Provenance and Mineralogy of Sediments from the Early Cretaceous Bluesky Formation, Peace River Oil Sands, Alberta, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Provenance and Mineralogy of Sediments from the Early Cretaceous Bluesky Formation, Peace River Oil Sands, Alberta, Canada University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-09-12 Provenance and Mineralogy of Sediments from the Early Cretaceous Bluesky Formation, Peace River Oil Sands, Alberta, Canada McKinnon, Lynsey McKinnon, L. (2018). Provenance and Mineralogy of Sediments from the Early Cretaceous Bluesky Formation, Peace River Oil Sands, Alberta, Canada (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/32927 http://hdl.handle.net/1880/107751 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Provenance and Mineralogy of Sediments from the Early Cretaceous Bluesky Formation, Peace River Oil Sands, Alberta, Canada by Lynsey McKinnon A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA SEPTEMBER, 2018 © Lynsey McKinnon 2018 Abstract The provenance of sediment in the McMurray Formation of the Athabasca Oil Sands has been widely studied, while the Bluesky Formation of the Peace River Oil Sands which holds significant deposits of heavy oil, has not been studied to the same extent. Mineralogy of the Bluesky Formation is also relatively poorly understood in the area and is important to evaluate due to steam-assisted gravity drainage methods used to optimize production. U-Pb geochronology ages from four samples were collected from the McMurray Formation and the Bluesky Formation. McMurray samples yielded similar results of sediment provenance determined in past studies, while the Bluesky Formation showed similarities and new date populations in comparison to previous data. The lower PR-1-Lagoon facies yielded age ranges of detrital zircons distributed from east-southeast-to-northwest and northwest-to-southeast drainage systems, while the lower secondary PR-1-Wave facies resulted in age ranges that changed to a more local southeast-to-northwest drainage system and northwest-to-southeast system from the Western Cordillera to a reintegration of the east-southeast-to-northwest and northwest-to- southeast drainage systems in the upper secondary PR-1-Wave facies due to transgressions and regressions of the Boreal sea and basin partitioning between the Assiniboia and Edmonton channels. Mineralogical assemblages of the Bluesky Formation was also studied using a combination of qualitative and quantitative analytical procedures including SEM, XRF and XRD, which determined that there is a complex mineralogy in comparison to the McMurray Formation. Kaolinite was the largely dominant clay type that fills pore space due to its vermicular form, while dawsonite was also abundant in large clusters that limits porosity. Quantitative results of ii XRD and XRF should be used together to evaluate mineral weight percentage as XRF shows a more reliable yield in data that isn’t effected by surface area of grains as much as XRD. Fractured framework grains and development of intragranular porosity suggests mechanical and chemical weathering and grain alteration, which are characteristic of faults in the area and hydrothermal fluid influx. Oil wells producing with the aid of steam assisted gravity drainage (SAGD) techniques should be monitored as porosity-decreasing dawsonite and kaolinite can form at temperatures up to and over 200ᵒC, which will impact overall production and operation of the well. iii Acknowledgements I would like to extend sincere gratitude to my supervisor, Dr. Ronald Spencer, for his mentorship. His insight and encouragement during the past 4 years has been invaluable. I would also like to thank members of the Department of Geoscience for the following assistance: Dr. Sytle Antao for her encouragement and education on analysis and procedures of mineralogy; William Matthews for his contributions to my work and multiple discussions about procedures and the history of North America; Steven Hubbard