<<

ISSN 1995-0829, Inland Water Biology, 2009, Vol. 2, No. 1, pp. 13Ð24. © Pleiades Publishing, Ltd., 2009. Original Russian Text © E.I. Mironova, I.V. Telesh, S.O. Skarlato, 2009, published in Biologiya Vnutrennikh Vod, No. 1, 2009, pp. 15Ð26.

AQUATIC FLORA AND FAUNA

Planktonic of the Baltic Sea (a Review) E. I. Mironovaa, I. V. Teleshb, and S. O. Skarlatoa aInstitute of Cytology, Russian Academy of Science, Tikhoretskii Prospect 4, St. Petersburg, 194064 Russia bZoological Institute, Russian Academy of Science, Universitetskaya Naberezhnaya 1, St. Petersburg, 199034 Russia e-mail: [email protected] Received April 22, 2008

Abstract—The data on the ciliates composition are given for the Baltic Sea, a brackish-water semi- closed water body where a considerable part of the planktonic fauna is presented by freshwater species. During the observation period, 789 species of ciliates were found, 160 of which are typical planktonic forms. The eco- logical characteristics of ciliates are given, along with an assessment of their role in the productivity of the Bal- tic Sea pelagic communities.

Key words: ciliates, species composition, production, Baltic Sea. DOI: 10.1134/S1995082909010039

INTRODUCTION The species compositions of benthic and planktonic ciliates communities differed quite considerably [23], The Baltic Sea is the world largest semiclosed although benthic ciliates may be found in pelagial, too. brackish water body; it resembles a giant fjord with a They are often noted in coastal and shallow waters due constant inflow of freshwater entering with riverine dis- to strong wind impact, which facilitates the intensive charge. The water salinity in the Baltic Sea is ≤18‰, mixing of water masses [5, 32]. averaging 7–8‰ over the whole sea area. Vast coastal The ciliates of the western the Baltic Sea are best sea regions are often classified as freshwater or oligo- studied [14, 19Ð22, 24, 29, 32, 35, 37]. Many studies on haline ecosystems dominated by freshwater flora and planktonic ciliates [23, 27, 28, 31, 33, 36, 41] were car- fauna species [38]. ried out in the northern Baltic. The southern part of the sea is also studied well [2, 10Ð13, 15-18, 43]. The cili- Ciliates play an important role in the cycling of ates of the eastern Baltic, in particular the Gulf of Fin- nutrients in various aquatic ecosystems. Being the main land, are studied least of all [5, 31, 40]. picoplankton (bacteria and algae 0.2Ð2.0 µm in size) consumers, they are a component of the so called In the Baltic Sea, 789 ciliates species are known “microbial loop.” Picoplankton organisms assimilating [1Ð43], only 160 of which are typically planktonic. dissolved organic matter produce most pelagial produc- Compared to other seas, the Baltic fauna is the most tion. By consuming picoplankton, ciliates serve as an studied. For instance, 620 ciliates species are registered in intermediate link in the energy transfer from picoplank- the Caspian [6] and about 500 in the Black Sea [33]. ton to zooplankton. Due to their sizes and high growth Based on our own and literature data on the Baltic and reproduction rates, ciliates represent a considerable Sea ciliate species, the following list of species has portion of the rations of aquatic invertebrates and fish been composed: larvae. Many species of planktonic ciliates serve as Acaryophrya collaris Kahl, 1926 indicators of water eutrophication and pollution. Acineta amphiasci Precht, 1935 A. compressa Claparede & Lachmann, 1859 The studies on the Baltic Sea planktonic ciliates A. foetida Maupas, 1881 were initiated at the end of the 1940s [10]. Tintinnids A. laomedeae Precht, 1935 (loricate ciliates) were studied in most papers, because these ciliates are more easily collected byn planktonic A. pyriformis Stokes, 1891 nets due to their relatively large sizes [10, 11, 27, 28]. A. schulzi Kahl, 1934 Other groups of ciliates were also studied [13, 14]. A. sulcata Dons, 1927 Research on benthic, in part psammophylic, ciliates in A. tuberosa Ehrenberg, 1834 the Baltic Sea started much earlier (by the end of Amphileptus inquieta Biernacka, 1963 1920s) [29, 37]. A series of studies on benthic [18, 23, A. trachelioides Zacharias, 1893 31] and planktonic [2, 7, 9, 31, 33, 36] ciliates has been Amphisiella annulata Kahl, 1932 carried out in the Baltic Sea over the last 20 years. A. marioni Wicklow, 1982

