5 8.7 2.1 10.3 2.4 421.1 8.7 2.1 10.3 2.4 423.5 8.3 2.0 10.0 2.4 423.5 9.2 2.2 10.7 2.5 423.5 9.9 2.3 11.3 2.7 426.5 10.6 2.5 12.0 2.8 430.7 12.0 2.8 13.2 3.1 430.7 8.4 1.9 10.1 2.3 434.3 10.2 2.4 11.7 2.7 441.6 8.9 2.0 10.6 2.4 445.2 9.8 2.2 11.4 2.6 447.0 9.4 2.1 11.0 2.5 448.2 9.6 2.1 11.3 2.5 448.8 8.5 1.9 10.4 2.3 448.8 15.6 3.5 16.7 3.7 451.8 17.9 4.0 18.8 4.1 454.8 12.4 2.7 13.7 3.0 457.8 9.7 2.1 11.4 2.5

198

459.0 8.7 1.9 10.5 2.3 462.6 10.0 2.2 11.7 2.5 467.4 12.2 2.6 13.6 2.9 515.2 12.5 2.4 14.2 2.8 515.2 15.3 3.0 16.7 3.2 527.7 16.7 3.2 18.1 3.4 552.6 11.9 2.1 13.8 2.5 571.5 14.1 2.5 15.9 2.8 589.7 16.8 2.8 18.4 3.1 598.6 13.1 2.2 15.2 2.5 608.5 12.3 2.0 14.6 2.4 615.0 13.7 2.2 15.8 2.6 620.3 12.2 2.0 14.6 2.4 639.0 13.2 2.1 15.6 2.5 639.6 17.5 2.7 19.4 3.0 695.4 13.9 2.0 16.5 2.4 710.4 16.7 2.4 19.0 2.7 759.3 42.5 5.6 43.6 5.7 782.7 26.7 3.4 28.5 3.6 883.6 26.9 3.0 29.2 3.3 886.4 16.9 1.9 20.3 2.3 903.2 19.6 2.2 22.6 2.5 912.7 18.2 2.0 21.5 2.3 918.3 18.4 2.0 21.7 2.4 925.6 18.3 2.0 21.7 2.3 945.7 25.2 2.7 27.8 3.0 948.4 15.5 1.6 19.5 2.0 950.1 25.9 2.7 28.5 3.0 956.8 18.5 1.9 22.1 2.3 962.9 20.4 2.1 23.7 2.5 980.1 22.3 2.3 25.4 2.6 985.1 19.3 2.0 22.9 2.3 986.7 16.9 1.7 21.0 2.1 987.3 20.4 2.1 23.8 2.4 993.4 19.0 1.9 22.7 2.3 998.9 21.9 2.2 25.3 2.5 1002.2 24.2 2.4 27.3 2.7 1003.3 22.4 2.2 25.7 2.6 1004.4 15.9 1.6 20.3 2.0 1007.2 20.5 2.0 24.1 2.4 1009.9 15.8 1.6 20.3 2.0

199

1010.5 18.4 1.8 22.3 2.2 1012.1 21.4 2.1 24.8 2.4 1013.2 23.1 2.3 26.4 2.6 1013.8 22.2 2.2 25.6 2.5 1019.3 17.3 1.7 21.4 2.1 1020.4 22.1 2.2 25.5 2.5 1020.9 20.8 2.0 24.4 2.4 1022.6 21.9 2.1 25.3 2.5 1022.6 20.0 2.0 23.7 2.3 1024.8 17.5 1.7 21.7 2.1 1029.2 20.3 2.0 24.0 2.3 1030.3 19.7 1.9 23.5 2.3 1031.9 22.8 2.2 26.2 2.5 1033.6 29.4 2.8 32.1 3.1 1035.8 18.4 1.8 22.5 2.2 1035.8 17.3 1.7 21.6 2.1 1036.3 28.6 2.8 31.4 3.0 1038.0 16.8 1.6 21.2 2.0 1041.2 18.6 1.8 22.7 2.2 1045.1 31.6 3.0 34.2 3.3 1046.2 19.8 1.9 23.7 2.3 1046.7 17.2 1.6 21.6 2.1 1047.3 19.6 1.9 23.6 2.3 1053.8 19.7 1.9 23.7 2.2 1054.4 21.0 2.0 24.8 2.4 1057.1 18.8 1.8 22.9 2.2 1057.1 20.1 1.9 24.0 2.3 1057.1 25.6 2.4 28.8 2.7 1059.3 20.5 1.9 24.4 2.3 1064.8 20.7 1.9 24.6 2.3 1068.1 18.4 1.7 22.7 2.1 1070.8 18.6 1.7 22.9 2.1 1071.3 16.8 1.6 21.4 2.0 1071.3 30.4 2.8 33.2 3.1 1075.7 21.8 2.0 25.6 2.4 1076.8 25.9 2.4 29.2 2.7 1081.7 27.4 2.5 30.5 2.8 1085.5 22.7 2.1 26.4 2.4 1089.3 18.2 1.7 22.7 2.1 1092.1 24.0 2.2 27.6 2.5 1094.2 34.2 3.1 36.8 3.3

200

1094.2 22.7 2.1 26.5 2.4 1105.1 34.2 3.1 36.9 3.3 1121.4 20.8 1.9 25.0 2.2 1123.5 21.9 2.0 26.0 2.3 1123.5 24.0 2.1 27.7 2.5 1130.6 20.5 1.8 24.8 2.2 1132.7 23.6 2.1 27.5 2.4 1133.3 23.4 2.1 27.3 2.4 1144.6 24.3 2.1 28.1 2.5 1144.6 21.0 1.8 25.3 2.2 1147.3 28.3 2.5 31.7 2.8 1147.9 22.5 2.0 26.6 2.3 1148.9 21.2 1.8 25.5 2.2 1150.6 19.9 1.7 24.5 2.1 1156.0 20.2 1.7 24.7 2.1 1159.2 19.1 1.6 23.9 2.1 1159.7 21.3 1.8 25.6 2.2 1160.3 24.8 2.1 28.7 2.5 1160.8 23.4 2.0 27.4 2.4 1162.4 21.8 1.9 26.1 2.2 1162.4 23.8 2.0 27.8 2.4 1171.6 20.8 1.8 25.4 2.2 1174.8 23.5 2.0 27.6 2.4 1174.8 23.1 2.0 27.3 2.3 1178.0 19.9 1.7 24.6 2.1 1185.5 24.0 2.0 28.1 2.4 1186.6 31.5 2.7 34.7 2.9 1190.3 28.0 2.4 31.7 2.7 1193.0 30.1 2.5 33.5 2.8 1194.6 20.8 1.7 25.5 2.1 1196.2 19.9 1.7 24.8 2.1 1196.2 25.5 2.1 29.4 2.4 1203.7 19.8 1.6 24.7 2.0 1204.8 24.5 2.0 28.6 2.4 1208.5 21.3 1.8 26.0 2.1 1210.7 26.0 2.1 29.9 2.4 1214.4 22.4 1.8 26.9 2.2 1214.4 21.3 1.8 26.1 2.1 1215.5 26.6 2.2 30.5 2.5 1217.6 25.8 2.1 29.8 2.5 1218.2 23.2 1.9 27.6 2.3

201

1221.9 20.6 1.7 25.5 2.1 1221.9 22.5 1.8 27.0 2.2 1229.9 24.2 2.0 28.6 2.3 1236.3 24.1 1.9 28.5 2.3 1266.0 36.9 2.9 40.0 3.1 1273.4 25.5 2.0 29.9 2.4 1279.8 24.2 1.9 28.8 2.2 1290.3 23.2 1.8 28.1 2.2 1294.0 25.6 2.0 30.1 2.3 1298.8 25.9 2.0 30.4 2.3 1300.3 21.8 1.7 27.0 2.1 1329.3 25.3 1.9 30.1 2.3 1329.8 23.7 1.8 28.7 2.1 1331.9 28.3 2.1 32.6 2.4 1339.7 26.9 2.0 31.5 2.4 1347.1 22.8 1.7 28.1 2.1 1409.0 26.4 1.9 31.4 2.2 1412.6 26.6 1.9 31.6 2.2 1425.1 23.3 1.6 29.0 2.0 1426.1 25.4 1.8 30.8 2.2 1426.6 25.6 1.8 30.9 2.1 1433.3 26.6 1.9 31.7 2.2 1439.0 22.0 1.5 28.1 1.9 1439.0 25.4 1.8 30.8 2.1 1450.8 29.1 2.0 34.0 2.4 1464.2 31.0 2.1 35.7 2.4 1477.6 29.7 2.0 34.6 2.3 1484.2 30.3 2.0 35.2 2.4 1487.8 29.3 2.0 34.4 2.3 1489.3 28.8 1.9 33.9 2.3 1498.5 30.0 2.0 35.0 2.3 1522.1 104.8 6.9 106.4 6.9 1571.1 38.3 2.4 42.3 2.8 1607.2 72.6 4.5 74.8 4.8 1607.2 68.4 4.3 70.7 4.6 1609.1 51.2 3.2 54.2 3.5 1620.4 74.3 4.6 76.4 4.7 1638.9 100.0 6.1 101.5 6.6 1638.9 54.3 3.3 57.1 3.6 1649.9 42.5 2.6 46.1 2.9 1657.2 37.9 2.3 41.8 2.6

202

1682.5 48.2 2.9 51.3 3.2 1684.2 53.8 3.2 56.7 3.4 1696.7 79.7 4.7 81.6 4.8 1724.8 36.8 2.1 40.8 2.3 1754.1 29.4 1.7 34.2 1.9 1765.9 47.8 2.7 50.9 2.9 1776.1 101.2 5.7 102.7 6.0 1799.4 69.8 3.9 72.0 3.9 1806.0 44.9 2.5 48.2 2.7 1817.5 54.0 3.0 56.8 3.1 1822.4 58.1 3.2 60.7 3.3 1827.3 55.9 3.1 58.6 3.2 1833.7 46.1 2.5 49.2 2.7 1835.4 53.9 2.9 56.6 3.0 1861.0 58.9 3.2 61.4 3.4 1873.6 55.4 3.0 58.0 3.1 1876.7 62.6 3.3 65.0 3.6 1886.1 62.2 3.3 64.5 3.4 1900.1 97.2 5.1 98.7 5.3 1953.2 28.3 1.4 33.0 1.7 1982.8 109.5 5.5 110.9 5.8 2541.8 46.8 1.8 49.5 2.0 2566.5 55.3 2.2 57.6 2.3 2602.2 27.7 1.1 32.0 1.2 2611.7 26.1 1.0 30.5 1.2 2667.5 24.7 0.9 29.4 1.1 2668.4 47.6 1.8 50.2 1.9 2669.4 37.1 1.4 40.3 1.5 2677.5 32.8 1.2 36.4 1.3 2698.2 69.8 2.6 71.6 2.7 2706.2 39.0 1.4 42.0 1.5 2708.9 36.1 1.3 39.4 1.4 2736.1 24.5 0.9 29.1 1.1 2770.4 31.4 1.1 35.1 1.3 2782.3 38.6 1.4 41.7 1.5 2796.5 32.8 1.2 36.4 1.3 2803.2 47.5 1.7 50.0 1.8

203

Table 3-1: Samples taken from PR-1-to-4 cores for SEM, XRD and single powder XRF analysis. Sample Depth (m) Sample Description from Core Formation PR-1-556.45 Shale with mud/silt lenses (maybe very fine sand?) Wilrich PR-1-558.38 Glauconitic Shale Wilrich PR-1-559 Glauconitic Shale with Sandstone Wilrich PR-1-564.12 Massive Sandstone Bluesky PR-1-570 Thickly cross-bedded Sandstone Bluesky PR-1-579 Thickly cross-bedded Sandstone Bluesky PR-1-582 Massive Sandstone with vertical fractures (post core process?) Bluesky PR-1-584 Massive Sandstone Bluesky PR-1-586.75 Shale Bluesky PR-1-587.55 Sandstone/Shale half and half; Shale is bioturbated; coal present Bluesky PR-1-588 Massively bedded Sandstone, high Cl zone Bluesky PR-1-589.5 Massively bedded Sandstone Bluesky PR-1-590.6 Bioturbated Sandstone in Debolt/vertically fractured area (dissolution "breccia") Debolt PR-2-527 Thickly cross-bedded Sandstone Bluesky PR-2-527.7 Shale with some Sandstone on top/base Bluesky PR-2-532 Homogeneous/massively bedded Sandstone Bluesky PR-2-537 Cross-bedded Sandstone Bluesky PR-2-538 Cross-bedded Sandstone Bluesky PR-2-544.37 Homogeneous/massively bedded Sandstone, some parts are slightly cross-bedded Bluesky PR-2-545 Slightly less saturated homogeneous/massive Sandstone Bluesky PR-2-545.33 Bioturbated Carbonate Debolt PR-2-545.58 Bioturbated Carbonate Debolt PR-2-547.58 Bioturbated Carbonate with pyrite and green cement Debolt PR-2-551 Cross bedded carbonate/mud laminated (shale (?)), not green Debolt PR-3-591 Thickly cross-bedded Sandstone Bluesky PR-3-596 Thickly cross-bedded Sandstone Bluesky PR-3-601 Thickly cross-bedded Sandstone Bluesky PR-3-604.9 Massively bedded Sandstone Bluesky PR-3-605.35 Slightly less saturated above in Sandstone Bluesky PR-3-607.5 Saturated massive Sandstone Bluesky PR-3-607.95 Thinly cross-bedded Sandstone with Shale intervals Bluesky PR-3-608.28 Interbedded Sandstone with very thin Shale beds (2/3 and 1/3) Bluesky PR-3-609.05 Thickly cross-bedded Sandstone Bluesky PR-3-612.85 Grain size change; Coarser (mg?) Sandstone Bluesky PR-3-615.5 Medium grained massively bedded Sandstone Bluesky PR-3-617.4 Shale in thickly cross-bedded Sandstone Bluesky PR-3-619.9 Massively bedded Sandstone Bluesky PR-3-621.35 Shale with interbedded fine grained Sandstone Bluesky PR-3-623 Thickly cross-bedded Sandstone Bluesky PR-3-623.65 Interbedded Sandstone with Shale (half and half) Bluesky PR-3-624.4 Pebbly Sandstone Bluesky PR-4-648.4 Shale Wilrich PR-4-648.75 Glauconitic Shale Wilrich PR-4-651.1 Sandstone Bluesky PR-4-652 Sandstone with some bioturbation/finer grained beds Bluesky PR-4-657.1 Sandstone Bluesky PR-4-662.9 Shale interbedded with Sandstone Bluesky PR-4-664.4 Shale Bluesky PR-4-672.35 Sandstone, broken up pieces Bluesky PR-4-672.45 Shale with a very thin bed of Sandstone on top Bluesky PR-4-682.95 Unconsolidated Sandstone Bluesky PR-4-687.03 Grain size change; Pebbly Sandstone Bluesky PR-4-688.45 Pebbly Sandstone Bluesky PR-4-689 Shale Bluesky PR-4-691.75 Shale Bluesky PR-4-693.07 Shale Bluesky PR-4-698.02 Shale Gething PR-4-699.28 Shale Gething