for his advice on how to improve my work on multiple occasions; Mickey Horvath for his assistance in preparing samples for SEM analysis; Jordan Curkan for her help in cleaning and organizing all of my samples; and Christopher Debuhr for helping with SEM analysis. This project would not have been possible without the generous financial aid provided by Shell Canada and Suncor Energy. Thank you also to Mark Barton (Shell Canada), Victoria Walker (Shell Canada/Canadian Natural Resources Limited), and Pierre Malhame (Shell Canada/Canadian Natural Resources Limited) for their geological knowledge of the area, giving additional information to aid the project, and critiquing interpretations of data. Finally I would like to thank my friends and family for their emotional support. Thank you to my father Douglas, my mother Eunice and my brother Tim for their continuous financial support and words of encouragement during this process in the best and worst of times. iv Table of Contents ABSTRACT………………………………………………………………………………………………………………………………….ii ACKNOWLEDGEMENTS……………………………………………………………………………………………………………..iv TABLE OF CONTENTS………………………………………………………………………………………………………………….v LIST OF FIGURES……………………………………………………………………………………………………………………….vii CHAPTER ONE: INTRODUCTION…………………………………………………………………………………………………1 1.1 Statement of Contribution…………………………………………………………………………………………………..2 1.2 References…………………………………………………………………………………………………………………………..3 CHAPTER TWO: A COMPARISON OF SEDIMENT PROVENANCE OF THE BLUESKY FORMATION, PEACE RIVER OIL SANDS TO THE MCMURRAY FORMATION, ATHABASCA OIL SANDS IN NORTHERN ALBERTA, CANADA………………………………………………………………………………………………….5 2.1 Abstract……………………………………………………………………………………………………………………………….5 2.2 Introduction…………………………………………………………………………………………………………………………6 2.3 Geological History………………………………………………………………………………………………………………..7 2.4 Study area and Peace River Facies Differentiation……………………………………………………………..10 2.5 Analytical Methodology……………………………………………………………………………………………………..12 2.6 Provenance Sources of Detrital Zircons………………………………………………………………………………14 2.7 Results……………………………………………………………………………………………………………………………….16 2.8 Discussion………………………………………………………………………………………………………………………….18 2.8.1 AOS-1 Samples…………………………………………………………………………………………………….18 2.8.2 Bluesky Samples………………………………………………………………………………………………….19 2.9 Conclusion………………………………………………………………………………………………………………………….26 2.10 References……………………………………………………………………………………………………………………….38 CHAPTER THREE: THE PEACE RIVER OIL SANDS: A COMPLEX MINERALOGICAL EVALUATION OF THE BLUESKY FORMATION USING SEM, XRF AND XRD ANALYSIS……………………………………………..49 3.1 Abstract……………………………………………………………………………………………………………………………..49 3.2 Introduction……………………………………………………………………………………………………………………….50 3.3 SEM, XRF and XRD Technology…………………………………………………………………………………………..53 3.4 Dawsonite………………………………………………………………………………………………………………………….55 v 3.5 Peace River Study Area………………………………………………………………………………………………………56 3.6 Methodology……………………………………………………………………………………………………………………..56 3.7 Results……………………………………………………………………………………………………………………………….59 3.7.1 SEM……………………………………………………………………………………………………………………..59 3.7.2 XRF………………………………………………………………………………………………………………………62 3.7.3 XRD……………………………………………………………………………………………………………………..64 3.8 Discussion………………………………………………………………………………………………………………………….65 3.8.1 SEM Grain Analysis………………………………………………………………………………………………65 3.8.2 XRF………………………………………………………………………………………………………………………69 3.8.3 XRD……………………………………………………………………………………………………………………..71 3.9 Comparison to McMurray Formation…………………………………………………………………………………73 3.10 Drilling Implications………………………………………………………………………………………………………….74 3.11 Conclusion……………………………………………………………………………………………………………………….75 3.12 References……………………………………………………………………………………………………………………..128 CHAPTER FOUR: CONCLUSION……………………………………………………………………………………………….137 APPENDIX A: DATA TABLES…………………………………………………………………………………………………….140 APPENDIX B: BULK XRD GRAPHS FOR PR-1, PR-2 AND PR-4 WELLS….…………………………………….217 APPENDIX C: COPYRIGHT PERMISSION FROM CO-AUTHORS….