13

14 MIRONOVA et al.

A. milnei Kahl, 1932 B. vestitum Kahl, 1928 Amphorella sp.* Bursella spumosa Schmidt, 1921 Amphorides quadrilineata Claparede & Lachmann, 1858 Caenomorpha levanderi Kahl, 1927 Anigsteinia clarissima Isquith, 1968 Calyptotricha lanuginosa (Penard, 1922) Wilbert & A. longissima Kahl, 1928 Foissner, 1980 A. salinaria Kahl, 1928 Carchesium gammari Precht, 1935 Anophrys sarcophaga Cohn, 1866 C. jaerae Precht, 1935 Anteholosticha scutellum (Kahl, 1932) Berger, 2003 C. pectinatum (Zacharias, 1897) Kahl, 1935 A. arenicola (Kahl, 1932) Berger, 2003 C. polypinum (Linnaeus, 1758) Ehrenberg, 1830** A. fasciola (Kahl, 1932) Berger, 2003 C. spectabile Ehrenberg-Claparede & Lachmann, 1858 A. monilata (Kahl, 1932) Berger, 2003 C. steinii Wrzesniowski, 1877 A. multistilata (Kahl, 1932) Berger, 2003 Cardiostomatella mononucleata Dragesco, 1960 A. pulchra (Kahl, 1932) Berger, 2003 C. vermiforme Kahl, 1928 A. violaceae (Kahl, 1932) Berger, 2003 Caudiholosticha setifera (Kahl, 1932) Berger, 2003 Apiosoma sp. C. viridis (Kahl, 1932) Berger, 2003 Aristerostoma marinum Kahl, 1931 Certesia quadrinucleata Fabre-Domergue, 1885 Ascobius simplex Dons, 1918 Chaenea gigas Kahl, 1933 Askenasia sp.* C. robusta Kahl, 1930 A. stellaris (Leegaard, 1920) Kahl, 1930* C. simulans Kahl, 1930 Aspidisca sp. C. teres Dujardin, 1841 A. aculeata Ehrenberg, 1838 C. vorax Quennerstedt, 1867 A. angulata Bock, 1952 Chilodonella calkinsi Kahl, 1928 A. binucleata Kahl, 1932 C. cucullus (O. F. Müller) Ehrenberg, 1833 A. cicada O. F. Müller, 1786 C. cyprinid (Moroff, 1902) Strand, 1928 A. dentata Kahl, 1928 C. helgolandica Kahl, 1935 A. fusca Kahl, 1928 C. rigida Kahl, 1933 A. leptaspis Fresenius, 1865 C. subtilis Kahl, 1933 A. lyncaster (O.F. Müller, 1773) von Stein, 1859 Chilodontopsis caudate Kahl, 1933 A. lynceus O.F. Müller, 1773** C. elongate (Kahl, 1928) Corliss, 1960 A. major Madsen var. faurei Dragesco, 1960 C. oblonga Maupas, 1883 A. mutans Kahl, 1932 C. ovalis Biernacka, 1963 A. polypoda Dujardin, 1841 C. vorax (Stokes, 1886) Kahl, 1931 A. polystyla Stein, 1859 Chlamydodon cyclops Entzsen, 1884 A. robusta Kahl, 1932 C. major (Kahl, 1931) Carey, 1994 A. steini Buddenbrock, 1920 C. mnemosyne Ehrenberg, 1838 A. turrita (Ehrenberg, 1831) Claparede & Lachmann, C. obliquus Kahl, 1931 1858 C. triquetrus O. F. Müller, 1786 Atopochilodon arenifer Kahl, 1933 Ciliofaurea arenicola Dragesco, 1960 A. distichum Deroux, 1976 C. mirabilis Dragesco, 1960 Australothrix zignis Entz, 1884 Cinetochilum margaritaceum Perty, 1852** A. gibba Claparede & Lachmann, 1858 gigas Meunier, 1907 Avelia gigas Dragesco, 1960 C. virens Ehrenberg, 1833 Balanion comatum Wulff, 1922* Codonella sp.* Balanion sp.* C. cratera Leidy, 1877* Balladyna elongate Roux, 1901 C. lagenula Claparede et Lachmann, 1858* Biholosticha arenicola (Dragesco, 1963) Berger, 2003 C. orthoceras (Haeckel) Joergensen, 1924* B. discocephalus (Kahl, 1932) Berger, 2003 C. relicta Minkiewich, 1905* sp. Codonellopsis sp.* B. clarissimum Kahl, 1928 C. contracta Kofoid & Campbell, 1929* B. Kahl, 1928 C. orthoceros Haeckel, 1873* B. hyalinum Perty, 1852 Cohnilembus sp. B. salinarum Florentin, 1899 C. stichotricha Kahl, 1928 B. steini Kahl, 1932 C. vermiformis Kahl, 1931 B. tardum Kahl, 1928 C. verminus (Müller, 1786) Kahl, 1933 B. undulans Stein, 1868 sp.

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 PLANKTONIC CILIATES OF THE BALTIC SEA (A REVIEW) 15

C. arenarius Bock, 1952 C. fuscum Kahl, 1935* C. bicuspis Noland, 1925 C. glaucoma O. F. Müller, 1773* C. elongates Ehrenberg, 1830** C. marinum Borror, 1963** C. hirtus (O. F. Müller, 1786) Nitzsch, 1827 C. plouneouri Dragesco, 1963* C. pulcher Spiegel, 1926 C. similans Kahl, 1928* C. remanei Kahl, 1933 Cyclidium sp.* C. similes Kahl, 1933 C. veliferum Kahl, 1933* C. spiralis Noland, 1937 C. xenium Fenchel et.al, 1995* C. tesselatus Kahl, 1930 Cyclotrichium cyclokaryon Meunier, 1907* Colpidium campylum (Stokes, 1886) Bresslau, 1922** C. ovatum Faure-Fremiet, 1924* cucullus O. F. Müller, 1786 Cyphoderia ampulla Ehrenberg, 1840 Conchostoma longissimum Faure-Fremiet, 1963 Dictyocysta elegans Ehrenberg, 1854 arenarium Spiegel, 1926 balbiani f.rostratum Kahl, 1926* C. magnum Spiegel, 1926 D. balbiani Fabre-Domergue, 1888* C. minima Dragesco, 1960 D. gargantua Meunier, 1907* C. patens O.F. Müller 1786 D. nasutum (Müller, 1773) Stein, 1859* C. patulum Claparede & Lachmann, 1858 Didinium sp.* C. psammophila Kahl, 1928 Dileptus sp. C. remanei Spiegel, 1928 D. anser (Müller, 1786) Dujardin, 1841 C. rugosa Kahl, 1928 D. cygnis Claparede & Lachmann, 1859 C. tardum Penard, 1922 D. estuarinus Dragesco, 1960 C. tenuis Faure-Fremiet, 1958 D. marinus Kahl, 1933 C. Ehrenberg, 1833 D. massutii Kahl, 1933 Copemetopus subsalsus Villeneuve-Brachon, 1940 Diophryopsis hystrix (Buddenbrock, 1920) Hill & Bor- Corynophrya campanula Kahl, 1934 ror, 1992 C. marina Kahl, 1934 Diophrys sp. Cothurnia arcuata Mereschkowsky, 1879 D. appendiculata (Ehrenberg, 1838) Kahl, 1932 C. borealis (Hensen, 1890) Ostenfeld, 1916 D. scutum Dujardin, 1841 C. ceramicola Kahl, 1933 Discocephalus ehrenbergi Dragesco, 1960 C. cordylophorea Kahl, 1933 D. rotatorius Ehrenberg, 1828 C. cypridicola Kahl, 1933 Discotricha papillifera Tuffrau, 1954 C. gammari Precht, 1935 Disematostoma butschlii Lauterborn, 1894 C. harpactici Kahl, 1933 Dysteria calkinsi Kahl, 1931 C. maritima Ehrenberg, 1838 D. marioni Gourret & Roeser, 1887 C. ovalis Kahl, 1933 D. monostyla (Ehrenberg, 1838) Kahl, 1931 C. pedunculata Dons, 1918 D. navicula Kahl, 1928 C. recurva Clapar. et Lach., 1858 D. ovalis Gourret & Roeser, 1886 C. simplex Kahl, 1933 D. procera Kahl, 1931 Coxliella helix cochleata Brandt, 1907* D. pusilla Claparede & Lachmann, 1859 Coxliella helix Claparede & Lachmann, 1858* D. sulcata Claparede & Lachmann, 1858 Craspedomyoschiston sphaeromae Precht, 1935 Enchelyodon elegans Kahl, 1926 Cristigera cirrifera Kahl, 1928* E. elongates Claparede & Lachmann, 1859 C. media Kahl, 1928* E. fascinucleatus Kahl, 1933 C. minuta Kahl, 1928* E. laevis Quennerstedt, 1869 C. penardi Kahl, 1935* E. sulcatus Kahl, 1930 C. phoenix Penard, 1922* E. trepida (Kahl, 1928) Borror, 1965 C. setosa Kahl, 1928* Enchelys marina Meunier, 1907 C. sulcata Kahl, 1928* E. pectinata Kahl, 1930 Cryptopharynx sp. E. tarda Quennerstedt, 1869 Cryptopharynx setigerus Kahl, 1928 Epaxiella sp. Ctedoctema acanthocrypta Stokes, 1884 Ephelota gemmipara Hertw, 1876 Cyclidium candens Kahl, 1928* Epiclintes ambiguus O. F. Müller, 1786 C. citrullus Cohn, 1865* Epimecophrya ambiguus Kahl, 1933 C. elongatum Schewiakoff, 1896* E. cylindrica Kahl, 1933 C. flagellatum Kahl, 1926* Epistylis sp.