204

PR-4-700.07 Shale Gething PR-4-704 Carbonate dissolution breccia Debolt PR-4-704.35 Carbonate dissolution breccia, green cement Debolt

205

Table 3-2: XRF processed element data and mineralogy conversions taken from PR-1-to-4 cores. XRF analysis and data processing conducted by XRF Solutions (2015). Si Al Fe K Ca S Mg Calcit Quart Siderit Clay K-spar Chlorit Illite/Mi Kaolinit Pyrite Depth Wt Wt Wt Wt Wt Wt Wt e Wt z Wt e Wt Total Wt % e Wt % ca Wt % e Wt % Wt % (m) % % % % % % % % % % Wt % PR-1- 35. 7.8 0.9 2.2 0.6 556.5 1.58 0.00 7.25 58.87 1.30 0.00 31.56 0.00 0.00 1.01 31.56 06 8 9 9 8 7 PR-1- 34. 7.6 1.2 2.8 0.2 556.5 0.81 0.00 3.73 52.83 1.02 0.00 40.84 0.00 1.04 0.52 40.84 26 2 4 8 8 9 PR-1- 3.8 1.1 35. 0.3 0.1 3.28 1.89 15.08 5.88 0.11 -0.18 4.51 0.50 73.88 0.23 4.82 557 2 7 97 2 2 PR-1- 31. 5.6 0.8 2.9 0.1 2.15 0.74 9.88 45.91 1.06 0.00 42.18 0.00 0.73 0.24 42.18 557.1 33 0 8 7 3 PR-1- 37. 9.0 0.8 2.6 0.0 0.00 0.00 0.00 61.42 0.92 0.00 36.87 0.00 0.73 0.06 36.87 558.3 34 1 4 0 3 PR-1- 34. 5.3 2.6 2.9 0.1 558.3 0.00 0.00 0.00 52.78 1.04 0.00 41.61 0.00 4.29 0.28 41.61 41 4 3 3 5 8 PR-1- 20. 2.0 4.7 0.9 0.4 8.60 2.14 39.57 37.41 0.33 0.00 13.27 0.37 8.14 0.92 13.63 558.9 64 6 4 3 9 PR-1- 18. 1.9 4.1 0.9 10.0 0.8 558.9 1.24 46.01 31.47 0.35 0.00 13.94 0.75 5.96 1.52 14.69 07 6 1 8 0 1 8 PR-1- 35. 9.1 0.6 0.6 3.6 559.0 1.55 0.00 7.11 61.21 0.25 20.53 9.83 0.72 0.00 0.34 31.09 47 3 0 9 7 5 PR-1- 32. 9.0 1.0 0.6 2.6 559.7 2.95 0.66 13.57 54.37 0.21 21.22 8.55 0.62 0.00 1.44 30.40 11 1 5 0 4 2 PR-1- 32. 8.5 2.8 1.0 1.9 559.8 2.25 0.70 10.35 54.23 0.84 15.26 13.84 0.36 1.41 3.71 29.46 10 2 1 4 8 8 PR-1- 34. 9.5 0.5 0.6 2.4 1.73 0.00 7.94 59.20 0.61 22.25 9.04 0.60 0.00 0.36 31.89 560 82 1 5 9 4 PR-1- 32. 9.2 0.5 0.5 2.6 3.05 0.00 14.05 54.05 0.21 22.31 8.30 0.60 0.00 0.47 31.22 561 14 8 8 8 4 PR-1- 31. 9.8 2.9 1.4 1.8 561.3 1.98 0.00 9.11 50.11 0.52 14.15 20.66 0.00 2.03 3.43 34.80 34 2 4 5 3 8 PR-1- 34. 9.2 0.6 0.9 2.7 1.70 0.00 7.81 59.00 2.09 20.02 9.88 0.52 0.00 0.69 30.41 562 87 3 9 5 0 PR-1- 32. 8.7 0.8 0.8 2.4 2.91 0.00 13.40 55.01 1.51 19.25 9.17 0.61 0.00 1.06 29.03 563 51 3 8 2 2 PR-1- 34. 9.0 1.0 0.9 2.5 1.81 0.00 8.34 58.32 2.04 19.08 10.21 0.49 0.00 1.53 29.78 564 40 0 8 7 0 PR-1- 31. 10. 2.4 2.0 1.4 564.0 1.81 0.00 8.34 48.22 1.63 11.01 26.44 0.00 1.56 2.80 37.45 42 46 4 0 9 7 PR-1- 33. 8.5 1.0 0.8 2.3 2.62 0.60 12.04 56.92 1.23 18.47 9.44 0.53 0.00 1.36 28.45 564.2 20 0 0 0 0 PR-1- 34. 8.6 0.7 1.1 2.3 2.00 0.00 9.21 58.77 2.88 16.67 11.29 0.46 0.00 0.71 28.43 565 59 4 1 6 1 PR-1- 32. 9.5 0.6 0.9 3.4 2.80 0.00 12.86 53.12 1.82 21.19 9.85 0.61 0.00 0.56 31.64 566 30 6 6 1 1 PR-1- 35. 9.1 0.4 0.8 2.9 1.69 0.00 7.76 60.03 1.46 20.08 9.98 0.57 0.00 0.13 30.63 567 20 8 5 7 7 PR-1- 37. 8.9 0.5 0.9 2.8 0.57 0.00 2.62 65.32 1.87 18.88 10.37 0.50 0.00 0.45 29.75 568 61 5 9 6 2 PR-1- 36. 9.7 0.5 0.8 3.2 0.76 0.00 3.52 62.49 1.30 22.03 9.80 0.60 0.00 0.26 32.43 569 69 4 2 4 9 PR-1- 29. 9.8 1.0 0.5 3.7 569.5 3.75 0.00 17.27 48.35 0.20 24.15 7.98 0.83 0.00 1.22 32.97 83 1 0 6 3 5 PR-1- 36. 9.3 0.6 0.9 3.3 1.15 0.00 5.30 61.22 2.11 20.24 9.96 0.72 0.00 0.44 30.92 570 00 4 5 6 8 PR-1- 35. 9.1 0.7 0.7 2.8 1.30 0.00 5.98 61.89 0.79 20.62 9.40 0.68 0.00 0.64 30.69 571 87 2 1 4 7 PR-1- 37. 8.5 0.4 0.6 3.2 1.05 0.00 4.84 65.86 0.22 19.60 8.66 0.64 0.00 0.18 28.91 572 16 2 7 1 6 PR-1- 37. 8.8 0.4 1.0 3.0 0.76 0.00 3.51 64.97 2.47 18.43 9.91 0.61 0.00 0.10 28.96 573 45 0 5 1 4

206

PR-1- 36. 8.9 0.4 0.9 2.7 1.13 0.00 5.21 62.91 2.03 19.41 9.69 0.60 0.00 0.15 29.70 574 51 9 6 3 5 PR-1- 38. 7.6 0.3 0.8 2.9 0.95 0.00 4.36 68.45 1.51 15.49 9.63 0.55 0.00 0.02 25.66 574.7 07 5 8 6 4 PR-1- 37. 8.9 0.5 1.2 3.1 0.79 0.00 3.63 63.67 3.33 17.19 11.42 0.51 0.00 0.27 29.11 575 15 0 2 3 7 PR-1- 36. 9.2 0.4 1.0 3.4 1.07 0.00 4.91 61.92 2.74 19.93 9.77 0.60 0.00 0.13 30.30 576 40 8 5 4 8 PR-1- 37. 8.8 0.4 1.0 3.5 0.72 0.00 3.30 64.95 2.43 18.71 9.96 0.61 0.00 0.04 29.28 577 50 9 2 1 7 PR-1- 10. 2.6 5.3 0.5 13.5 0.8 4.28 62.11 17.09 0.19 2.04 7.50 0.71 8.87 1.50 10.24 577.2 27 7 6 3 0 0 PR-1- 38. 8.5 0.4 0.9 3.0 577.9 0.48 0.00 2.19 67.43 2.12 18.21 9.41 0.63 0.00 0.01 28.25 33 5 0 3 2 5 PR-1- 25. 5.7 1.6 0.7 2.1 7.07 1.72 32.55 43.83 1.38 10.99 7.99 0.58 0.00 2.68 19.56 579 18 9 0 3 6 PR-1- 38. 7.8 0.3 0.7 3.1 0.54 0.00 2.47 69.56 1.10 16.94 9.19 0.00 0.00 0.74 26.13 580 61 7 5 7 7 PR-1- 19. 5.5 22. 0.0 31. 580.8 0.23 0.00 1.05 34.01 0.00 16.07 0.05 3.46 0.00 45.36 19.58 83 2 25 0 29 5 PR-1- 37. 9.6 0.5 0.6 4.1 0.29 0.00 1.36 65.29 0.52 22.57 9.23 0.72 0.00 0.31 32.52 581 77 6 7 9 9 PR-1- 38. 7.5 0.3 0.9 2.8 0.70 0.00 3.21 69.16 2.24 15.44 9.29 0.00 0.00 0.67 24.73 582 47 8 1 4 9 PR-1- 34. 13. 0.9 0.7 1.7 0.31 0.00 1.45 51.60 3.78 37.74 3.39 0.74 0.00 1.30 41.87 582.5 33 46 2 6 6 PR-1- 46. 0.0 0.1 0.0 0.2 582.5 0.00 0.00 0.00 99.42 0.00 0.28 0.02 0.00 0.00 0.28 0.30 54 9 3 0 0 1 PR-1- 1.9 0.9 0.4 0.0 20.3 0.5 582.5 0.00 93.41 2.64 0.01 2.22 0.58 0.60 0.00 0.53 3.40 3 3 6 4 0 1 3 PR-1- 27. 21. 1.1 1.7 0.9 582.5 0.34 0.00 1.54 23.00 9.00 56.91 7.24 0.57 0.00 1.73 64.72 57 26 4 5 6 6 PR-1- 41. 1.7 3.6 0.0 3.0 582.6 0.00 0.00 0.00 86.75 0.00 5.25 0.01 0.93 1.44 5.62 6.19 81 8 1 0 0 5 PR-1- 42. 4.6 0.2 0.2 2.1 0.06 0.00 0.29 84.07 0.07 12.15 2.90 0.00 0.00 0.52 15.05 583.4 62 0 4 0 6 PR-1- 43. 3.7 0.3 0.0 2.2 0.00 0.00 0.00 87.62 0.00 11.71 0.01 0.00 0.00 0.66 11.72 584 51 1 0 0 8 PR-1- 23. 7.2 4.7 0.0 1.1 584.2 5.96 0.00 27.41 39.83 0.00 22.40 0.02 1.45 6.83 2.05 23.87 68 7 3 0 0 5 PR-1- 43. 3.9 0.2 0.0 2.7 584.7 0.00 0.00 0.00 87.11 0.00 12.40 0.01 0.00 0.00 0.47 12.42 42 3 2 0 8 5 PR-1- 42. 4.6 0.2 0.0 2.9 0.00 0.00 0.00 84.81 0.00 14.66 0.01 0.00 0.00 0.52 14.67 585 84 5 4 0 4 PR-1- 31. 5.0 7.4 1.1 1.1 1.72 0.00 7.93 57.78 0.42 2.12 16.67 0.68 12.20 2.20 19.47 585.6 45 6 7 7 8 PR-1- 19. 1.0 27. 0.0 10. 0.00 0.00 0.00 39.33 0.00 2.59 0.02 1.46 37.38 19.22 4.07 585.7 13 0 44 0 27 PR-1- 40. 4.8 0.9 1.3 1.7 585.9 0.60 0.00 2.77 75.57 0.50 0.00 19.77 1.07 0.00 0.32 20.85 08 3 1 9 1 3 PR-1- 41. 5.6 0.6 0.0 4.0 586.0 0.00 0.00 0.00 80.86 0.00 17.38 0.02 1.54 0.00 0.20 18.94 77 9 0 0 8 5 PR-1- 43. 3.2 0.2 0.0 2.5 0.00 0.00 0.00 88.97 0.00 10.39 0.01 0.00 0.00 0.63 10.41 586.5 85 9 9 0 3 PR-1- 21. 9.4 18. 0.9 0.4 586.7 0.14 0.00 0.65 29.83 0.35 18.34 13.92 0.38 35.67 0.86 32.64 24 5 01 8 6 5 PR-1- 41. 4.6 0.6 0.7 1.3 587.5 0.06 0.00 0.28 81.46 0.27 5.70 10.97 0.00 0.00 1.32 16.67 88 4 2 7 3 5 PR-1- 40. 6.0 0.4 1.1 4.1 0.21 0.00 0.98 75.38 2.57 8.37 11.68 0.00 0.00 1.01 20.06 588 48 1 7 4 0 PR-1- 40. 4.9 0.4 1.7 0.5 0.00 0.00 0.00 73.18 0.63 0.00 25.15 0.00 0.00 1.05 25.15 588.5 09 9 9 7 6