………………………………………………235 BIBLIOGRAPHY……………………………………………………………………………………………………………………….237 vi List of Figures Figure 2-1: Study area and PR-1 well used for sampling.………………………………………………………….29 Figure 2-2: Sediment provenance map of North America………………………………………………………..30 Figure 2-3: Stratigraphic column of the Lower Cretaceous……………………………………………………….31 Figure 2-4: Well log for PR-1 well……………………..………………………………………………………………………32 Figure 2-5: Core photo of facies boundary in the Bluesky Formation of PR-1 well………..………….33 Figure 2-6: Heavy mineral beds in the McMurray Formation AOS-1 samples…………………………..34 Figure 2-7: Probability-density plot data compared to past studies……………………………….………..35 Figure 2-8: Map of hypothesized Alberta sediment drainage pathways during the Upper McMurray Formation, PR-1-Lagoon and upper PR-1-Wave facies deposition…………………………..36 Figure 2-9: Map of hypothesized Alberta sediment drainage pathways during the lower PR-1- Wave facies deposition…………………………………………………………………………………………………………….37 Figure 3-1: Study area and Peace River well locations………………………………………………………………77 Figure 3-2: Sediment provenance map of North America…………………………………………………………78 Figure 3-3: Stratigraphic column of the Lower Cretaceous……………………………………………………….79
Recommended publications
  • Exploration Analysis
    EXPLORATION ANALYSIS CARDIUM FORMATION Current Situation The Cardium Formation is not an exploration target in B.C. Where it has been tested, it is as a secondary target, and often with a straddle drillstem test run on the basis of a prospective well log signature. The formation has thus been open to drilling fluids for an extended period of time, and wellbore damage is likely to be severe. This situation is exacerbated by lack of reservoir “sweet spots”, shallow drilling depths and subnormal formation pressures. Velvet Exploration undertook an exploration program in 2000/2001 for fractured Cardium shoreface sandstones in the Copton-Narraway area of Alberta, in the southeastern corner of Map 2. There do not appear to be a substantial number of new Cardium wells on production in this area, and Velvet’s successor, El Paso, is not drilling new wells on the play. Tight Gas Potential The Cardium presents an attractive in-place gas resource, with massive sandstones of substantial thickness distributed continuously over a large area (Map 2) (Table 1). Because of its shallow burial depth, there has been less reservoir degradation by compaction than for deeper tight gas reservoirs. However, low reservoir pressures reduce in-place gas volumes, particularly within the subnormally-pressured Deep Basin. By qualitative comparison with the Cadotte and Spirit River, we speculate an in-place gas resource of 1-3 BCF/section. Cardium tight gas will likely be a secondary, uphole target to be exploited in conjunction with deeper tight gas plays. Locally, Cardium gas production may occur where: • operators stumble upon conglomeratic sweet spots, or • fracture-enhanced reservoir sections are defined in the Foothills, where the Cardium section is thickest.
    [Show full text]
  • Stratigraphic Trends in the Gething Formation
    Province of British Columbia ~’ MINERAL RESOURCES DIVISION Ministry of Energy, Mines and Geological Survey Branch Petroleum Resources STRATIGRAPHIC TRENDS IN THE GETHING FORMATION By A. Legun A Contribution to the Canada/British Columbia Mineral Development Agreement, 1985-1990 OPENFILE1990-33 Canadian Cataloging in Publication Data Legu”, Andrew s., 1949- Stratigraphic trends in the Gething Formation (Open file, ISSN 08353530 ; 1990-33) “A contribution to the Canada/British Columbia Mineral Devc,om”ent Am’eement, 19X5-1990.” VICTORIA BRITISH COLUMBIA CANADA 1. &thing Formation (B.C.) 2. Coal - Geology British Columbia - Peace River (Regional district) 3. Geology, March 1991 Stratigraphic. 4. Geology, Economic-British Columbia - l’eace River (Regional district) I. British Columbia. Geological Survey Branch. II. Canada/British Columbia Mineral Devclopmcnt Agreement. III. Title. IV. Series: yg3;f’ (British Columbia. Geological Survey Branch) ; QE187.443 1991 553.2’4’0971187 c91-092142-3 TABLE OF CONTENTS Page INTROD.UC’I’ION.. ..........................................1 General .........................................................1 Acknowledgments....................................... 