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 16 MIRONOVA et al.

E. arenicolae Fabre-Domergue, 1888 H. entzi Kahl, 1931 E. caliciformis Kahl, 1933 Helicoprorodon gigas (Kahl, 1933) Faure-Fremiet, 1950 E. carcini Precht, 1935 H. minutus Bock, 1952 E. gammari Precht, 1935 Helicostoma buddenbrocki Kahl, 1931 E. harpacticola Kahl, 1933 H. notatum Kahl, 1931 E. nitocrae Precht, 1935 H. oblongum Cohn, 1866 E. plicatilis Ehrenberg, 1838 Helicostomella edentata Ehrenberg, 1833* E. rotans Svec, 1897 H. kiliensis Laackmann, 1906* Eucamptocerca longa Da Cunha, 1907 H. subulata f. kiliensis Laackmann, 1906* sp. H. subulata Ehrenberg, 1833* E. affinis Dujardin, 1842 Heliochona scheuteni Stein, 1854 E. balteatus Kahl, 1932 H. sessilis Plate, 1888 E. balticus (Kahl, 1932) Dragesco, 1966 Heminotus caudatus Kahl, 1933 E. cristatus Kahl, 1932 Hemiophrys sp. E. elegans Kahl, 1932 H. agilis Penard, 1922 E. gracilis Kahl, 1932 H. filum Gruber, 1884 E. harpa Stein, 1859 H. fusidens Kahl, 1926 E. moebiusi Kahl, 1932 H. marina Kahl, 1930 E. patella Ehrenberg, 1838 H. rotunda Kahl, 1930 E. trisulcatus Kahl, 1932 Hippocomos loricatus Czapik & Jordan, 1977 E. vannus (O. F. Müller, 1786) Minkjewicz, 1901 Histiobalantium majus Kahl, 1931* Euplotopsis affinis (Dujardin, 1841) Borror & Hill, 1995 H. marinum Kahl, 1933* E. bisulcatus (Kahl, 1932) Borror & Hill, 1995 H. natans Claparede & Lachmann, 1858* E. elegans Kahl, 1932 Histriculus similis Quennerstedt, 1867 Fabrea salina Henneguy, 1890 H. vorax (Stokes, 1891) Corliss, 1960** Favella ehrenbergi Claparede & Lachmann, 1858* Holophrya biconica Sauerbrey, 1928 F. serrata Moebius, 1887* H. coronata Morgan, 1925 Folliculina ampula O. F. Müller, 1773 H. lemani Dragesco, 1960 F. gigantean Dons, 1917 H. nigricans Lauterborn, 1894 acuminata Ehrenberg, 1833 H. simplex Schewiakoff, 1893 F. algivora Kahl, 1931 H. sulcata Penard, 1922 F. arenaria Kahl, 1933 H. tarda Quennerstedt, 1869 F. atra Ehrenberg, 1833 Holosticha diademata Rees, 1884 F. elliptica Beardsley, 1902 H. grisea Kahl, 1932 F. leucas (Ehrenberg, 1833) Ehrenberg, 1838 H. kessleri Wrzesniowski, 1877 F. macrostoma Dragesco, 1960 H. manca Kahl, 1932 F. marina Fabre-Domergue, 1891 H. pullaster (Müller, 1773) Foissner et al., 1991** F. microstoma Kahl, 1935 Homalozoon caudatum Kahl, 1935 F. nigricans Penard, 1922 H. vermiculare Stokes, 1887 F. pallida Czapik, 1979 Intranstylum brachymyon Precht, 1935 F. vacuolata Dragesco, 1960 Intranstylum coniferum Precht, 1935 Gastrostyla pulchra (Perejaslawzewa, 1885) Kahl, 1932 Kentrophorus sp. decolor Kahl, 1933 K. fasciolatum Sauerbrey, 1928 G. fossata Kahl, 1933 K. fistulosus Faure-Fremient, 1950 G. nigriceps Kahl, 1933 K. lanceolatum Faure-Fremiet, 1951 G. orbis Faure-Fremiet, 1951 K. latum Raikov, 1962 Glaucoma scintillans Ehrenberg, 1830 Keronopsis arenivorus Dragesco, 1954 Gruberia sp. K. gracilis Dragesco, 1965 G. lanceolata Gruber, 1884 K. pernix Wrzesniowski, 1877 G. uninucleata Kahl, 1932 Laboea strobila Lohmann, 1908* Gymnozoon viviparum Meunier, 1907 Lacrymaria sp. Halteria grandinella (O. F. Müller) Dujardin, 1841* L. acuta Kahl, 1933 Haplocaulus furcellariae Precht, 1935 L. affinis Bock, 1952 H. nicoleae Precht, 1935 L. binucleata Song & Wilbert, 1989 Hartmannula acrobates (Entz, 1884) Poche, 1913 L. caudate Kahl, 1932