207

PR-1- 40. 6.9 0.2 1.1 2.1 0.17 0.00 0.79 72.80 4.20 13.07 8.64 0.00 0.00 0.50 21.71 588.7 10 6 3 7 7 PR-1- 39. 6.1 0.8 1.4 0.8 0.71 0.00 3.26 72.16 0.50 3.07 19.87 0.39 0.00 0.76 23.32 589 09 5 9 0 1 PR-1- 9.0 3.2 33. 0.1 5.7 589.3 1.25 0.00 5.75 14.05 0.06 7.99 2.54 0.78 58.09 10.74 11.31 0 8 31 8 4 3 PR-1- 41. 5.8 0.3 0.6 4.0 0.00 0.00 0.00 78.59 2.20 13.26 5.20 0.00 0.00 0.74 18.46 589.5 47 5 5 6 5 PR-1- 42. 3.6 0.4 1.0 1.2 0.00 0.00 0.00 84.07 0.37 0.00 14.69 0.00 0.00 0.87 14.69 590 74 5 0 3 3 PR-1- 2.1 1.5 41. 0.0 16. 1.14 0.00 5.23 2.27 0.00 4.48 0.01 0.87 56.93 30.21 5.36 590.2 5 2 79 0 15 PR-1- 0.4 0.1 0.1 0.0 21.3 0.4 590.3 0.00 98.30 0.71 0.00 0.48 0.10 0.00 0.00 0.41 0.58 6 8 9 1 6 0 5 PR-1- 1.6 0.5 0.3 0.1 20.5 0.7 0.00 94.72 2.26 0.22 0.04 1.83 0.59 0.00 0.35 2.46 590.6 2 8 9 5 9 2 PR-1- 0.2 0.0 0.0 0.0 21.5 0.0 0.00 99.27 0.40 0.00 0.18 0.01 0.08 0.00 0.06 0.27 591 4 7 5 0 8 3 PR-1- 0.3 0.0 0.1 0.0 21.4 0.1 591.2 0.00 98.83 0.74 0.00 0.21 0.01 0.00 0.00 0.21 0.22 9 7 0 0 8 8 2 PR-2- 22. 3.6 0.2 0.1 2.9 0.00 68.08 1.14 1.36 0.37 29.04 0.00 1.02 30.78 527 08 2 6 1 0.00 6 0.00 PR-2- 18. 5.7 1.8 1.1 2.3 0.00 40.02 12.00 9.41 3.93 34.63 0.00 7.08 47.98 527.7 73 5 6 4 0.00 2 0.00 PR-2- 527.7 12. 2.6 24. 0.0 23. 0.00 23.25 0.01 16.36 0.00 8.86 51.53 56.84 25.22 1 22 0 91 0 0.00 39 0.00 PR-2- 20. 3.0 0.3 0.1 3.1 0.00 69.93 1.42 1.81 0.47 26.38 0.00 1.34 28.65 528 09 1 1 2 0.00 6 0.00 PR-2- 528.9 21. 3.1 0.6 0.6 2.1 0.00 66.20 7.11 3.26 2.33 21.10 0.00 2.46 26.69 1 15 5 1 3 0.00 8 0.00 PR-2- 19. 3.2 0.2 0.2 2.2 0.00 67.09 2.79 1.28 0.92 27.92 0.00 0.98 30.12 529 74 5 2 3 0.00 9 0.00 PR-2- 20. 2.7 0.2 0.2 2.8 0.00 72.20 2.49 1.67 0.82 22.83 0.00 1.25 25.31 530 60 3 9 1 0.00 8 0.00 PR-2- 22. 2.6 0.3 0.4 2.7 0.00 73.48 4.99 1.79 1.64 18.11 0.00 1.36 21.53 531 57 2 5 5 0.00 0 0.00 PR-2- 531.6 18. 5.3 1.1 1.0 3.4 0.00 44.64 11.23 5.96 3.68 34.48 0.00 4.56 44.12 5 84 0 5 3 0.00 9 0.00 PR-2- 19. 2.7 0.2 0.2 3.1 0.00 70.99 2.90 1.38 0.95 23.78 0.00 1.04 26.10 532 61 3 3 3 0.00 1 0.00 PR-2- 18. 3.0 0.2 0.1 3.2 0.00 67.00 2.47 1.32 0.81 28.39 0.00 1.00 30.52 533 11 1 1 9 0.00 0 0.00 PR-2- 534.2 20. 2.8 0.2 0.2 3.2 0.00 70.47 3.29 1.21 1.08 23.94 0.00 0.93 26.23 5 27 7 1 7 0.00 3 0.00 PR-2- 21. 2.5 0.2 0.3 2.8 0.00 73.66 3.81 1.51 1.25 19.76 0.00 1.15 22.52 535 58 8 8 3 0.00 0 0.00 PR-2- 20. 3.3 0.2 0.4 3.0 0.00 66.20 4.62 1.42 1.51 26.24 0.00 1.11 29.17 536 71 8 7 0 0.00 2 0.00 PR-2- 16. 2.2 0.2 0.3 2.2 32.21 47.44 3.49 1.11 1.14 14.61 0.00 1.06 16.86 537 27 3 3 4 3.14 9 0.00 PR-2- 17. 2.2 0.2 0.4 2.3 6.75 66.15 5.97 1.41 1.96 17.77 0.00 1.16 21.14 538 77 6 4 6 0.52 5 0.00 PR-2- 19. 3.3 0.3 0.5 2.9 5.12 60.30 6.65 1.79 2.18 23.96 0.00 1.45 27.93 539 37 0 4 8 0.44 1 0.00 PR-2- 20. 2.1 0.2 0.5 3.5 4.94 71.02 6.31 1.27 2.07 14.39 0.00 1.04 17.73 540 51 5 4 4 0.42 5 0.00 PR-2- 20. 3.0 0.2 0.4 2.5 3.96 65.71 5.48 1.11 1.80 21.94 0.00 0.91 24.85 541 55 0 2 9 0.35 9 0.00 PR-2- 18. 3.2 0.3 0.4 2.7 6.99 59.53 5.54 1.63 1.82 24.49 0.00 1.33 27.94 542 59 0 0 7 0.59 5 0.00 PR-2- 18. 2.4 0.3 0.4 3.2 7.85 65.04 5.51 1.66 1.81 18.15 0.00 1.34 21.61 543 83 5 0 6 0.65 2 0.00 PR-2- 22. 2.6 0.3 0.5 1.8 5.66 69.01 5.70 1.55 1.87 16.22 0.00 1.25 19.64 543.8 75 1 3 5 0.54 8 0.00 PR-2- 23. 2.2 0.3 0.4 2.2 2.64 74.86 5.02 1.54 1.65 14.29 0.00 1.20 17.48 544 44 6 1 8 0.25 2 0.00

208

PR-2- 544.1 22. 2.5 0.3 0.4 2.0 4.65 70.18 4.69 1.49 1.54 17.45 0.00 1.18 20.48 2 19 8 0 4 0.43 0 0.00 PR-2- 544.2 22. 2.1 0.4 0.4 2.0 4.46 73.48 5.01 2.12 1.64 13.29 0.00 1.63 17.05 5 78 4 2 7 0.41 6 0.00 PR-2- 544.3 18. 1.7 0.4 0.5 1.7 4.33 72.18 7.40 2.75 2.43 10.92 0.00 2.13 16.10 7 71 3 5 7 0.33 0 0.00 PR-2- 22. 2.3 0.6 0.5 1.9 3.01 71.81 6.06 3.12 1.99 14.00 0.00 2.37 19.12 544.5 74 7 2 7 0.28 2 0.00 PR-2- 544.6 24. 2.0 0.4 0.4 2.3 1.54 77.24 5.04 2.42 1.65 12.11 0.00 1.82 16.18 2 13 6 9 8 0.15 1 0.00 PR-2- 544.7 23. 2.0 0.5 0.4 2.2 1.17 77.27 4.26 2.78 1.40 13.13 0.00 2.07 17.30 5 48 7 4 0 0.11 8 0.00 PR-2- 544.8 24. 2.1 0.4 0.3 1.8 2.73 76.40 4.02 2.05 1.32 13.50 0.00 1.55 16.86 7 32 6 2 9 0.26 2 0.00 PR-2- 23. 2.4 0.3 0.4 1.5 5.34 71.81 4.91 1.80 1.61 14.53 0.00 1.41 17.94 545 94 2 8 9 0.53 8 0.00 PR-2- 545.1 23. 2.2 0.9 0.4 2.0 2.70 73.80 4.73 4.70 1.55 12.52 0.00 3.48 18.77 2 51 0 3 6 0.26 6 0.00 PR-2- 545.2 22. 2.2 0.5 0.5 1.4 2.91 73.46 5.55 2.70 1.82 13.55 0.00 2.05 18.07 5 53 1 2 1 0.27 2 0.00 PR-2- 545.3 15. 0.3 0.2 0.0 21.6 0.1 79.63 19.24 0.00 0.28 0.00 0.79 0.06 0.34 1.06 3 58 2 0 0 2 6 0.00 PR-2- 545.5 20. 1.0 0.8 0.2 1.6 20.30 67.76 2.15 2.92 0.71 5.38 0.78 3.30 9.01 8 86 3 2 1 2.00 5 0.00 PR-2- 545.8 6.7 0.2 0.1 0.0 33.1 0.0 93.11 6.17 0.21 0.13 0.07 0.29 0.02 0.15 0.49 5 5 3 2 8 1 8 0.00 PR-2- 546.1 30. 3.9 0.5 4.4 0.1 0.00 53.35 34.18 1.26 11.21 0.00 0.00 0.41 12.47 2 49 5 2 6 0.00 7 0.00 PR-2- 6.9 1.2 0.2 1.0 26.3 0.1 89.58 4.89 3.63 0.26 1.19 0.46 0.00 0.22 1.91 546.5 5 3 0 8 9 0 0.00 PR-2- 547.5 26. 5.7 1.7 5.7 0.1 0.00 34.73 45.21 5.66 14.82 -0.42 0.00 0.47 20.05 8 70 0 0 9 0.00 9 0.53 PR-2- 28. 6.1 1.1 1.4 0.3 0.00 53.80 11.35 4.16 3.72 26.96 0.00 0.77 34.85 551 50 2 5 7 0.00 1 0.00 PR-2- 551.9 4.0 1.3 0.4 0.4 30.5 0.6 93.50 2.08 1.45 0.56 0.47 1.94 0.00 0.95 2.98 2 9 7 0 8 5 2 0.68 PR-2- 552.2 27. 6.7 0.8 1.3 0.1 2.20 49.64 10.03 2.95 3.29 31.90 0.00 0.32 38.14 2 55 7 3 1 0.28 3 0.00 PR-3- 590.0 22. 3.7 0.5 0.6 1.8 2 68 7 9 2 1.37 5 0.00 12.58 56.01 5.61 2.53 1.84 21.44 0.00 2.08 25.81 PR-3- 22. 3.0 0.4 0.6 2.0 591 08 2 9 1 1.35 0 0.00 13.05 59.79 5.81 2.17 1.90 17.28 0.00 1.80 21.36 PR-3- 21. 3.2 1.0 0.6 1.4 592 00 2 2 7 3.51 4 0.49 28.33 46.03 5.37 3.93 1.76 14.58 0.00 3.50 20.27 PR-3- 21. 3.3 0.7 0.7 1.3 593 73 9 6 9 2.15 9 0.00 19.03 51.85 6.89 3.14 2.26 16.83 0.00 2.67 22.23 PR-3- 19. 2.8 0.5 0.5 1.5 594 52 0 6 8 1.20 4 0.00 12.97 58.40 6.20 2.81 2.03 17.59 0.00 2.30 22.43 PR-3- 21. 2.6 0.8 0.6 1.4 595 42 6 1 8 3.54 8 0.61 28.87 49.31 5.44 3.13 1.78 11.48 0.00 2.80 16.39 PR-3- 22. 3.3 0.4 0.5 1.8 596 31 3 9 3 0.99 0 0.00 9.67 60.75 5.17 2.26 1.69 20.45 0.00 1.82 24.41 PR-3- 19. 3.0 1.2 0.7 1.3 597 71 3 3 3 3.08 2 0.00 26.83 46.00 6.28 5.09 2.06 13.74 0.00 4.18 20.89 PR-3- 12. 2.1 13. 0.4 12. 597.1 00 5 47 2 2.58 26 0.00 21.76 25.33 3.51 13.74 1.15 6.16 28.35 37.38 21.05 PR-3- 21. 3.2 0.4 0.5 1.7 598 13 0 8 6 1.10 0 0.00 11.18 59.10 5.63 2.27 1.85 19.97 0.00 1.85 24.08