1 GEOLOGY.. ......................................................3 Stratigraphic Trends.................................... 4 Chamberlain Member.. ........................4 Bullmoose Member ..............................7 Gaylard Member.. .................................7 Sourcesof Data.. ...................................8 SELECTED BIBLIOGRAPHY.. ...................9
    [Show full text]
  • Horn River Basin Aquifer Characterization Project
    HORN RIVER BASIN AQUIFER CHARACTERIZATION PROJECT GEOLOGICAL REPORT Prepared for: HORN RIVER BASIN PRODUCERS GROUP GEOSCIENCE B.C. January, 2010 Petrel Robertson Consulting Ltd. 500, 736 – 8th Avenue S.W. Calgary, Alberta T2P 1H4 www.petrelrob.com Petrel Robertson Consulting Ltd. bh/Horn River Basin Aquifer Project/lps EXECUTIVE SUMMARY Study of subsurface stratigraphy in the Horn River Basin shows that three aquifers are potentially capable of supplying water for shale gas well completion operations (fracs), and accepting injection of spent frac fluids: • Mississippian Debolt-Rundle carbonate platform • Upper Mississippian Mattson sandstones • Basal Cretaceous sandstones The Debolt-Rundle carbonate platform can be subdivided into four units mappable across the basin – lower, middle, and upper Rundle, capped by the Debolt. Substantial reservoir quality occurs primarily at the top of the platform, as the result of leaching and dolomitization beneath the pre-Cretaceous unconformity (the “Detrital Zone”). Upper Rundle and Debolt strata appear to be most susceptible to reservoir enhancement, and thus the highest-quality and most continuous reservoir occurs along the upper Rundle and Debolt subcrops in the eastern part of the Horn River Basin. Mattson deltaic to marginal marine sandstones occur only along the extreme western flank of the basin, and thicken rapidly west of the Bovie Fault Zone, into the Liard Basin. Reservoir quality ranges from poor to excellent, but well control is not sufficient for systematic mapping. The Mattson may offer
    [Show full text]
  • AG412&3 D05 FINAL.Indd
    Atlantic Geology 187 Atlantic Universities Geological Conference 2005 ABSTRACTS October 27 – 29, 2005 Conference hosted by: The Alexander Murray Geology Club Memorial University of Newfoundland St. John’s, Newfoundland Again this year, abstracts from the annual Atlantic Universities Geological Conference (AUGC) are pub- lished in Atlantic Geology. This provides a permanent record of the abstracts, and also focuses attention on the excellent quality of the presentations and posters and the interesting and varied geoscience that they cover. The abstracts are published with financial assistance from APICS. THE EDITORS Atlantic Geology 41, 186–194 (2005) 0843-5561|05|020186–08$2.20|o 188 AUGC Abstracts – 2005 Atlantic Geology 189 Coupling of salt dynamics and sedimentary basin detailed cross sections throughout the area, structure maps and evolution on passive margins: implications for isopach maps, along with a variety of other maps. A study of the offshore Nova Scotia hydrocarbon exploration capping sands and the underlying Doig shales would improve the technical understanding of the area surrounding the Doig Sheila Ballantyne reservoir by means of core analysis and detailed photographs Department of Earth Sciences, Dalhousie University, of contacts and both depositional and biological sedimentary Halifax, NS B3H 3J5 features. Ichnology may play a role in helping to create a depo- sitional model for the capping sands of the Doig shales and The high economic risk in hydrocarbon exploration on the the related Doig thick sand bodies. This would benefit future Scotian Slope, offshore Nova Scotia, is caused in part by the models proposed for the ATSBs. complex salt structures that have developed in this area.