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 PLANKTONIC CILIATES OF THE BALTIC SEA (A REVIEW) 17

L. cohni Kent, 1881 Mesodinium cinctum Calkins, 1902* L. coronata Claparede & Lachmann, 1858 M. pulex (Claparede & Lachmann, 1859) Stein, 1867* L. cucumis Penard, 1922 M. pupula Kahl, 1933* L. delamarei Dragesco, 1954 Metacystis striata Stokes, 1893 L. lagenula Claparede & Lachmann, 1858 M. tesselata Kahl, 1926 L. marina Kahl, 1933 Metanophrys durchoni Puytorac et al., Agatha, 2004 L. olor f. marina Kahl, 1933 Metaurostyla marina Kahl, 1932 L. olor O. F. Müller, 1776 contortus Quennerstedt, 1867 L. pupula O. F. Müller, 1786 M. es (Claparede & Lachmann, 1858) Kahl, 1932 L. salinarum Kahl, 1928 M. halophilus Kahl, 1925 L. saprorelica Kahl, 1927 M. hyalinus (Kahl, 1927) Kahl, 1935 L. vermicularis O. F. Müller, 1786 M. major Kahl, 1932 Lagynophrya contractilis Kahl, 1928 M. nivaaensis Esteban, Fenchel & Finlay, 1995 L. costata Kahl, 1933 M. pellitus (Kahl, 1932) Carey, 1994 L. Halophila Kahl, 1928 M. setosus Kahl, 1927 Lembadion lucens (Maskell, 1887) Kahl, 1931** M. verrucosus Da Cunha, 1915 Leprotintinnus sp.* M. vestitus Kahl, 1932 L. bottnicus (Nordqvist, 1890) Joergensen, 1912* Microdysteria aplanata Kahl, 1933 L. pellucidus Joergensen, 1924* Micromitra brevicaudata Kahl, 1933 Litonotus sp. Microregma ponticum Lepsi, 1926 L. anguilla Kahl, 1931 Moneuplotes crassus Dujardin, 1841 L. binucleatus Kahl, 1933 Myelostoma bipartitum Kahl, 1933 L. cygnis (O. F. Müller, 1776) Wrzesniowski, 1870 Myoschiston balanorum Mereschkowsky, 1877 L. duplostriatus Maupas, 1883 M. carcini Precht, 1935 L. fasciola (Ehrenberg) Wrzesniowski, 1870 M. centropagidarum Precht, 1935 L. lamella (Ehrenberg) Schewiakoff, 1896 M. duplicatum Precht, 1935 L. loxophylliforme Dragesco, 1960 Myriokaryon lieberkuhni Jankowski, 1973 L. pictus Gruber, 1884 Myrionecta rubra Lohmann, 1908* Lohmaniella sp. * argentula Kahl, 1930 L. elegans (Wulff, 1919) Kahl, 1932* N. aurea Ehrenberg, 1833 L. oviformis Leegard, 1915* N. citrea Kahl, 1930 Lopezoterenia torpens (Kahl, 1931) Foissner, 1997 N. labiata Kahl, 1933 sp. N. notata Müller, 1786 L. rostrum (Müller, 1773) Ehrenberg, 1830** N. ornata Ehrenberg, 1833 Loxophyllum sp. N. tumida Maskell, 1887 L. fasciolatum Kahl, 1933 Omegastrombidium elegans Florentin, 1858* L. helus (Stokes, 1884) Kahl, 1931 Opercularia nutans (Ehrenberg, 1831) Stein, 1854 L. kahli Dragesco, 1960 Ophryoglena sp. L. levigatum Sauerbrey, 1928 Opistotricha sp. L. meleagris (Müller, 1773) Dujardin, 1841 O. sertularium Kent, 1881 L. multinucleatum Kahl, 1928 Orthodon gutta Cohn, 1866 L. multiplicatum Kahl, 1928 Oxytricha sp. L. multiverrucosum (Kahl, 1933) Carey, 1991 O. Chlorelligera Kahl, 1932 L. niemeccense Stein, 1859 O. discifera Kahl, 1932 L. pyriforme Gourret & Roeser, 1886 O. halophila Kahl, 1932 L. serratum Kahl, 1933 O. marina Kahl, 1932 L. setigerum Quennerstedt, 1867 O. ovalis Fromentel, 1876 L. trinucleatum Mansfeld, 1923 O. oxymarina Berger, 1999 L. undulatum Sauerbrey, 1928 O. tricornis Milne, 1886 L. uninucleatum Kahl, 1928 Parablepharisma bacteriophora Kahl, 1935 L. variabilis Dragesco, 1960 P. chlamydophorum Kahl, 1935 L. vermiforme Sauerbrey, 1928 P. collare Kahl, 1935 Lynchella aspidisciformis Kahl, 1933 P. pellitum Kahl, 1935 L. gradate Kahl, 1933 Paracineta divisa Fraipont, 1878 Magnifolliculina binalata Uhlig, 1964 Paradileptus conicus Wenrich, 1929

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 18 MIRONOVA et al.