209

PR-3- 599.0 21. 3.5 0.6 0.6 1.6 8 97 5 0 6 1.97 4 0.00 17.63 53.00 5.83 2.50 1.91 19.14 0.00 2.12 23.55 PR-3- 19. 3.2 0.8 0.6 1.8 600 00 9 1 7 2.07 8 0.00 20.26 48.88 6.46 3.76 2.12 18.52 0.00 3.20 24.40 PR-3- 21. 2.9 0.9 0.8 1.9 601 61 1 0 0 1.18 1 0.00 11.63 59.05 7.78 4.19 2.55 14.80 0.00 3.36 21.54 PR-3- 20. 3.1 0.6 0.5 1.8 602 61 6 7 6 0.86 8 0.00 9.07 59.75 5.86 3.35 1.92 20.06 0.00 2.65 25.33 PR-3- 17. 4.0 1.5 0.9 1.1 603 59 5 1 1 0.81 6 0.00 8.98 45.57 9.99 8.01 3.28 24.17 0.00 4.24 35.46 PR-3- 25. 3.1 0.5 0.6 1.7 604 31 3 7 2 0.73 1 0.00 6.73 66.39 5.61 2.42 1.84 17.01 0.00 1.90 21.27 PR-3- 604.7 23. 2.4 0.7 0.4 1.3 5 62 8 5 6 1.01 8 0.00 9.70 67.18 4.38 3.46 1.44 13.84 0.00 2.70 18.74 PR-3- 604.9 14. 1.8 2.0 0.3 3.7 2 12 2 0 2 0.48 6 0.00 7.12 59.72 4.76 9.49 1.56 13.90 3.45 10.87 24.95 PR-3- 22. 2.0 0.3 0.4 1.5 605.1 36 2 8 7 0.77 4 0.00 8.22 71.26 4.90 1.88 1.61 12.13 0.00 1.49 15.62 PR-3- 605.3 23. 2.5 0.5 0.5 1.8 3 35 9 6 8 1.31 3 0.00 12.37 64.11 5.45 2.45 1.79 13.84 0.00 1.99 18.08 PR-3- 605.3 19. 2.7 1.8 0.6 1.3 6 22 4 4 3 4.54 0 0.79 35.36 41.01 4.82 5.20 1.58 10.86 1.17 3.96 17.64 PR-3- 19. 3.1 1.5 0.7 1.3 605.5 02 2 5 9 3.66 3 0.46 30.61 41.60 6.54 6.22 2.14 12.89 0.00 4.17 21.25 PR-3- 14. 1.9 1.2 0.4 1.4 606 31 9 9 6 5.68 6 0.70 48.03 33.38 3.83 4.00 1.25 8.65 0.87 5.29 13.90 PR-3- 12. 3.1 1.2 0.8 1.8 606.1 84 0 7 3 3.15 9 0.00 34.04 30.88 8.87 6.51 2.91 16.79 0.00 6.05 26.21 PR-3- 606.2 15. 2.9 0.9 0.8 1.0 3 16 1 4 6 3.12 5 0.00 31.64 37.81 8.58 4.50 2.81 14.66 0.00 4.03 21.97 PR-3- 18. 2.9 0.9 0.6 1.3 607 56 8 3 6 4.84 1 0.77 37.96 38.89 5.15 3.46 1.69 12.85 0.00 3.31 18.00 PR-3- 17. 2.9 1.2 0.7 1.4 607.5 33 8 9 4 5.38 3 1.10 41.48 34.55 5.64 4.77 1.85 11.72 0.00 4.48 18.33 PR-3- 607.7 20. 5.8 1.7 2.0 0.4 7 08 5 4 8 3.39 0 0.34 25.33 28.17 15.32 6.05 5.02 20.11 0.00 1.09 31.18 PR-3- 607.8 14. 2.6 2.2 0.6 1.2 7 36 5 1 6 6.23 6 0.92 48.11 27.87 5.06 5.85 1.66 9.83 1.63 4.22 17.34 PR-3- 608.0 18. 3.0 0.9 0.8 1.7 5 85 0 1 1 5.15 6 0.46 39.06 37.79 6.04 3.27 1.98 11.85 0.00 3.18 17.10 PR-3- 608.2 18. 3.8 1.3 1.1 1.3 8 99 1 7 1 2.88 9 0.00 25.17 40.07 9.57 5.66 3.14 16.40 0.00 4.41 25.19 PR-3- 608.5 24. 1.2 0.7 0.3 2.0 5 85 0 3 1 1.48 9 0.00 13.77 73.91 2.83 2.51 0.93 5.54 0.52 2.57 8.98 PR-3- 609.0 18. 1.4 0.4 0.2 2.8 5 28 2 0 4 1.33 4 0.00 15.98 67.81 2.87 2.27 0.94 10.13 0.00 1.84 13.34 PR-3- 609.8 20. 4.2 2.3 1.5 0.6 7 23 7 5 6 4.13 7 0.47 30.24 33.78 11.30 6.41 3.71 13.35 1.20 1.87 23.47 PR-3- 610.2 21. 1.3 0.2 0.1 3.1 5 43 1 7 6 0.02 2 0.00 0.24 85.01 1.99 1.60 0.65 10.50 0.00 1.18 12.76 PR-3- 610.8 11. 1.6 2.2 0.7 1.5 9 34 3 7 1 1.86 9 0.00 25.99 40.80 9.79 9.08 3.21 6.90 4.25 8.09 19.18 PR-3- 20. 1.0 0.6 0.0 3.7 611.4 07 4 2 5 0.00 0 0.00 0.00 86.41 0.67 3.14 0.22 8.94 0.62 2.89 12.30 PR-3- 611.7 18. 2.9 1.3 1.0 0.9 2 12 2 3 8 4.45 4 0.00 36.07 37.44 8.66 5.09 2.84 9.90 0.00 2.97 17.83

210

PR-3- 611.8 18. 3.6 2.1 1.5 0.6 8 83 7 9 3 3.63 4 0.60 29.32 35.30 12.20 6.47 4.00 11.39 1.32 1.93 21.86 PR-3- 22. 1.1 0.2 0.0 3.4 612 51 0 9 9 0.04 4 0.00 0.45 87.70 1.06 1.66 0.35 8.78 0.00 1.20 10.79 PR-3- 25. 1.2 0.2 0.0 2.4 612.5 11 2 5 7 0.00 0 0.00 0.00 88.53 0.73 1.34 0.24 9.16 0.00 0.96 10.74 PR-3- 613.0 22. 1.0 0.6 0.0 2.5 5 49 5 1 8 0.01 5 0.00 0.17 87.38 0.95 2.76 0.31 7.90 0.53 2.52 10.97 PR-3- 613.2 18. 3.9 1.9 1.6 0.3 4 61 2 1 3 4.67 9 0.47 34.95 31.11 12.07 6.76 3.96 11.16 0.00 1.15 21.87 PR-3- 613.7 21. 1.0 0.1 0.0 2.9 5 72 1 8 5 0.00 2 0.00 0.00 89.18 0.62 1.13 0.20 8.87 0.00 0.81 10.20 PR-3- 614.2 18. 0.6 0.2 0.1 3.4 7 21 3 7 0 0.00 4 0.00 0.00 90.54 1.55 1.95 0.51 5.45 0.00 1.40 7.91 PR-3- 614.7 17. 1.2 0.3 0.1 4.7 5 66 9 1 7 0.02 8 0.00 0.28 82.09 2.48 2.21 0.81 12.13 0.00 1.61 15.15 PR-3- 23. 1.3 0.3 0.1 3.1 615.5 81 5 0 1 0.00 9 0.00 0.00 86.48 1.25 1.63 0.41 10.23 0.00 1.18 12.27 PR-3- 616.8 14. 2.8 2.1 1.4 1.3 5 19 0 6 3 3.44 5 0.00 33.62 30.74 13.77 7.25 4.51 8.20 1.91 5.08 19.96 PR-3- 21. 1.0 1.0 0.1 2.7 617 50 7 1 4 0.04 0 0.00 0.44 84.60 1.76 4.12 0.58 7.23 1.28 4.28 11.92 PR-3- 21. 4.9 1.3 2.0 0.2 617.4 97 5 0 1 4.45 4 0.55 30.50 32.80 13.62 4.07 4.47 14.55 0.00 0.63 23.08 PR-3- 21. 1.1 0.2 0.1 2.9 618 97 2 7 6 0.26 9 0.00 3.09 84.50 1.94 1.55 0.64 8.28 0.00 1.15 10.47 PR-3- 6.7 1.0 1.7 1.2 0.3 618.5 9 2 1 3 3.19 3 0.00 47.43 18.34 18.04 6.49 5.91 0.00 3.79 2.16 12.40 PR-3- 619.1 18. 1.2 0.2 0.1 4.1 5 58 7 2 3 0.06 0 0.00 0.87 83.17 1.88 1.50 0.62 11.97 0.00 1.11 14.08 PR-3- 23. 1.0 0.8 0.1 2.7 619.5 22 0 2 0 0.00 9 0.00 0.00 87.43 1.17 3.32 0.38 6.79 0.91 3.31 10.50 PR-3- 27. 0.8 0.3 0.0 2.6 620 31 1 3 2 0.00 5 0.00 0.00 92.47 0.24 1.62 0.08 5.59 0.00 1.15 7.29 PR-3- 620.1 18. 3.7 2.5 1.4 0.9 7 71 4 0 8 5.03 4 0.46 36.31 31.19 10.55 6.46 3.46 10.56 1.47 2.68 20.48 PR-3- 620.9 22. 0.7 0.9 0.0 3.1 5 23 5 0 7 0.49 5 0.00 5.65 84.01 0.77 3.20 0.25 4.85 1.27 3.72 8.30 PR-3- 621.5 17. 3.6 2.1 1.4 0.8 6 67 5 9 1 5.57 1 0.79 40.04 29.04 10.00 5.78 3.28 10.68 1.18 2.36 19.74 PR-3- 622.0 20. 1.2 0.3 0.1 4.0 5 79 2 1 8 0.30 3 0.00 3.73 82.16 2.16 1.85 0.71 9.39 0.00 1.38 11.94 PR-3- 14. 1.4 0.5 0.4 1.8 622.5 64 7 7 8 1.79 0 0.00 23.44 55.82 6.20 3.54 2.03 8.97 0.00 3.04 14.54 PR-3- 622.6 20. 1.6 0.5 0.3 2.5 5 35 2 0 6 1.90 1 0.00 19.57 63.92 3.70 2.45 1.21 9.14 0.00 2.04 12.80 PR-3- 20. 1.8 0.5 0.3 2.1 623 47 2 3 7 0.98 6 0.00 11.00 69.14 4.05 2.84 1.33 11.64 0.00 2.24 15.81 PR-3- 623.6 13. 2.8 1.4 1.0 0.7 6 06 4 0 2 6.50 6 0.46 51.47 23.25 7.94 5.27 2.60 9.48 0.00 2.68 17.35 PR-3- 623.6 5.9 1.0 1.3 0.9 0.4 6 8 0 2 1 5.67 6 0.00 65.76 14.37 10.42 4.37 3.42 -0.31 1.98 2.68 7.47 PR-3- 623.6 15. 3.1 1.2 1.0 0.9 6 00 3 5 3 6.98 6 0.60 50.37 25.28 7.34 4.26 2.41 10.35 0.00 3.04 17.02 PR-3- 624.1 12. 0.7 0.8 0.2 1.3 6 62 8 9 4 1.84 1 0.00 27.12 57.82 3.57 4.07 1.17 4.72 1.54 5.40 9.95