    [Show full text]
  • Recognition of Wave-Influenced Deltaic and Bay-Margin Sedimentation, Bluesky Formation, Alberta Scott E
    Recognition of Wave-Influenced Deltaic and Bay-Margin Sedimentation, Bluesky Formation, Alberta Scott E. Botterill1, S. Gordon Campbell2, and Murray K. Gingras2 1Murphy Oil Company, 2Ichnology Research Group, University of Alberta Summary The combination of sedimentology and ichnology provides for more refined facies identification, and in turn allows for more robust palaeoenvironmental interpretations (e.g. Seilacher, 1978; Pemberton et al., 1982; MacEachern et al., 2010). In order to identify the palaeodepositional affinity and better understand reservoir architecture within a region of the Peace River oil sands, detailed facies analysis focusing on lithology, process sedimentology, and ichnology was performed on a 40 core dataset (Fig. 1). This analysis led to the identification of sixteen distinct facies, five facies associations (FA1-FA5), and a complex vertical and lateral preservation of sedimentation. Importantly, the presence of sediments possessing a wave-dominated character with associated marine-indicative ichnological assemblages led to the identification of previously un-recognized wave-dominated, marine-embayment to open marine deltaic and shoreface deposition. Introduction The Early Cretaceous Bluesky Formation is comprised of marginal-marine to marine siliciclastic sediments, and is the primary host to substantial subsurface bitumen deposits of the Peace River oil sands (~70 billion barrels in place, Energy and Resources conservation board, 2013). The preserved record of sedimentation is characterized by a complex vertical and lateral architecture, making lithostratigraphic subsurface correlation impractical. With respect to depositional affinity, a range of environments have been recognized within close proximity to this study, including wave-dominated estuary (Hubbard et al., 1999; 2004), tide-dominated estuary to deltaic (Caplan et al., 2007; Mackay and Dalrymple, 2005; 2011), and wave-dominated deltaic (Botterill et al., 2015; Campbell et al., in-press).
    [Show full text]
  • Variability in Wave-Dominated Estuary Sandstones: Implications on Subsurface Reservoir Development
    BULLETIN OF CANADIAN PETROLEUM GEOLOGY VOL. 50, NO. 1 (MARCH, 2002), P. 118-137 Variability in wave-dominated estuary sandstones: implications on subsurface reservoir development S.M. HUBBARD1 M.K. GINGRAS Shell Canada Limited Department of Geology 400 - 4 Avenue SW University of New Brunswick Calgary, AB T2P 2H5 Fredericton, NB E3B 5A3 S.G. PEMBERTON M.B. THOMAS Ichnology Research Group Shell Canada Limited Department of Earth and Atmospheric Sciences 400 - 4 Avenue SW University of Alberta Calgary, AB T2P 2H5 Edmonton, AB T6G 2E3 ABSTRACT Although ancient estuarine deposits are generally characterized by complex facies distributions, their associated sand- stones commonly constitute prolific hydrocarbon reservoirs. Ebb-tidal delta, barrier-bar, tidal-inlet, flood-tidal delta, tidal- channel, tidal-flat and bayhead delta sub-environments can all be associated with sandstones that may potentially have excellent reservoir properties. Distinguishing between depositionally distinctive sandstones is crucial to the accurate reserve and deliverability assessment of reservoirs within estuarine systems. This knowledge can help plan an optimum development strategy for a hydrocarbon play. In this study, the quality and distribution of sandstones from wave-dominated estuaries is compared using subsurface data from the Lower Cretaceous Bluesky Formation of the Peace River area in Alberta. Modern sediments from Willapa Bay, Washington, are used to support observations made in the Bluesky Formation, and fill in information gaps inherent with subsurface datasets. The modern and fossil estuarine systems studied show that tidal-inlet and barrier-bar sandstones are characterized by the best reservoir qualities, followed by tidal delta, bayhead delta, tidal-channel, and lastly tidal-flat sandstones.
    [Show full text]
  • Technical Report 51-101 Strata Oil Cadotte
    TECHNICAL REPORT EVALUATION OF BITUMEN RESOURCES CADOTTE CENTRAL AND WEST LEASES Submitted to: STRATA OIL AND GAS INC., Date May 10, 2013 Norwest Corporation Suite 2700, 411 – 1st Street, S.E. Calgary, Alberta T2G 4Y5 Tel: (403) 237-7763 Fax: (403) 263-4086 Email [email protected] www.norwestcorp.com TABLE OF CONTENTS 1 EXECUTIVE SUMMARY ............................................................................................... 1-1 2 INTRODUCTION ............................................................................................................ 2-1 3 GEOLOGY ..................................................................................................................... 3-1 4 DATA AVAILABILITY .................................................................................................... 4-1 5 GEOLOGICAL INTERPRETATION ............................................................................... 5-1 6 IN PLACE RESOURCE CLASSIFICATION AND ESTIMATION METHODOLOGY ...... 6-1 6.1 COGH ASSURANCE OF EXISTENCE CLASSIFICATION ............................................ 6-1 6.2 DISCOVERED RESOURCE ESTIMATION APPROACH ................................................ 6-2 6.3 DETERMINISTIC ESTIMATE OF THE PETROLEUM INITIALLY IN-PLACE (PIIP) ............. 6-3 6.3.1 Input Parameters ................................................................................ 6-3 7 RECOVERABLE RESOURCE CLASSIFICATION AND ESTIMATION METHODOLOGY ..........................................................................................................