Paradiophrys irmgard (Mansfeld, 1923) Jankowski, P. elegans Kahl, 1928 1978 P. luteus Kahl, 1930 P. kahli (Dragesco 1963) Foissner 1996 P. marinus Claparede & Lachmann, 1858 Parafavella sp.* P. mimeticus Kahl, 1930 P. cylindrica (Joergensen, 1899) Kofoid & Campbell, P. moebiusi Kahl, 1930 1929* P. morgani Kahl, 1930 P. lachmanni Daday, 1887* P. opalescens Kahl, 1928 P. media Brandt, 1896* P. ovum (Ehrenberg) Kahl, 1930 sp. P. platyodon Blochmann, 1895 P. aurelia Ehrenberg, 1838 P. raabei Capki, 1965 P. bursaria (Ehrenberg) Focker, 1836 P. teres Ehrenberg, 1833 P. calkinsi Woodruff, 1921 Protocruzia contrax Mansfeld, 1923 P. caudatum Ehrenberg, 1833 P. granulose (Kahl, 1932) de Faria, da Cunha & Pinto, P. putrinum Claparede & Lachmann, 1858 1922 P. woodruffi Wenrich, 1928 P. labiata Kahl, 1932 Paranassula brunnea Fabre-Domerge, 1885 P. pigerrima Cohn, 1866 P. microstoma (Claparede & Lachmann, 1859) Kahl, Protrachelocerca fasciolata Sauerbrey, 1928 1931 Psammomitra brevicauda (Kahl, 1932) Borror, 1972 Paranophrys marina Thompson & Berger, 1965 P. retractilis Borror, 1972 Paraspathidium longinucleatum Czapik & Jordan, 1976 Pseudoamphisiella alveolata (Kahl, 1932) Song & War- P. obliquum Dragesco, 1963 ren, 2000 Pelagostrobilidium spirale Petz et al, 1995* P. lacazei Kahl, 1932 Peritromus faurei Kahl, 1932 Pseudoblepharisma tenue Kahl, 1926 P. montanus Kahl, 1932 Pseudocohnilembus pussilus (Quennerstedt, 1869) Foiss- Placus buddenbrocki Sauerbrey, 1928 ner & Wilbert, 1981 P. socialis Fabre-Domergue, 1889 Pseudodileptus sp. P. striatus Cohn, 1866 Pseudokeronopsis carnea Cohn, 1866 Plagiocampa acuminate Kahl, 1933 P. decolor Wallengren, 1890 P. incise Kahl, 1933 P. flava (Cohn, 1866) Wirnsberger et al., 1987 P. margaritata Kahl, 1930 P. flavicans (Kahl, 1932) Borror & Wicklow, 1983 P. multiseta Kahl, 1930 P. ovalis (Wulff, 1919) Johnson, Hargraves & Sieburth, P. posticeconica Kahl, 1932 1988 P. rouxi Kahl, 1932 P. rubra (Ehrenberg, 1838) Borror & Wicklow, 1983 Plagiocampa sp. Pseudoplatynematum loricatum Bock, 1952 Plagiopogon loricatus Kahl, 1931 P. parvum Bock, 1952 frontata Kahl, 1935 Pseudoprorodon arenicola Kahl, 1930 P. marina Kahl 1933 P. halophilus Kahl, 1930 P. nasuta Stein, 1860 P. incisus Bock, 1952 P. ovata Kahl, 1931 P. mononucleatus Bock, 1952 P. vestita Kahl, 1935 Pseudovorticella difficilis Kahl, 1933 Platyfolliculina sahrhageana Hadzi, 1938 P. punctata (Dons, 1918) Warren, 1986 Platynema denticulatum Kahl, 1933 Ptychocylis minor Gruber, 1879 Platynematum hyalinum Kahl, 1933 Ptychocylis urnula Claparede & Lachmann, 1858 P. sociale Penard, 1922 Quasillagilis constanciensis Busch, 1920 Pleuronema coronatum Kent, 1881* Remanella sp. P. crassa Dujardin, 1841* R. brunnea Kahl, 1933 P. marinum Dujardin, 1841* R. caudate Dragesco, 1953 P. setigerum Calkins, 1903* R. gigas Dragesco, 1954 P. smalli Dragesco, 1968* R. granulosa Kahl, 1933 Podophrya halophila Kahl, 1934 R. margaritifera Kahl, 1933 Porpostoma notatum Moebius, 1888 R. minuta Dragesco 1954 Proboscidium armatum Meunier, 1907 R. multinucleate Kahl, 1933 Prorodon sp. R. rugosa f. unicorpusculata Kahl, 1933 P. binucleatus Buddenbrock, 1920 R. rugosa Kahl, 1933 P. brachyodon Kahl, 1927 R. swedmarki Dragesco, 1953 P. discolor Ehrenberg, 1831 R. trichocysta Dragesco, 1953