211

PR-3- 624.1 18. 1.1 0.5 0.3 1.2 6 62 6 4 5 2.04 9 0.00 22.45 63.69 3.80 2.84 1.25 5.96 0.00 2.39 10.05 PR-3- 27. 1.0 0.7 0.2 1.0 624.3 23 1 7 1 1.67 5 0.00 14.33 75.90 1.78 2.32 0.58 4.49 0.58 2.48 7.40 PR-3- 624.4 12. 2.2 1.3 1.2 0.5 7 39 1 7 1 5.06 2 0.00 47.10 26.61 11.10 4.58 3.64 5.99 0.98 2.07 14.21 PR-3- 13. 0.7 2.8 0.0 1.4 624.9 68 3 8 4 6.96 0 0.00 54.20 34.06 0.29 3.76 0.09 2.70 4.90 4.95 6.56 PR-4- 28. 7.3 1.0 2.2 0.0 0.00 46.75 8.34 19.29 23.95 0.00 1.48 0.19 43.24 648.2 06 2 1 9 0.00 8 0.00 PR-4- 24. 5.2 2.2 2.1 0.1 0.00 49.65 12.59 15.03 17.01 0.40 4.84 0.47 32.44 648.7 92 9 1 2 0.00 8 0.00 PR-4- 648.9 15. 2.3 7.0 0.9 1.1 8.17 42.42 6.18 7.49 10.61 1.18 20.34 3.59 19.29 5 00 4 0 1 1.90 1 0.00 PR-4- 649.0 16. 2.2 0.7 0.5 2.6 4.96 64.82 3.70 12.45 10.59 1.67 0.00 1.81 24.72 3 80 3 4 6 0.91 0 0.00 PR-4- 649.0 10. 1.5 0.7 0.4 1.6 6.73 60.39 5.58 10.19 11.97 2.70 0.00 2.44 24.86 3 90 2 0 9 0.83 6 0.00 PR-4- 651.0 15. 2.5 0.8 0.5 1.4 23.76 47.33 2.72 14.16 8.51 1.43 0.00 2.09 24.10 9 29 9 8 2 5.17 2 0.80 PR-4- 651.9 18. 3.8 0.7 0.7 1.1 18.33 46.70 4.38 19.98 8.19 1.19 0.00 1.24 29.35 8 54 1 1 3 4.61 3 0.71 PR-4- 653.4 17. 3.1 0.6 0.7 1.3 16.10 51.38 4.34 16.08 9.67 1.27 0.00 1.16 27.02 7 80 5 6 2 3.68 5 0.00 PR-4- 654.9 18. 3.4 0.8 0.4 2.0 14.99 51.62 2.68 21.05 6.42 1.43 0.00 1.80 28.90 8 20 2 4 7 3.51 0 0.55 PR-4- 656.2 22. 4.2 1.0 0.9 0.8 7.29 54.77 4.57 19.42 10.69 0.95 0.00 2.32 31.05 8 34 2 6 0 1.93 7 0.00 PR-4- 18. 2.8 1.2 0.6 1.7 17.41 62.04 3.65 10.43 14.24 1.16 0.00 0.77 25.83 656.4 04 9 3 8 4.13 0 0.64 PR-4- 18. 2.6 0.5 0.7 1.3 11.29 51.52 3.46 13.30 9.94 1.18 0.00 3.19 24.42 657.9 60 1 4 6 1.61 8 0.00 PR-4- 9.4 1.1 0.5 0.6 0.6 11.74 56.60 6.65 0.00 21.87 2.43 0.00 1.15 24.30 657.9 9 6 0 7 1.27 5 0.00 PR-4- 659.4 15. 2.4 0.4 0.7 1.4 8.42 56.42 4.76 10.53 14.77 1.39 0.00 0.39 26.69 3 51 2 3 6 2.17 8 0.00 PR-4- 13. 2.1 2.2 0.4 2.7 8.10 52.68 4.59 15.25 7.57 2.06 0.00 9.43 24.89 659.9 21 4 0 9 1.42 7 0.00 PR-4- 19. 3.1 0.7 0.7 1.6 14.95 58.08 3.85 14.49 12.99 1.10 0.00 1.38 28.58 660.9 30 7 1 9 1.81 5 0.00 PR-4- 15. 2.7 0.6 0.6 1.2 9.30 51.01 4.30 15.46 11.52 1.49 0.00 1.27 28.46 661.6 17 6 4 7 2.90 7 0.00 PR-4- 662.6 21. 3.0 0.5 0.6 1.7 19.82 61.15 3.32 14.82 9.52 1.18 0.00 0.70 25.52 3 08 7 5 6 2.24 1 0.67 PR-4- 662.6 17. 3.6 0.8 1.0 0.9 15.98 44.02 5.72 14.11 13.76 0.88 0.00 1.69 28.75 5 55 1 3 6 4.87 6 0.91 PR-4- 19. 4.6 2.6 1.1 1.7 15.19 40.52 6.03 18.54 11.44 0.78 2.18 4.54 30.76 662.9 66 1 1 5 4.58 3 0.51 PR-4- 20. 5.2 1.5 2.0 0.4 34.82 36.73 9.76 13.51 21.07 0.17 2.47 1.10 34.74 664.4 08 8 8 0 4.38 3 0.68 PR-4- 664.7 14. 2.3 1.7 0.5 1.2 13.12 38.46 2.72 10.14 7.91 1.23 0.97 3.74 19.29 5 21 6 2 6 8.63 4 1.47 PR-4- 665.8 20. 5.5 2.0 2.3 0.3 32.15 34.05 14.17 14.97 18.53 0.32 3.95 0.88 33.82 8 02 2 2 3 3.80 4 0.00 PR-4- 665.9 4.8 0.9 0.8 0.9 0.1 32.06 23.74 24.49 0.00 10.53 4.09 4.03 0.97 14.62 3 2 2 9 3 2.90 2 0.00

212

PR-4- 666.5 12. 1.8 1.1 0.5 1.4 32.64 41.68 2.80 8.40 10.23 1.55 0.00 3.28 20.18 7 04 9 0 3 6.27 6 0.90 PR-4- 667.3 13. 2.4 0.9 0.6 1.6 22.16 40.23 2.92 10.77 9.92 1.30 0.00 2.21 22.00 5 60 0 2 0 7.27 4 0.66 PR-4- 668.8 12. 1.4 0.9 0.6 0.6 24.46 51.94 4.79 3.59 12.99 1.72 0.00 2.82 18.30 5 50 9 0 5 3.74 5 0.00 PR-4- 670.9 13. 1.7 0.7 0.6 0.9 24.23 49.27 3.84 4.58 14.55 1.44 0.00 1.85 20.57 2 04 7 4 9 4.46 2 0.62 PR-4- 672.3 15. 2.2 1.0 0.5 1.8 19.68 49.06 2.80 10.95 8.96 1.39 0.00 2.60 21.31 5 51 8 1 4 5.31 3 0.79 PR-4- 672.4 20. 4.4 0.9 1.6 0.3 29.66 41.83 7.20 10.56 18.87 0.27 0.64 0.95 29.70 5 84 8 0 7 5.79 7 0.52 PR-4- 13. 2.0 1.0 0.6 1.3 24.92 44.34 3.70 6.61 11.51 1.30 0.00 2.88 19.42 673.9 76 0 6 8 6.27 3 0.00 PR-4- 674.8 12. 1.9 1.5 0.8 1.3 14.39 43.94 3.89 3.36 17.09 1.20 0.26 5.34 21.65 7 49 1 8 0 4.71 5 0.52 PR-4- 21. 5.6 2.1 2.2 0.2 15.56 36.72 9.53 12.07 22.58 0.00 4.20 0.50 34.65 674.9 62 4 1 2 4.48 1 1.02 PR-4- 674.9 14. 1.5 0.6 0.5 1.9 15.14 60.71 2.78 5.03 12.87 1.63 0.00 1.41 19.54 3 68 9 4 5 2.74 7 0.00 PR-4- 677.4 13. 2.1 0.5 0.2 3.2 4.08 55.96 2.38 17.98 5.30 2.17 0.00 1.08 25.45 5 80 6 6 9 2.59 4 0.00 PR-4- 16. 1.2 0.3 0.1 2.3 7.12 77.82 2.48 12.27 1.55 0.00 0.00 1.80 13.82 678.2 59 7 5 9 0.67 2 0.00 PR-4- 19. 2.2 0.4 0.3 3.0 0.17 67.84 2.55 14.40 5.83 1.69 0.00 0.58 21.91 679 36 8 9 9 1.49 5 0.00 PR-4- 20. 1.4 0.8 0.0 3.3 0.39 81.74 0.94 12.59 0.14 2.13 0.00 2.29 14.87 679 70 5 8 7 0.03 1 0.00 PR-4- 21. 1.7 0.2 0.1 2.7 2.97 81.10 1.75 15.29 0.26 0.00 0.00 1.21 15.55 680.1 72 7 9 4 0.08 1 0.00 PR-4- 20. 2.2 0.4 0.2 2.7 0.77 73.38 2.35 16.03 2.95 1.83 0.00 0.49 20.81 680.1 86 3 7 8 0.63 5 0.00 PR-4- 21. 2.0 0.2 0.1 3.1 3.58 78.74 1.70 17.53 0.26 0.00 0.00 1.01 17.78 681 55 3 5 3 0.16 1 0.00 PR-4- 20. 2.1 0.3 0.2 3.0 2.53 74.36 2.18 16.96 1.70 0.00 0.00 1.22 18.66 682 91 4 0 2 0.76 5 0.00 PR-4- 682.7 20. 1.6 0.4 0.0 3.0 0.00 79.58 1.02 14.39 0.15 2.07 0.00 0.26 16.62 3 98 9 1 8 0.52 8 0.00 PR-4- 24. 0.7 0.4 0.0 3.0 40.28 91.85 0.01 5.82 0.00 1.97 0.00 0.35 7.79 683 10 4 4 0 0.00 2 0.00 PR-4- 683.3 7.6 1.3 2.5 0.5 1.3 28.42 27.39 6.18 5.77 7.59 2.03 4.79 5.96 15.40 6 2 8 2 9 6.87 6 1.42 PR-4- 683.3 8.4 2.1 2.5 0.5 2.0 0.99 28.56 6.89 15.48 6.85 2.17 2.21 9.42 24.50 6 7 5 9 9 4.67 7 0.00 PR-4- 683.5 21. 1.2 0.3 0.0 2.9 4.81 84.97 1.18 11.27 0.18 0.00 0.00 1.41 11.45 5 12 4 3 9 0.20 6 0.00 PR-4- 684.0 24. 0.8 0.5 0.0 2.1 3.63 85.99 0.01 6.51 0.00 1.82 0.00 0.85 8.33 5 55 8 8 0 1.13 2 0.00 PR-4- 684.8 21. 1.5 0.2 0.0 3.0 0.00 80.17 1.18 13.72 0.18 0.00 0.00 1.13 13.90 6 45 8 8 9 0.76 8 0.00 PR-4- 687.3 21. 1.8 0.2 0.0 3.8 3.31 81.33 0.27 17.18 0.04 0.00 0.00 1.18 17.22 5 83 9 9 2 0.00 6 0.00 PR-4- 688.0 16. 1.9 1.1 0.1 4.4 7.96 68.84 2.32 18.94 0.35 2.37 0.00 3.87 21.66 7 71 8 6 6 0.59 6 0.00 PR-4- 688.6 21. 1.6 0.4 0.1 3.1 38.98 74.76 2.24 12.41 0.47 1.93 0.00 0.23 14.81 7 05 6 1 9 1.74 2 0.00

213

PR-4- 14. 1.3 1.6 0.1 2.2 5.94 45.12 1.05 8.71 0.16 1.69 0.00 4.29 10.56 689 80 1 0 0 9.81 1 0.00 PR-4- 689.2 21. 1.7 0.4 0.1 2.6 60.61 75.72 1.71 14.08 0.26 1.95 0.00 0.34 16.29 3 31 9 4 4 1.29 7 0.00 PR-4- 13. 2.0 0.7 0.0 21.5 1.3 8.72 26.66 0.17 9.59 0.89 1.15 0.00 0.93 11.63 689.9 25 1 3 7 1 6 0.00 PR-4- 690.4 24. 1.1 1.0 0.0 1.6 7.59 78.38 0.67 8.01 0.10 1.72 0.00 2.40 9.83 5 07 7 4 6 2.17 1 0.00 PR-4- 690.7 24. 1.7 1.0 0.0 2.1 11.69 75.47 0.69 12.28 0.10 1.66 0.00 2.19 14.05 7 59 8 0 7 1.95 1 0.00 PR-4- 690.8 11. 1.7 6.3 0.1 1.5 0.74 41.57 1.66 16.19 0.25 2.25 20.24 6.15 18.69 1 21 7 0 2 2.21 5 0.00 PR-4- 24. 4.6 2.2 1.4 0.1 5.57 55.15 9.46 18.31 10.08 0.87 5.00 0.39 29.26 691 97 4 0 3 0.21 5 0.00 PR-4- 10. 2.1 21. 0.4 0.7 4.99 20.47 2.73 9.80 1.95 1.27 56.40 1.80 13.02 691.4 10 1 92 0 1.72 4 0.59 PR-4- 9.1 2.1 18. 0.3 0.4 0.00 20.02 3.69 12.77 0.55 1.55 55.30 1.13 14.87 691.4 7 9 73 8 1.35 1 0.00 PR-4- 691.7 24. 5.6 1.0 1.7 0.0 0.00 50.98 10.11 21.07 15.27 0.56 1.81 0.20 36.90 5 78 6 3 3 0.00 7 0.00 PR-4- 692.3 25. 4.5 1.1 1.3 0.2 0.48 59.42 7.88 16.67 13.00 0.73 1.78 0.53 30.39 7 57 1 2 7 0.00 0 0.00 PR-4- 692.3 19. 4.1 3.4 1.0 0.5 0.00 49.23 9.49 22.29 6.61 1.33 8.96 1.60 30.24 7 85 6 5 9 0.12 2 0.00 PR-4- 26. 5.6 1.0 1.5 0.1 0.00 54.40 7.21 20.35 15.63 0.46 1.70 0.25 36.43 693 52 7 5 3 0.00 0 0.00 PR-4- 693.7 28. 5.3 0.7 1.3 0.4 0.00 60.23 4.98 18.50 14.82 0.46 0.00 1.01 33.79 5 56 0 1 0 0.00 5 0.00 PR-4- 26. 5.4 0.7 1.4 0.3 0.00 56.35 7.35 21.32 13.23 0.63 0.30 0.83 35.17 694.3 66 7 4 1 0.00 2 0.00 PR-4- 694.4 22. 3.0 0.7 0.7 1.0 0.00 68.24 3.46 13.41 12.44 1.07 0.00 1.37 26.92 8 45 7 2 6 0.00 9 0.00 PR-4- 695.0 25. 5.1 2.1 1.3 0.2 0.00 54.18 7.93 20.87 11.28 0.76 4.48 0.51 32.90 7 47 7 0 6 0.00 0 0.00 PR-4- 695.0 11. 2.3 1.1 0.8 0.2 0.00 52.08 10.45 15.84 14.78 2.23 3.44 1.18 32.85 7 72 7 0 3 0.00 1 0.00 PR-4- 695.6 16. 2.4 20. 0.5 0.1 4.47 32.84 2.64 8.61 3.43 0.99 46.69 0.33 13.03 2 78 0 44 3 1.59 6 2.05 PR-4- 695.9 24. 4.0 0.3 0.6 1.4 0.00 65.39 2.96 21.27 9.24 1.09 0.00 0.04 31.61 7 52 8 6 6 0.00 7 0.00 PR-4- 23. 4.0 0.7 0.9 0.5 0.00 61.74 6.72 20.78 8.23 1.18 0.00 1.36 30.19 697.2 54 7 5 4 0.00 1 0.00 PR-4- 22. 3.9 1.3 0.9 0.3 0.00 59.91 6.96 20.49 8.05 1.25 2.23 1.10 29.79 697.7 32 2 2 3 0.00 6 0.00 PR-4- 698.0 27. 6.9 0.7 1.9 0.1 0.00 48.88 9.18 24.15 16.38 0.32 0.87 0.23 40.85 2 63 6 7 0 0.00 0 0.00 PR-4- 698.6 20. 2.7 0.2 0.2 3.4 0.00 72.47 1.56 21.40 3.76 0.00 0.00 0.82 25.15 2 78 4 0 5 0.00 8 0.00 PR-4- 14. 1.3 0.1 0.1 0.6 0.00 78.21 3.02 17.33 0.45 0.00 0.00 0.98 17.79 699 15 7 6 6 0.00 6 0.00 PR-4- 12. 1.1 0.1 0.0 0.7 0.00 80.89 0.02 18.19 0.00 0.00 0.00 0.89 18.20 699 36 3 2 0 0.00 3 0.00 PR-4- 699.2 24. 8.3 0.9 1.8 0.1 0.00 37.98 11.36 36.91 11.37 0.66 1.46 0.26 48.95 8 79 9 9 3 0.00 1 0.00 PR-4- 26. 4.4 0.4 1.4 0.0 0.42 61.59 6.99 14.06 16.12 0.53 0.05 0.23 30.71 700.1 21 3 4 3 0.12 8 0.56 PR-4- 20. 2.6 1.3 0.4 0.1 0.18 68.23 5.33 19.70 0.80 1.91 3.20 0.66 22.41 700.7 82 8 6 4 0.04 9 0.00