    [Show full text]
  • Paper 60-1 the SUBSURFACE GETHING and BLUESKY
    Paper 60-1 THE SUBSURFACE GETHING AND BLUESKY FORMATIONS OF NORTHEASTERN BRITISH COLUMBIA D. C. Pugh Price 50 cents 1960 GEOLOGICAL SURVEY OF CANADA CANADA PAPER 60-1 THE SUBSURFACE GE THING AND BLUESKY FORMATIONS OF NORTH­ EASTERN BRITISH COLUMBIA By D. C. Pugh DEPARTMENT OF MINES AND TECHNICAL SURVEYS CAN A _D A CONTENTS Page Introduction. 1 Acknowledgements . 1 References ............................. : . 1 Stratigraphy. 2 Gething formation ............... ". 2 Blue sky formation. 6 Structural relations. 9 Oil and natural gas. 9 Appendix Logs of wells. 10 Pacific Fort St. John Well No. 10 . 10 PeaceRiverAlliedFortSt. John Well No. 2...... 12 Phillips Daiber "A" Well No. 1 . ... 14 Southern Production Canadian Atlantic B4 Well No. 1 . .. 17 Ill us tra tions Figure 1. Index Map ................................ In pocket 2. Gething formation, isopach map ............ In pocket 3. Bluesky formation, map showing distribution, lithology and isopachs ... ............... In pocket 4. Structure contour map of pre -Moose bar surface.. ...................... ....... In pocket 5. Stratigraphic section A-B ........ ......... In pocket 6. Stratigraphic section C -D .................. In pctcket Tables Table I Table of formations ....................... 3 II Correlation chart, Bullhead group and Lower part of Fort St. John group .............. · 3 THE SUBSURFACE GETHING AND BLUESKY FORMATIONS OF NORTHEASTERN BRITISH COLUMBIA INTRODUCTION This report is a preliminary account of a stratigraphic study of the Lower Cretaceous Gething and Blue sky formations pene - trated by holes drilled for oil and natural gas in that part of northeast­ ern British Columbia east of longitude 123° and between latitudes 55° 30' and 58°. Descriptions were made from drilling samples and well cores and the strata were correlated with the aid of electrical logs.
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]
  • Controls on Fluid Flow Systems in Northern Alberta As Related to MVT Mineralization: a Contribution to the Carbonate-Hosted Pb-Zn (MVT) Targeted Geoscience Initiative
    EUB/AGS Geo-Note 2002-21 Controls on Fluid Flow Systems in Northern Alberta as Related to MVT Mineralization: A Contribution to the Carbonate-Hosted Pb-Zn (MVT) Targeted Geoscience Initiative Alberta Energy and Utilities Board Alberta Geological Survey EUB/AGS Geo-Note 2002-21 Controls on Fluid Flow Systems in Northern Alberta as Related to MVT Mineralization: A Contribution to the Carbonate-Hosted Pb-Zn (MVT) Targeted Geoscience Initiative J.J. Adams* and D.R. Eccles Alberta Geological Survey September 2003 ©Her Majesty the Queen in Right of Alberta, 2003 The Alberta Geological Survey and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness, or reliability of this publication. Any digital data and software supplied with this publication are subject to the licence conditions. The data are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release does not constitute endorsement by the Alberta Geological Survey of any manufacturer's product. When using information from this publication in other publications or presentations, due acknowledge- ment should be given to the Alberta Energy and Utilities Board/Alberta Geological Survey. The following reference format is recommended: Adams, J.J. and Eccles, D.R. (2003): Controls on fluid flow systems in northern Alberta as related to MVT mineralization: A contribution to the carbonate-hosted Pb-Zn (MVT) targeted geoscience initiative; Alberta Energy and Utilities Board, EUB/AGS Geo-Note 2002-21.