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 PLANKTONIC CILIATES OF THE BALTIC SEA (A REVIEW) 19

Rhabdostyla arenaria Cuenot, 1891 Strobilidium sp. * R. commensalis Moebius, 1888 S. caudatum (Fromental, 1874) Foissner, 1987* R. inclinans (O. F. Müller, 1786) D’Udekem, 1864 S. conicum Kahl, 1932* R. libera Kahl, 1933 S. minimum (Gruber, 1884) Kahl, 1932* R. nereicola Precht, 1935 S. velox Faure-Fremiet, 1924* R. putrina (O.F. Müller, 1776) Warren, 1986 Strombidinopsis acuminatum Faure-Fremiet, 1924* R. variabilis Dons, 1918 Strombidium sp.* Salpingella acuminate Claparede & Lachmann, 1858* S. calkinsi Faure-Fremiet, 1932* Saprodinium halophila Kahl, 1935 S. conicum (Lochmann, 1908) Wulff, 1919* Scaphidiodon navicula (O. F. Müller, 1786) Stein, 1859 S. crassulum (Leegaard, 1915) Kahl, 1932* Schistophrya aplanata Kahl, 1933 S. kahli Bock, 1952* Scyphidia gasterostei Faure-Fremiet, 1905 S. latum Kahl, 1932* S. hydrobiae Kahl, 1933 S. mirabile Penard, 1916* S. physarum Lohmann, 1856 S. oblongum (Entz, 1884) Kahl, 1932* S. variabilis Dons, 1922 S. oculatum (Faure-Fremiet, 1948)* Sonderia cyclostoma Kahl, 1930 S. purpureum Kahl, 1932* S. macrochilus Kahl, 1930 S. styliferum Levander, 1894* S. mira Kahl, 1930 S. sulcatum Claparede & Lachmann, 1858* S. pharyngea Kirby, 1934 S. viride Stein f. pelagica Kahl, 1932* S. schizostoma Kahl, 1930 S. viride Stein, 1859* S. sinuata Kahl, 1930 Strongylidium labiatum Kahl, 1932 S. tubigula Kahl, 1930 S. muscorum Kahl, 1932 S. vestita Kahl, 1930 Stylonichia mytilus Ehrenberg, 1838 S. vorax Kahl, 1928 Swedmarkia arenicola Dragesco, 1954 Spathidium chlorelligerum Kahl, 1930 Tachysoma parvistyla Stokes, 1887 S. curvatum Kahl, 1928 T. rigescens (Kahl, 1932) Borror, 1972 S. deforme Kahl, 1928 T. saltans (Cohn, 1866) Borror, 1972 S. extensum Kahl, 1933 Thecacineta sp. S. fossicola Kahl, 1933 T. halacar Shulz, 1933 ambiguum (Müller, 1786) Ehrenberg, 1835 Thigmokeronopsis crassa (Claparede & Lachmann, S. loxodes 1858) Berger, 2006 S. minus Roux, 1901 Thuricola sp. S. teres Claparede & Lachmann, 1859 T. elegans Biernacka, 1963 Spirostrombidium cinctum (Kahl, 1932) Petz et al., 1995* T. obconica Kahl, 1933 S. sauerbreyae (Kahl, 1932) Petz et al., 1995* T. valvata Wright, 1858 Stenosemella nucula Joergensen, 1927* Tiarina sp. * S. steinii joergensen, 1912* T. borealis (Dogiel, 1940) Shulman-Albova, 1953* S. ventricosa (Claparede & Lachmann, 1858) Joer- T. fusus (Claparede & Lachmann, 1858) Bergh, 1881* gensen, 1924* Tintinnidium fluviatile Stein, 1863* auricula Kent, 1881 T. mucicola (Claparede & Lachmann, 1858), von Daday, S. coeruleus Ehrenberg, 1830 1887* S. mulleri (Bory St. Vincent, 1824) Ehrenberg, 1838 Tintinnopsis sp. * S. multiformis O. F. Müller, 1786 T. acuminate von Daday, 1887* S. niger (O. F. Müller, 1773) Ehrenberg, 1831 T. baltica f. rotundata Laackmann, 1906* S. polymorphus (O. F. Müller, 1773) Ehrenberg, 1830 T. baltica Brandt, 1896* S. roeseli Ehrenberg, 1835 T. beroidea Stein, 1867* Sterkiella histriomuscorum Foissner, Blatterer, Berger & T. brandti Nordqvist, 1890* Kohmann, 1991** T. campanula Ehrenberg, 1840* Stichotricha aculeate Wrzesniowski, 1866 T. cochleata Brandt, 1906* S. gracilis Moebius, 1888 T. compressa Daday, 1887* S. marina Stein, 1867 T. cratera (Leidy) Hada, 1936* S. merschkowski Kahl, 1932 T. cylindrata Kofoid & Campbell, 1892* S. simplex Kahl, 1932 T. fennica Kofoid & Campbell, 1929* Stokesia vernalis Wenrich, 1929 T. fimbriata Meunier, 1919* Stomatophrya aplanata Kahl, 1933 T. karajacensis Brandt, 1896* S. singularis Kahl, 1933 T. lobiancoi Daday, 1887*

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 20 MIRONOVA et al.