214

PR-4- 701.4 26. 2.6 0.1 0.0 1.6 0.00 80.17 0.01 19.29 0.00 0.00 0.00 0.53 19.29 5 83 0 6 0 0.00 3 0.00 PR-4- 701.7 31. 4.6 0.3 0.1 0.0 0.00 70.55 1.56 26.46 0.23 1.10 0.00 0.10 27.79 6 27 1 3 9 0.00 4 0.00 PR-4- 702.2 19. 1.2 24. 0.0 24. 0.00 39.78 0.01 5.93 0.00 1.11 6.05 47.12 7.04 8 34 8 35 0 0.00 32 0.00 PR-4- 27. 3.3 0.1 0.1 0.2 0.00 75.49 1.47 22.22 0.22 0.00 0.00 0.60 22.44 702.5 81 0 9 5 0.00 7 0.00 PR-4- 18. 2.1 0.1 0.0 0.1 0.00 75.57 1.38 22.10 0.21 0.00 0.00 0.74 22.31 702.5 32 6 6 9 0.00 9 0.00 PR-4- 3.2 0.1 0.1 0.0 0.0 0.00 85.72 0.09 10.34 0.01 3.14 0.00 0.69 13.50 702.5 8 9 0 0 0.00 3 0.00 PR-4- 702.9 23. 2.3 0.1 0.1 0.4 0.00 78.43 1.50 19.22 0.23 0.00 0.00 0.62 19.45 9 55 9 6 3 0.00 2 0.00 PR-4- 702.9 14. 1.1 0.1 0.0 0.2 0.00 82.57 1.04 15.42 0.16 0.00 0.00 0.82 15.57 9 18 2 3 5 0.00 1 0.00 PR-4- 703.6 32. 5.1 0.7 0.2 0.0 0.00 67.82 1.79 27.85 0.27 1.26 0.88 0.12 29.39 9 12 2 5 3 0.00 6 0.00 PR-4- 703.8 38. 1.7 0.1 0.0 0.0 0.00 90.34 0.01 9.36 0.00 0.10 0.00 0.19 9.46 3 90 3 1 0 0.00 9 0.00 PR-4- 25. 7.3 1.0 0.8 0.0 0.00 47.19 4.59 38.75 6.68 1.00 1.67 0.12 46.43 704 28 5 0 2 0.00 5 0.00 PR-4- 704.3 22. 6.7 3.3 2.7 0.0 0.00 35.23 18.50 22.03 15.41 0.46 8.26 0.10 37.90 2 89 9 8 3 0.00 4 0.56 PR-4- 705.6 25. 5.9 1.6 5.0 0.2 0.00 33.64 46.71 14.71 0.00 1.39 2.89 0.67 16.09 7 62 5 7 6 0.00 8 0.47 PR-4- 705.8 4.5 0.9 0.2 0.4 33.1 0.1 86.40 7.07 1.03 0.85 4.29 0.14 0.00 0.23 5.27 7 8 7 3 1 2 2 0.00

215

Table 3-3: XRD peak data conversion to mineralogy weight percentage taken from PR-1, PR-2, and PR-4 cores. XRD data conversion method provided by XRF Solutions (2015).

Sample Depth Formati Quartz Calcite Dolomite Plagioclase K-spar Wt Illite Wt Kaolinite Pyrite Wt Dawsonite (m) on Wt % Wt % Wt % Wt % % % Wt % % Wt %

PR-1-556.45 Wilrich 57.2 0.5 6.2 1.8 2.1 6.2 24.6 0.6 0.80

PR-1-558.38 Wilrich 69.5 0.7 0.7 1.0 1.6 7.9 16.4 0.9 1.4

PR-1-559.0 Wilrich 75.0 0.5 8.5 0.6 2.2 2.2 9.3 1.0 0.8

PR-1-584.0 Bluesky 87.5 0.7 0.5 1.2 0.7 1.4 5.0 0.9 2.0

PR-1-586.75 Bluesky 30.1 0.3 0.4 2.1 1.4 10.5 53.3 1.0 0.9

PR-1-587.55 Bluesky 77.8 0.6 0.5 1.3 1.7 4.6 12.3 0.5 0.7

PR-1-588.0 Bluesky 93.1 0.2 0.2 0.7 0.8 0.9 3.0 0.2 0.8

PR-1-589.50 Bluesky 92.9 0.3 0.3 0.6 0.6 0.9 3.3 0.4 0.7

PR-2-527 Bluesky 77.83 0.00 0.00 0.00 0.00 11.34 10.49 0.34 0.5

PR-2-527.7 Bluesky 39.02 0.00 0.00 0.00 0.00 25.52 30.56 4.90 1.20

PR-2-532 Bluesky 88.24 0.00 0.00 0.00 0.00 0.00 10.97 0.79 0.90

PR-2-537 Bluesky 68.38 4.73 2.10 0.00 0.00 11.40 13.09 0.30 0.60

PR-2-538 Bluesky 70.95 0.00 0.00 0.00 0.00 13.92 14.50 0.62 1.10

PR-2-544.37 Bluesky 68.90 0.00 0.00 0.00 2.14 13.53 14.52 0.91 0.70

PR-2-545 Bluesky 75.64 0.00 0.00 0.00 0.00 12.19 11.25 0.92 1.10

PR-2-547.58 Bluesky 24.13 39.97 1.09 0.00 7.03 26.23 0.00 0.46 0.70

PR-2-545.33 Debolt 20.11 63.18 0.00 0.00 14.97 0.00 0.00 1.74 1.00

PR-2-551 Debolt 57.73 0.00 0.00 0.00 0.00 28.05 13.50 0.71 0.46

PR-4-648.4 Wilrich 59.60 0.00 0.00 3.83 2.17 17.69 16.63 0.00 0.81

PR-4-648.75 Wilrich 39.34 0.00 0.00 0 3.60 27.64 27.64 0.86 0.75

PR-4-664.4 Bluesky 38.94 8.79 8.08 0 0.00 22.53 20.33 0.00 1.02

PR-4-672.35 Bluesky 57.6 8.2 16.7 0 0.0 6.95 9.86 0.0 0.8

PR-4-672.45 Bluesky 38.49 15.91 10.71 0 0.00 17.46 17.43 0.00 0.83

PR-4-682.95 Bluesky 87.5 0.0 0.0 0 0.0 0.00 10.86 0.0 1.5

PR-4-689 Bluesky 57.26 0.00 0.00 0 0.00 20.72 21.96 0.00 0.69

PR-4-691.75 Bluesky 43.10 0.00 0.00 0 31.97 12.23 12.57 0.00 0.40

PR-4-693.07 Bluesky 60.55 0.00 0.00 0 0.00 18.74 20.61 0.00 1.18

PR-4-698.02 Gething 49.50 0.00 0.00 0 0.00 22.62 25.50 1.38 0.97

PR-4-699.28 Gething 31.11 0.00 0.00 0 0.00 26.82 38.23 1.60 1.29

PR-4-700.7 Gething 62.15 0.00 0.00 0 2.84 19.81 14.91 0.00 0.74

PR-4-704 Debolt 40.47 0.00 0.00 0 0.00 37.72 21.19 0.00 1.26

PR-4-704.53 Debolt 32.48 0.00 0.00 0.41 1.18 38.03 27.51 0.00 1.80

216

Appendix B: Bulk XRD Graphs for PR-1, PR-2 and PR-4 wells

PR-1-586.75m XRD Mineralogy

Figure B-1: XRD bulk sample peak data for PR-1 at 586.75 m depth.

217

PR-1-587.55m XRD Mineralogy

Figure B-2: XRD bulk sample peak data for PR-1 at 587.55 m depth.

218

PR-1-588.0m XRD Mineralogy

Figure B-3: XRD bulk sample peak data for PR-1 at 588.00 m depth.

219

PR-1-589.50m XRD Mineralogy

Figure B-4: XRD bulk sample peak data for PR-1 at 589.50 m depth.

220

PR-2-527.00m XRD Mineralogy

Figure B-5: XRD bulk sample peak data for PR-2 at 527.00 m depth.

221

PR-2-527.70m XRD Mineralogy

Figure B-6: XRD bulk sample peak data for PR-2 at 527.70 m depth.

222

PR-2-532.00m XRD Mineralogy

Figure B-7: XRD bulk sample peak data for PR-2 at 532.00 m depth.

223

PR-2-537.00m XRD Mineralogy

Figure B-8: XRD bulk sample peak data for PR-2 at 537.00 m depth.

224

PR-2-538.00m XRD Mineralogy

Figure B-9: XRD bulk sample peak data for PR-2 at 537.00 m depth.

225

PR-2-538.00m XRD Mineralogy

Figure B-10: XRD bulk sample peak data for PR-2 at 538.00 m depth.

226

PR-2-545.00m XRD Mineralogy

Figure B-11: XRD bulk sample peak data for PR-2 at 545.00 m depth.

227

Figure B-12: XRD bulk sample peak data for PR-4 at 664.40 m depth.

228

PR-4-672.35m XRD Mineralogy

Figure B-13: XRD bulk sample peak data for PR-4 at 672.35 m depth.

229

Figure B-14: XRD bulk sample peak data for PR-4 at 672.45 m depth.

230

PR-4-682.95m XRD Mineralogy

Figure B-15: XRD bulk sample peak data for PR-4 at 682.95 m depth.

231

Figure B-16: XRD bulk sample peak data for PR-4 at 689.00 m depth.

232

Figure B-17: XRD bulk sample peak data for PR-4 at 691.75 m depth.

233

PR-4-693.07m XRD Mineralogy

Figure B-18: XRD bulk sample peak data for PR-4 at 693.07 m depth.

234

APPENDIX C: COPYRIGHT PERMISSION FROM CO-AUTHORS

235

236

Bibliography 1. Alberta Energy Regulator. 2017. Alberta’s energy reserves & supply/demand outlook.

ST98: 1-12 Available from http://www.aer.ca/data-and-publications/statistical-

reports/st98 [accessed May 28, 2017]

2. Archibald, D.A., Glover, J.K., Price, R.A., Farrarr, E., Carmichael, D.M. 1983.

Geochronology and tectonic implications of magmatism and metamorphism, southern

Kootenay arc and neighboring regions, southeastern British Columbia: Part I. Jurassic to

mid-Cretaceous: Canadian Journal of Earth Sciences, v. 20, p. 1891-1913.

3. Armstrong, R.L. 1988. Mesozoic and early Cenozoic magmatic evolution of the Canadian

Cordillera, in Clark, S.P., Burchfiel, B.C., and Suppe, J., eds, Processes in Continental

Lithospheric Deformation: Geological Society of America Special Paper 219, p. 55-91.

4. Baker, J.C., Bai, G.P., Hamilton, P.J., Golding, S.D., Keene, J.B. 1995. Continental-scale

magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-

Sydney basin system, eastern Australia. Journal of Sedimentary Research, v. A65, 522-

520.

5. Benyon, C., Leier A., Leckie D.A., Webb, A., Hubbard, S.M., Gehrels, G. 2014. Provenance

of the Cretaceous Athabasca Oil Sands, Canada: Implications for continental-scale

sediment transport. Journal of Sedimentary Research, v. 84, p.136-143.