    [Show full text]
  • List R - Rock Units - Alphabetical List
    LIST R - ROCK UNITS - ALPHABETICAL LIST Aberystwyth Grits Ash Hollow Formation Abo Formation Ashe Formation Absaroka Supergroup Asmari Formation Acatlan Complex Astoria Formation Ackley Granite Asu River Group Acoite Formation Athabasca Formation Acungui Group Athgarh Sandstone Adamantina Formation Atoka Formation Adirondack Anorthosite Austin Chalk Admire Group** Austin Group Agbada Formation** Aux Vases Sandstone Ager Formation Avon Park Formation Agrio Formation Aycross Formation Aguacate Group Aztec Sandstone Aguja Formation Baca Formation Akiyoshi Limestone Badami Series Al Khlata Formation Bagh Beds Albert Formation Bahariya Formation Aldridge Formation Bainbridge Formation Alisitos Formation Bajo Barreal Formation Allegheny Group Baker Coal* Allen Formation* Baker Lake Group Almond Formation Bakhtiari Formation Alpine Schist* Bakken Formation** Altyn Limestone Balaklala Rhyolite Alum Shale Formation* Baldonnel Formation Ambo Group** Ballachulish Complex* Ameki Formation Ballantrae Complex Americus Limestone Member Baltimore Gneiss Ames Limestone Bambui Group Amisk Group Banded Gneissic Complex Amitsoq Gneiss Bandelier Tuff Ammonoosuc Volcanics Banff Formation Amsden Formation Bangor Limestone Anahuac Formation Banquereau Formation* Andalhuala Formation Banxi Group Andrew Formation* Baota Formation Animikie Group Baquero Formation Annot Sandstone Barabash Suite Anshan Group Baraboo Quartzite Antalya Complex Baraga Group Antelope Shale Barail Group Antelope Valley Limestone Baralaba Coal Measures Antietam Formation Barnett Shale
    [Show full text]
  • A Late Jurassic to Early Cretaceous Record of Orogenic Wedge Evolution
    Research Paper GEOSPHERE A Late Jurassic to Early Cretaceous record of orogenic wedge GEOSPHERE; v. 14, no. 3 evolution in the Western Interior basin, USA and Canada https://doi.org/10.1130/GES01606.1 Garrett M. Quinn1, Stephen M. Hubbard1, Peter E. Putnam2, William A. Matthews1, Benjamin G. Daniels1, and Bernard Guest1 1Department of Geoscience, University of Calgary, Earth Science 118, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada 12 figures; 1 table; 1 supplemental file 2Osum Oil Sands Corp., Suite 1900, 255 5th Ave SW, Calgary, Alberta, T2P 3G6, Canada CORRESPONDENCE: garrett .quinn@ ucalgary.ca; gquinn7@ gmail .com ABSTRACT INTRODUCTION CITATION: Quinn, G.M., Hubbard, S.M., Putnam, P.E., Matthews, W.A., Daniels, B.G., and Guest, B., The Late Jurassic to Early Cretaceous fill of the Western Interior foreland Aggradation and denudation of proximal foreland basin deposits in the 2018, A Late Jurassic to Early Cretaceous record basin is characterized using geochronological data in order to assess the wedge-top depozone are first-order controls on sediment flux to more-distal of orogenic wedge evolution in the Western Interior stratigraphic expression of wedge-top geomorphology, as controlled by sedi- parts of foreland basin systems (Ben-Avraham and Emery, 1973; DeCelles, basin, USA and Canada: Geosphere, v. 14, no. 3, ment cover and denudation. In northern Montana, USA, and Alberta, Canada, 1994; DeCelles and Giles, 1996; Roddaz et al., 2005; Ross et al., 2005; Horton, p. 1187–1206, https:// doi .org /10 .1130 /GES01606.1. wedge-top deposits are poorly preserved; however, their former presence may 2018).
    [Show full text]