T. lohmanni Laackmann, 1906* Trochilioides oculata Kahl, 1933 T. major Meunier, 1910* T. recta Kahl, 1928 T. meunieri Kofoid & Campbell, 1929* T. striata Buddenbrock, 1920 T. minuta Wailes, 1925* Urocentrum turbo (O. F. Müller, 1786) Kahl, 1931* T. nana Lohmann, 1908* Uroleptopsis citrina Kahl, 1932 T. nitida Brandt, 1986* U. viridis (Perejaslawzewa 1885) Kahl, 1932 T. parvula Joergensen, 1912* Uroleptus sp. T. pistillum Kofoid & Campbell, 1929* U. musculus Kahl, 1932 T. rapa Meunier, 1910* U. piscis (O. F. Müller, 1773) Ehrenberg, 1831 T. rotundata Joergensen, 1912* Uronema sp. * T. sacculus Brandt, 1896* U. elegans Maupas, 1883* T. strigosa Meunier, 1919* U. marinum Dugardin, 1841* T. subacuta Joergensen, 1899* U. nigricans (O. F. Müller, 1786) Florentin, 1901 T. tubulosa Levander, 1900* Uronemella filificum (Kahl, 1931) Song & Wilbert, T. turbo Meunier 1919* 2002* T. urnula Meunier, 1910* Uronychia heinrothi Buddenbrock, 1920 Tintinnus inquillinum O.F. Müller, 1776* U. setigera Calkins, 1902 sp. U. transfuga Müller, 1786 Trachelius gutta Sahrhage, 1915 Uropedalium pyriforme Kahl, 1928 T. ovum Ehrenberg, 1831 Urosoma cienkowskii Kowalewski, 1882 Trachelocerca sp. Urostrongylum sp. T. coluber Kahl, 1933 U. caudatum Kahl, 1932 T. entzi Kahl, 1927 U. contortum Kahl, 1928 T. fusca Kahl, 1928 U. lentum Kahl, 1932 T. laevis Quennerstedt, 1867 Urostyla dispar Kahl, 1932 T. longissima Kahl, 1928 U. gracilis Entz, 1884 T. phoenicopterus var. margaritata Kahl, 1930 U. grandis Ehrenberg, 1830 T. subviridis Sauerbrey, 1928 Urotricha armata Kahl, 1927* T. tenuicolis Quennerstedt, 1867 U. baltica Czapik & Jordan, 1977* Trachelophyllum apiculatum (Perty, 1852) Claparede & U. globosa Schewiakoff, 1892* Lachmann, 1859 U. pelagica Kahl, 1932* T. brachypharynx Levander, 1894 Vaginicola amphora Kahl, 1928 arenicola (Sauerbrey, 1928) Dragesco, 1960 V. crystallina Ehrenberg, 1830 T. bimicronucleata Raikov, 1962 V. sulcata Kahl, 1928 T. drachi Dragesco, 1960 V. wangi Kahl, 1935 T. grassei Kahl, 1933 Vasicola parvula Kahl, 1926 T. griseus Kahl, 1933 Vorticella sp. T. incaudatus Kahl, 1930 V. anabaena Stiller, 1940 T. indistincta Kahl, 1930 V. annulata Gourret & Roeser, 1888 T. kahli Raikov, 1962 V. calisiformis Kahl, 1933 T. margaritatus Kahl, 1930 V. campanula Ehrenberg, 1831 T. oligostriata Raikov, 1962 V. convallaria Linnaeus, 1758 T. phenicopterus Cohn, 1866 V. dudekemi Kahl, 1933 Trachelostyla caudate Kahl, 1932 V. fromenteli Kahl, 1935 T. pediculiformis (Cohn, 1866) Kahl, 1932 V. fusca Precht, 1935 Trichodina astericola Precht, 1935 V. jaerae Precht, 1935 T. claviformis Dobberstein & Palm, 2000 V. lima Kahl, 1933 T. domerguei Wallengren, 1897 V. longifilum Kent, 1881 T. jadranica Raabe, 1958 V. marina Greeff, 1870 T. pediculus Ehrenberg, 1831 V. mayeri Faure-Fremiet, 1920 T. raabei Lohm, 1962 V. microstoma Ehrenberg, 1830 T. scoloplontis Precht, 1935 V. nebulifera O. F. Müller, 1786 T. serpularum (Fabre-Domergue, 1888) V. octava Stokes, 1885 Trichophrya piscium Butschli, 1889 V. ovum Dons, 1917 Trochilia sigmoides Dujardin, 1841 V. patellina D’Udekem, 1862

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 PLANKTONIC CILIATES OF THE BALTIC SEA (A REVIEW) 21

V. striata Dujardin, 1841 The proximity of a hard substratum is very impor- V. striatula Dons, 1915 tant for planktonic ciliates. Depending on this factor, V. urceolaris Linnaeus, 1767 either typical plankton ciliates of g. Balanion or benthic V. verrucosa Dons, 1915 Euplotes dominated in the southern Baltic plankton Woodruffia rostrata Kahl, 1931 [36]. In the near-bottom water layers, among typically Zoothamnium sp. planktonic small ciliates (gg. Strombidium, Strobilidium, Z. alternans Precht, 1935 Mesodinium, Halteria, and Askenasia), relatively large bentic species of benthos (gg. Euplotes, Oxytricha, and Z. arbuscula Ehrenberg, 1839 Blepharisma) are often present [32]. For instance, Z. commune Kahl, 1933 according to Witec [43], the species composition of the Z. duplicatum Kahl, 1933 ciliate epipelagic community differs considerably from Z. hentscheli Kahl, 1935 the deep-water layers community in the Gdansk Basin. Z. hiketes Precht, 1935 Some species of Baltic ciliates are indicators of the Z. hydrobiae Hofker, 1930 water trophy level [2, 5]. For example, the tintinnid Tin- Z. intermedium Precht, 1935 tinnidium fluviatilez, being quite numerous in the Neva Z. nanum Kahl, 1933 Bay estuarine waters in the 1980s [5], is a characteristic Z. nutans Claparede & Lachmann, 1858 representative of oligosaprobic waterbodies. Such spe- Z. rigidum Precht, 1935 cies as Tintinnopsis cratera and Strombidium mirabile Z. vermicola Precht, 1935 are indicators of clean waters. The ciliates Colpidium campyl, Colpoda steini, Coleps hirtus, and Halteria Notes: * typically planktonic ciliates; grandinella may be found in some parts of the Neva Bay ** new findings by the authors [38]. and are species typical for eutrophic and polluted waters [5]. The mass development of autotrophic ciliates Just as in other seas, the pelagic small aloricate oligotri- Myrionecta rubra is also evidence of water eutrophica- chids of gg. Strombidium, Strobilidium, and Lohmaniella tion. This phenomenon may be observed in some parts of dominate the ciliates community in the Baltic [2, 9, 23, the Baltic, e.g., off the Bornholm Basin, in early spring 31, 32]. A considerable part of the microplankton con- and in summer [9]. sists of tintinnids [2, 5, 31]. Typical representatives of The functional importance of ciliates in aquatic eco- the Baltic planktonic communities include Hymenosto- systems is mainly determined by their role in the matida (mainly small Cyclidium, Cristigera, and Bal- trophic webs. In terms of type of feeding, most Baltic anion) and (Mesodinium, Didinium, and planktonic ciliates are heterotrophic. However, some Monodinium) [23, 36]. In fact, the same groups of ciliate exceptions exist: Myrionecta rubra is the obligatory make the base of the microzooplankton community of autotrophic, containing in its own cell cryptophytic the Baltic ice [25]. Among the Baltic planktonic ciliates, endosymbionts capable of photosynthesis. In the south- the most species-rich group is order Oligotrichida eastern part of the Gdansk Basin, M. rubra makes up to (especially gg. Strombidium and Tintinnopsis). 10% of all primary production [43]. Many ciliates of g. In general, the species composition of the planktonic Strombidium and Laboea strobila also have photosyn- ciliate of the Baltic and many other seas are similar to thetic endosymbionts. These mixotrophic ciliates often each other, because the majority of ciliates species are compose a considerable part of the Baltic pelagic com- cosmopolites. At the same time, one specific feature of munity in the spring [9]. the Baltic Sea is the presence of a large number of fresh- water species in the pelagial, which is possible due to the In terms of types of feeding, the heterotrophic cili- lower water salinity compared to other seas. ates are grouped into microphages (feeding on bacteria and detritus), phytophages (consuming algae), and car- Throughout the year, over the course of the seasons, nivorous ciliates (feeding on other small organisms). considerable reconstructions in the planktonic ciliates All three groups listed above are present among the Baltic communities take place and the dominating species ciliates: microphages (Balanion, Cyclidium and Meso- change. For example, in the Bornholm Basin (the south- dinium); phytophages (Strombidium and Strobilidium); ern part of the central Baltic) the microzooplankton is and carnivorous Didinium. dominated by autotrophic ciliates Myrionecta rubra High selectivity for food particles is typical of to (biomass of 0.2Ð0.3 mg C/l) in spring and early summer; µ in the late summer, Helicostomella subulata and species the ciliates. Most of them prefer food 2Ð10 m in size of g. Strombidium dominate (biomass > 130 mg C/l) [9]. [31, 36]. In general, the feeding spectrum of the Baltic In the northern Baltic in the summer, the most numerous ciliates includes all mass forms of the summer phy- planktonic ciliates are oligotrichids of gg. Strombidium, toplankton. Since most ciliates species are able to actively Strobilidium, Lohmanniella, and Tintinnopsis [31]. In consume the smallest particles, the bacteria represent a the southern Baltic bays in July, along with the develop- considerable part of their ration [31]. ment of typical plankton oligotrichids, a sharp increase In the southwestern part of the Gdansk Basin, sea- in the number of small ciliates of g. Cyclidium is sonal changes in the dominance of ciliates with differ- observed [23]. ent feeding types was noted: relatively large phytoph-