6. Benyon, C., Leier, A.L., Leckie, D.A., Hubbard, S.M., Gehrels, G.E. 2016. Sandstone

provenance and insights into the paleogeography of the McMurray Formation from

detrital zircon geochronology, Athabasca Oil Sands, Canada. American Association of

Petroleum Geologists Bulletin, v. 100, no. 2, p. 269-287.

237

7. Bish, D.L. and Reynolds Jr, R.C. 1989. Sample Preparation for X-ray diffraction. In:

Modern Powder Diffraction, Reviews in Mineralogy. Mineralogical Society of America,

Washington, D.C., United States of America, v. 20, ch. 4, p. 73-99.

8. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis,

C.F. 2003. Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology.

Chemical Geology, v. 200, 155-170.

9. Blum, M. and Pecha, M. 2014. Mid-Cretaceous to Paleocene North American drainage

reorganization from detrital zircons. Geology, v. 42, no.7, p. 607-610.

10. Bowring, S.A. and Podosek, F.A. 1989. Nd isotopic evidence from Wopmay Orogen for

2.0-2.4 Ga crust in western North America. Earth and Planetary Science Letters, v. 94, p.

217-230.

11. Box, S.E., Bookstrom, A.A., Anderson, R.G. 2014. Origins of mineral deposits, Belt-Purcell

Basin, United States and Canada: an introduction. Economic Geology, v. 107, no. 6, p.

1081-1088.

12. Bragg, W.H. and Bragg, W.L. 1913. The reflection of x-rays by crystals. Series A,

containing papers of a mathematical and physical character. Proceedings of the Royal

Society of London. London, United Kingdom, v. 88, i.605, p. 428-438.

13. Brindley, G.W. 1980. Quantitative X-ray Mineral Analysis of Clays. In: G.W. Brindley and

G. Brown, eds., Crystal Structures of Clay Minerals and Their X-Ray Identification.

Mineralogical Society, London, p. 411-438.

238

14. Butler, R.M., McNab, G.S., Lo, H.Y. 1981. Theoretical studies on the gravity drainage of

Heavy Oil during in-situ steam heating. The Canadian Journal of Chemical Engineering, v.

59, 455-460.

15. Butler, R.M. 1991. Horizontal wells and steam-assisted gravity drainage. The Canadian

Journal of Chemical Engineering, v. 69, 819-824.

16. Campbell, S.G., Botterill, S.E., Gingras, M.K., MacEachern, J.A. 2016. Event

sedimentation, deposition rate, and paleoenvironment using crowded Rosselia

assemblages of the Bluesky Formation, Alberta, Canada. Journal of Sedimentary

Research, v. 86, p. 380-393.

17. Cant, D.J. 1988. Regional structure and development of the Peace River Arch, Alberta: A

Paleozoic failed-rift system? Bulletin of Canadian Petroleum Geology, v. 36, no. 3, p.

284-295.

18. Cant, D.J. and Stockmal, G.S. 1989. The Alberta foreland basin: Relationship between

stratigraphy and Cordilleran terrane-accretion events. Canadian Journal of Earth

Sciences, v. 26, 1964-1975.

19. Cant, D.J. 1996. Sedimentological and sequence stratigraphic organization of a foreland

clastic wedge, Mannville Group, Western Canada Basin. Journal of Sedimentary

Research, v. 66, no. 6, p. 1137-1147.

20. Carrigy, M.A. 1959. Geology of the McMurray Formation, Part 3, General geology of the

McMurray Area. Alberta Research Council, Memoir 1, p. 1-141. Available from

http://ags.aer.ca/publications/MEM_01.html [accessed May 28, 2017].

239

21. Cheng, H., Liu, Q., Yang, J., Zhang, Q., Frost, R.L. 2010. Thermal behavior and

decomposition of kaolinite-potassium acetate intercalation composite. Thermochimica

Acta, v. 503-504, 16-20.

22. Chung, F.H. 1974. Quantitative interpretation of X-ray diffraction patterns. I. Matrix-

flushing method of quantitative multicomponent analysis; II. Adiabatic principle of X-ray

diffraction analysis of mixtures. Journal of Applied Crystallography. 7, 519-531.

23. Copeland, L.E. and Bragg, R.H. 1958. Quantitative X-ray diffraction analysis. Analytical

Chemistry. 30, 196-206.

24. Coveney, R.M. and Kelly, W.C. 1971. Dawsonite as a daughter mineral in hydrothermal

fluid inclusions. Contributions to Mineralogy and Petrology, 32, 334-342.

25. Dalrymple, R.W., Zaitlin, B.A., Boyd, R. 1992. Estuarine facies models: conceptual basis

and stratigraphic implications. Journal of Sedimentary Petrology, v. 62, p. 1130-1146.

26. Dean, E.W., and Stark, D.D. 1920. A convenient method for the determination of water

in petroleum and other organic emulsions. The Journal of Industrial and Engineering

Chemistry, v.12, no. 5, p. 486-490.

27. Deer, W.A., Howie, R.A., Zussman, J. 1992. An Introduction to the Rock Forming

Minerals, 2nd ed., Longman, London, p. 12.

28. Dickinson, W.R. and Gehrels, G.E. 2003. U-Pb ages of detrital zircons from Permian and

Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications.

Sedimentary Geology, v. 163, p. 29-66.

240

29. Dickinson, W.R. 2008. Impact of differential zircon fertility of granitoid basement rocks

in North America on age populations of detrital zircons and implications for granite

petrogenesis. Earth and Planetary Science Letters, v. 275, p. 80-92.

30. Dickinson, W.R., Gehrels, G.E. 2009. U-Pb ages of detrital zircons in Jurassic eolian and

associated sandstones of the Colorado Plateau: evidence for transcontinental dispersal

and intraregional recycling of sediment. Geological Society of America Bulletin, v. 121,

no. 3-4, 408-433.

31. Dickinson, W.R. and Gehrels, G.E. 2009b. Use of U-Pb ages of detrital zircons to infer

maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic

database. Earth and Planetary Science Letters, v. 288, 115-125.

32. Dix, G.R. 1990. Stages of platform development in the Upper Devonian (Frasnian) Leduc

Formation, Peace River Arch, Alberta Bulletin of Canadian Petroleum Geology, v. 38A,

66-92.

33. Fedo, C.M., Sircombe, K.N., Rainbird, R.H. 2003. Detrital zircon analysis of the

sedimentary record. Reviews in Mineralogy and Geochemistry, v. 53, i. 1, p. 277-303.

34. Fitch, F.J. and Hurford, A.J. 1977. Fission track dating of the Tardree Rhyolite, Co.

Antrim. Proceedings of the Geologists’ Association, v. 88, no. 4, p. 267-274.

35. Gao, Y., Liu, L., Hu, W. 2009. Petrology and isotopic geochemistry of dawsonite-bearing

sandstones in Hailaer basin, northeastern China. Applied Geochemistry, v. 24, 1724-

1738.

241

36. Gehrels, G.E., Blakey, R., Karlstrom, K.E., Timmons, J.M., Dickinson, B., Pecha, M. 2011.

Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona.

Lithosphere, v. 3, no. 3, p. 183-200.

37. Gualtieri, A.F. and Ferrari, S. 2006. Kinetics of illite dehydroxilation. Physics and

Chemistry of Minerals, v. 33, 490-501.

38. Hadlari, T., Swindles, G.T., Galloway, J.M., Bell, K.M., Sulphur, K.C., Heaman, L.M.,

Beranek, L.P., Fallas, K.M. 2015. 1.8 billion years of detrital zircon recycling calibrates a

refractory part of Earth’s sedimentary cycle. PLoS ONE, 10(12), e0144727.

39. Harrington, B.J. 1874. Notes on dawsonite, a new carbonate. Canadian Naturalist, 7,

305-309.

40. Hart, B.S. and Plint, A.G. 1990. Upper Cretaceous warping and fault movement on the

southern flank of the Peace River Arch, Alberta. Bulletin of Canadian Petroleum

Geology, v. 38A, 190-195.

41. den Hartog, S.A.M., Niemeijer, A.R., Spiers, C.J. 2013. Friction on subduction megathrust

faults: beyond the illite-muscovite transition. Earth and Planetary Science Letters, v.

373, 8-19.

42. Hayes, B.J.R., Christopher, J.E., Rosenthal, L., Los, G., McKercher, B., Minken, D.,

Tremblay, Y.M., Fennell, J., Smith, D.G. 1994. Cretaceous Mannville Group of the

Western Canada Sedimentary Basin. In: Mossop, G.D., and Shetsen, I., comps.,

Geological Atlas of the Western Canada Sedimentary Basin, Canadian Society of

Petroleum Geologists and Alberta Research Council. Available from

242

https://ags.aer.ca/publications/chapter-19-cretaceous-mannville-group.htm [Accessed

August 19, 2018].

43. Hein, F.J., Langenberg, W., Kidston, C. 2001. A comprehensive field guide for facies

characterization of the Athabasca Oil Sands, Northeast Alberta. Alberta Geological

Survey, Alberta Energy Regulator, p. 1-11.

44. Hoffman, P.F. 1988. United plates of America, the birth of a craton: Early Proterozoic

assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, v. 16,

p. 543-603.

45. Hoy, T. 1993. Geology of the Purcell Supergroup in the Fernie west-half map area,

Southeastern British Columbia. British Columbia Geological Survey Bulletin, v. 84, p. 1-

161.

46. Hubbard, S.M., Pemberton, S.G., Howard, E.A. 1999. Regional geology and

sedimentology of the basal Cretaceous Peace River Oil Sands deposit, north-central

Alberta. Bulletin of Canadian Petroleum Geology, v.47, no.3, p. 270-297.

47. Hubbard, S.M., Gingras, M.K., Pemberton, S.G., Thomas, M.B. 2002. Variability in wave-

dominated estuary sandstones: implications on subsurface reservoir development.

Bulletin of Canadian Petroleum Geology, v. 50, no. 1, 118-137.

48. Hubbard, S.M., Smith, D.G., Nielsen, H., Leckie, D.A., Fustic, M., Spencer, R.J., Bloom, L.

2011. Seismic geomorphology and sedimentology of a tidally influenced river deposit,

Lower Cretaceous Athabasca oil sands, Alberta, Canada. American Association of

Petroleum Geologists Bulletin, v. 95, no. 7, 1123-1145.

243

49. Jackson Jr., J. Huggins, C.W., Ampian, S.G. 1972. Synthesis and Characterization of

Dawsonite. California Institute of Technology, Bureau of Mines Report of Investigations,

United States Government Depository, United States Department of the Interior Bureau

of Mines, College Park Metallurgy Research Center, College Park, Md, p. 1-14.

50. Jackson, P.C. 1984. Paleogeography of the Lower Cretaceous Manville Group of western

Canada. In: Masters, J.A., eds., Elmworth: Case Study of a Deep Basin Gas Field:

American Association of Petroleum Geologists Memoir 38, p. 49-77.

51. James, R.W. 1965. The Optical Principles of the Diffraction of X-rays. Cornell University

Press, Ithaca, New York, United States of America, pp. 664.

52. Jenkins, R. 1988. X-Ray fluorescence spectrometry. Chemical Analysis: A series of

monographs on analytical chemistry and its applications. Wiley-Interscience Publication,

John Wiley & Sons. New York, United States of America. Volume 99, pp. 175.

53. Jenkins, R. 1989. Instrumentation: Measurement of X-ray powder patterns-camera

methods; Experimental procedures. In: Modern Powder Diffraction, Reviews in

Mineralogy. Mineralogical Society of America, Washington, D.C., United States of

America, v. 20, ch. 2, 3, p. 19-71.

54. Jiménez-Millán, J., Abad, I., Hernández-Puentes, P., Jiménez-Espinosa, R. 2015. Influence

of phyllosilicates and fluid-rock interaction on the deformation style and mechanical

behavior of quartz-rich rocks in the Carboneras and Palomares fault areas (SE Spain).

Clay Minerals, v. 50, 619-638.

55. Johnston, S.T. 2008. The Cordilleran ribbon continent of North America. Annual Review

of Earth and Planetary Sciences, v. 36, p. 495-530.

244

56. Jones III, J.V., Daniel, C.G., Doe, M.F. 2015. Tectonic and sedimentary linkages between

the Belt-Purcell basin and southwestern Laurentia during the Mesoproterozoic, ca. 1.60-

1.40 Ga. Lithosphere, v. 7, no. 4, p. 465-472.

57. Klug, H.P. and Alexander, L.E. 1974. X-ray Diffraction Procedures, 2nd edition. John Wiley

& Sons, New York, p. 365-368; 549-553.

58. Komar, P.D. 2007. The entrainment, transport and sorting of heavy minerals by waves

and currents. In: Mange, M.A. and Wright, D.T., eds., Heavy Minerals in Use.

Developments in Sedimentology, Elsevier, Amsterdam, v. 58, p. 3-48.

59. Leckie, D.A., and Smith, D.G. 1992. Regional setting, evolution and depositional cycles of

the Western Canada foreland basin. In: Macqueen, R.W., and Leckie, D.A., eds., Foreland

basins and Fold belts: American Association of Petroleum Geologists Memoir 55, p. 9-

46.

60. Leier, A. and Gehrels, G. 2011. Continental-scale detrital zircon provenance signatures in

Lower Cretaceous strata, western North America. Geology, v. 39, no. 4, p. 399-402.

61. Lin, I.J. and Nadiv, S. 1979. Review of phase transformation and synthesis of inorganic

solids obtained by mechanical treatment (mechanochemical reactions). Materials

Science and Engineering, 39, 193-209.

62. Loughan, F.C. and See, G.T. 1967. Dawsonite in the Greta Coal Measures at

Muswellbrook, New South Wales. American Mineralogist, v. 52, 1216-1219.

63. Ludwig, K.R. 1998. On treatment of concordant Uranium-Lead ages. Geochemica et

Cosmochimica Acta, v. 62, p. 665-676.

245

64. Mackay, D.A. 2014. A subsurface sedimentological analysis of tide-dominated deposits

in the Bluesky Formation (Early Cretaceous), Peace River Area, West-Central Alberta.

Unpublished Ph.D. thesis, Queen’s University, Kingston, Ontario, p. 1-392.

65. MacKenzie, R.C. 1970. Differential thermal analysis, Volume 1. Academic Press Inc.,

London, United Kingdom, pp. 751.

66. Marillo-Sialer, E., Woodhead, J., Hergt, J., Greig, A., Guillong, M., Gleadow, A., Evans, N.,

Paton, C. 2014. The zircon ‘matrix effect’: evidence for an ablation rate control on the

accuracy of U-Pb age determinations by LA-ICP-MS. Journal of Analytical Atomic

Spectrometry, v. 29, p. 981-989.

67. Matthews, W.A., and Guest, B. 2016. A practical approach for collecting large-n detrital

zircon U-Pb data sets by Quadrupole LA-ICP-MS. Geostandards and Geoanalytical

Research, v. 41, no. 2, p. 161-180.

68. Matthews, W.A., Guest, B., Coutts, D., Bain, H., Hubbard, S. 2017. Detrital zircons from

the Nanaimo basin, Vancouver Island, British Columbia: An independent test of Late

Cretaceous to Cenezoic northward translation. Tectonics, American Geophysical Union,

v. 36, i. 5, p. 854-876.

69. McLean, J.R. 1977. The Cadomin Formation: stratigraphy, sedimentology and tectonic

implications. Bulletin of Canadian Petroleum Geology, v. 25, 792-827.

70. Mildragovic, D., Thorkelson, D.J., Davis, W.J., Marshall, D.D., Gibson, H.D. 2011. Evidence

for late Mesoproterozoic tectonism in northern Yukon and the identification of

Grenville-age tectonothermal belt in western Laurentia. Terra Nova, v. 23, p. 307-313.

246

71. Monger, J.W.H., and Price, R.A. 1979. The geodynamic evolution of the Canadian

Cordillera: Progress and problems. Canadian Journal of Earth Sciences, v. 16, 770-791.

72. Moore, J., Adams, M., Allis, R., Lutz, S., Rauzi, S. 2005. Mineralogical and geochemical

consequences of the long-term presence of CO2 in natural reservoirs: an example from

the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chemical Geology, c.

217, 365-385.

73. Mosser-Ruck, R., Devineau, K., Charpentier, D., Cathelineau, M. 2005. Effects of ethylene

glycol saturation protocols on XRD patterns: a critical review and discussion. Clays and

Clay Minerals, v. 53, no. 6, 631-638.

74. Navias, A.L. 1925. Quantitative determination of the development of mullite in fired

clays by and X-ray method. Journal of the American Ceramic Society. 8, 296-302.

75. O’Connell, S.C. 1988. The distribution of the Bluesky facies in the region overlying the

Peace River Arch, northwestern Alberta. In: James, D.P. and Leckie, D.A., eds.,

Sequences, Stratigraphy, Sedimentology: Surface and Subsurface, Canadian Society of

Petroleum Geologists, Memoir 15, p. 387-400.

76. O’Connell, S.C. 1990. The development of the Lower Cretaceous Peace River

Embayment as determined from Banff and Pekisko Formation depositional patterns.

Bulletin of Canadian Petroleum Geology, v. 38A, 93-114.

77. O'Connell, S.C. 1994. Geological history of the Peace River Arch, in: Geological Atlas of

the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian

Society of Petroleum Geologists and Alberta Research Council,

247

URL http://ags.aer.ca/publications/chapter-28-geological-history-of-the-peace-river-

arch.htm, [May 6, 2018].

78. Paces, J.B. and Miller, Jr., J.D. 1993. Precise U-Pb ages of Duluth Complex and related

mafic intrusions, Northeastern Minnesota: Geochronological insights to physical,

petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1

Ga Midcontinent Rift System. Journal of Geophysical Research, v. 98, no. B8, p. 13997-

14013.

79. Palache, C., Berman, H., Frondel, C. 1951. System of mineralogy, 7 eds., John Wiley &

Sons, New York, United States of America, v. 2, pp. 1124.

80. Pana, D.I. and van der Pluijm, B.A. 2015. Orogenic pulses in the Alberta Rocky

Mountains: Radiometric dating of major faults and comparison with the regional

tectono-stratigraphic record. Geological Society of America Bulletin, v.127, no. ¾, p.

480-502.

81. Park, H., Barbeau, D.L., Jr., Rickenbacker, A., Bachmann-Krug, D., Gehrels, G. 2010.

Application of foreland basin detrital-zircon geochronology to the reconstruction of the

southern and central Appalachian orogen. The Journal of Geology, v. 118, 23-44.

82. Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R. 2010.

Improved laser ablation U-Pb zircon geochronology through robust downhole

fractionation correction. Geochemistry Geophysics Geosystems, v. 11, p. 1-36.

83. Petrus, J.A., and Kamber, B.S. 2012. VizualAge: A novel approach to laser ablation ICP-

MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, v.

36, p. 247-270.

248

84. Pisarska-Jamroży, M., van Loon, A.J., Woronko B. 2015. Sorting of heavy minerals in

sediments deposited at a high accumulation rate, with examples from sandurs and an

ice-marginal valley in NW Poland. GFF, v. 137, no. 2, p. 126-140.

85. Potts, P.J. 2008. Introduction, Analytical Instrumentation and Application Overview. In:

Portable X-ray Fluorescence Spectrometry, Capabilities for In Situ Analysis. RSC

Publishing, the Royal Society of Chemistry, Cambridge, United Kingdom. Ch. 1, p. 1-12.

86. Powers, M.C. 1953. A new roundness scale for sedimentary particles. Journal of

Sedimentary Petrology, v. 23, no. 2, 117-119.

87. Price, R.A. 1983. The Rocky Mountain Belt of Canada: Thrust faulting, tectonic wedging,

and delamination of the lithosphere. Geological Association of Canada, Programs with

Abstracts, v. 8, 55.

88. Price, R.A. 1986. The southeastern Canadian Cordillera: thrust faulting, tectonic

wedging, and delamination of the lithosphere. Journal of Structural Geology, v. 8, no. 3-

4, 239-254.

89. Quinn, G.M., Hubbard, S.M., Putnam, P.E., Matthews, W.A., Daniels, B.G., Guest, B.

2018. A Late Jurassic to Early Cretaceous record of orogenic wedge evolution in the

Western Interior basin, USA and Canada. Geosphere, v. 14, no. 3, 1187-1206.

90. Rainbird, R.H., Hearnan, L.M., Young, G. 1992. Sampling Laurentia: Detrital zircon

geochronology offers evidence for an extensive Neoproterozoic river system originating

from the Grenville orogen. Geology, v. 20, no. 4, 351-354.

91. Rainbird, R.H., McNicoll, V.J., Thériault, R.J., Heaman, L.M., Abbott, J.G., Long, D.G.F.,

Thorkelson, D.J. 1997. Pan-continental river system draining Grenville orogen recorded

249

by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks,

northwestern Canada. The Journal of Geology, v. 105, 1-17.

92. Raines, M.K., Hubbard, S.M., Kukulski, R.D., Leier, A.L., Gehrels, G.E. 2013. Sediment

dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and

lowermost Cretaceous strata, Alberta Basin, Canada. Geological Society of America

Bulletin, v. 125, no. 5/6, p. 741-755.

93. Ranger, M.J., and Pemberton, S.G. 1997. Elements of a stratigraphic framework for the

McMurray Formation in South Athabasca, Alberta. In: Pemberton, S.G., and James, D.P.,

eds., Petroleum Geology of the Cretaceous Mannville Group, Western Canada, Canadian

Society of Petroleum Geologists, Memoir 18, p. 263-291.

94. Rosenblum, S. 1958. Magnetic susceptibilities of minerals in the Frantz Isodynamic

Magnetic Separator. The American Mineralogist, v. 43, p. 170-173.

95. Ross, G.M., Parrish, R.R., Villeneuve, M.E., Bowring, S.A. 1991. Geophysics and

geochronology of the crystalline basement of the Alberta Basin, western Canada.

Canadian Journal of Earth Science, v. 28, p. 512-522.

96. Ross, G.M. and Villeneuve, M. 2003. Provenance of the Mesoproterozoic (1.45 Ga) Belt

basin (western North America): Another piece in the pre-Rodinia paleogeographic

puzzle. Geological Society of America Bulletin, v. 115, no. 10, p. 1191-1217.

97. Rottenfusser, B.A. 1982. Diagenetic Sequence, Oil Migration, and Reservoir Quality in

Peace River Oil Sands, Northwestern Alberta (abs.). American Association of Petroleum

Geologists Bulletin, v. 66, p.626.

250

98. Rottenfusser, B.A. 1984. Sedimentation in the Lower Cretaceous Gething Basin, Alberta.

Abstract in: Stott, D.F., and Glass, D.J., eds., The Mesozoic of Middle North America:

Canadian Society of Petroleum Geologists, Memoir 9, p. 562.

99. Rudkin, R.A. 1964. Lower Cretaceous. In: McCrossan, R.G. and Glaister, R.P., eds.,

Geologic History of Western Canada, Alberta Society of Petroleum Geologists, p. 156-

168.

100. Saylor, J.E. and Sundell, K.E. 2016. Quantifying comparison of large detrital

geochronology data sets. Geosphere, v. 12, no. 1, 203-220.

http://easd.geosc.uh.edu/saylor/dzstats.php [accessed May 28, 2017].

101. Schmitz, M.D. and Bowring, S.A. 2001. U-Pb zircon and titanite systematics of the Fish

Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to

young volcanic rocks. Geochimica et Cosmochimica Acta, v. 65, no. 15, p. 2571-2587.

102. Silver, L. 1963. The relation between radioactivity and discordance in zircons. Nuclear

Geophysics, Nuclear Science Series, National Academy of Sciences-National Research

Council, pub. 1075, no.38, p.34-52.

103. Sirbescu, M-L.C. and Nabelek, P.I. 2003. Dawsonite: an inclusion mineral in quartz from

the Tin Mountain pegmatite, Black Hills, South Dakota. American Mineralogist, v. 88,

1055-1060.

104. Smith, D.G. 1994. Paleogeographic evolution of the Western Canada Foreland Basin. In:

Mossop, G.D., and Shetsen, I., comps., Geological Atlas of the Western Canada

Sedimentary Basin, Canadian Society of Petroleum Geologists and Alberta Research

Council. Available from

251

http://ags.aer.ca/document/Geological%20Atlas%20of%20the%20Western%20Canada

%20Sedimentary%20Basin%20PDF%20Files/chapter_17.pdf [accessed May 28, 2017].

105. Snyder R.L. and Bish, D.L. 1989. Quantitative Analysis. In: Modern Powder Diffraction,

Reviews in Mineralogy. Mineralogical Society of America, Washington, D.C., United

States of America, v. 20, ch. 5, p. 101-144.

106. Stevenson, J.S. and Stevenson, L.S. 1964. The petrology of Dawsonite at the type

locality, Montreal. The Canadian Mineralogist, 8, 249-252.

107. Villeneuve, M.E., Ross, G.M., Thériault, R.J., Miles, W., Parrish, R.R., Broome, J. 1993.

Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta

Basin, Western Canada. Geological Survey of Canada Bulletin, v. 447, p. 1-95.

108. Voskov, D, Zaydullin, R, Lucia, A. 2016. Heavy oil recovery efficiency using SAGD, SAGD

with propane co-injection and STRIP-SAGD. Computers and Chemical Engineering, v. 88,

115-125.

109. Wadell, H. 1932. Volume, shape and roundness of rock particles. The Journal of

Geology, v. 40, no. 5, 443-451.Wells, O.C. 1984. Scanning electron microscopy. McGraw-

Hill Inc. New York, United States of America, p. 1-20.

110. Whitmeyer, S.J. and Karlstrom, K.E. 2007. Tectonic model for the Proterozoic growth of

North America. Geosphere, v. 3, no. 4, p. 220-259.

111. Williams, G.K. 1958. Influence of the Peace River Arch on Mesozoic Strata. In: Scott,

J.C., eds., Symposium on the Peace River Arch, Alberta Society of Petroleum Geologists

Journal, v. 6, no. 8, p. 74-81.

252

112. Williams, G.D. 1963. The Mannville Group (Lower Cretaceous) of Central Alberta.

Bulletin of Canadian Petroleum Geology, v. 11, no. 4, 350-368

113. Yuan, J.Y. and McFarlane, R. 2011. Evaluation of steam circulation strategies for SAGD

startup. Journal of Canadian Petroleum Technology, v. 50(1), 20-32.

114. Zhou, S., Huang, H., Liu, Y. 2008. Biodegradation and origin of oil sands in the Western

Canada Sedimentary Basin. Petroleum Science, v.5, p. 87-94.

253