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 22 MIRONOVA et al. ages reached the highest abundance in spring and fall, trolled by the predators pressure, while their production small microphages dominated in the summer, and large is limited by the shortage of resources [36]. predatory ciliates peaked in spring [43]. Due to high rates of growth and reproduction, the Depending on their range of feeding spectrum, the biomass and production of planktonic ciliates may be ciliates are split into groups of “specialists” (which have large. For instance, according to Arndt [7], the biomass strongly defined kinds of food) and “generalists” (which of planktonic ciliates in the Baltic is often comparable have a wide feeding spectrum). Among the Baltic ciliates, to or even surpasses the biomass of mesozooplankton. there are forms that have both feeding strategies: special- In the Gdansk Basin, the ciliates made up 10Ð13% of ists such as Tintinnopsis lobiancoi, Strombidium conicum, the mean annua zooplankton biomass [43]. On average and Strobilidium sp. and generalists such as Lohmaniella for the Neva Bay, the share of the planktonic ciliates oviformis, Strobilidium spiralis, Strombidium sp., Tintin- reached 16% of the daily destruction of the whole pool nidium fluviatile, and Tintinnopsis beroidea [31]. of organic matter, which exceeded the contributions of rotifers and crustaceans (10%) [5]. The daily produc- Like the species composition, the abundance of cil- 2 iates considerably changes in time and space. The tion of ciliates was 25 mg/l or 50 mg C/m , which made abundance of planktonic ciliates varies considerably in up about 20% of the phytoplankton primary production different parts of the Baltic Sea: in the coastal and open and 30% of the bacterial production [5]. In the Gdansk waters and in the surface and deep water layers. In gen- Basin, the daily production of ciliates during the vege- eral, the number of planktonic ciliates in the Baltic fluc- tation season averaged 12Ð15% of the primary produc- tuates within the limits of 1…88 × 103 ex./l; the biom- tion [43]. ass, 0.023Ð0.3 mg C/l. The abundance peaks both in spring/autumn [5, 36] and in summer [43]. As a rule, CONCLUSIONS the number of planktonic ciliates in the coastal waters and in shallow bays is an order higher than in the open The given data shows that the ciliates play important waters [5, 36]. role in shaping the total biodiversity and productivity of the Baltic Sea pelagic communities. Special attention The highest abundance of ciliates was noted in the shal- should be paid to nannociliates (the ciliates less than low bays at the south of the Baltic (0.17Ð88) × 103 ex./l) 20 µm in size), which are the most productive and [23]. In the Neva Bay, the annual average number of cili- numerous part of this community. Due to some method- ates is 3 × 103 ex./l, reaching 8 × 103 ex./l in spring. The ical drawbacks, this group of ciliates is studied to a biomass fluctuates between 0.01 mg C/l in autumn and lesser extent than larger ciliates. Many problems related 74 mg C/l in spring [5]. In the Bornholm Basin, the bio- to the and ecology of nannociliates that play mass of planktonic ciliates in spring ranged from 0.13 to such a great role in the functioning of Baltic pelagic 0.3 mg C/l [9]. communities remain unclear. The authors hope that The ciliates usually spread irregularly within the exploiting modern research methods (including molec- water column. For example, in the shallow waters of the ular techniques) will promote studies on the biodiver- southern Baltic (e.g., in the DarssÐZiengst estuarian sity and ecological characteristics of small ciliates in system), most ciliates dwells in the upper water layer, the upcoming years. This would allow for a more exact but the maximal biomass is near the bottom where the determination of the productionÐdestruction potential of larger benthic ciliates are concentrated [32]. On the the Baltic planktonic communities and bring us closer to other hand, the number and biomass of ciliates both at solving the problem of quantitatively assessing the pro- the surface and near the bottom are in fact similar to cesses of eutrophication and pollution in the blue water each other in the Gdansk Basin [43]. and coastal ecosystems of the Baltic Sea. The water salinity and temperature greatly influence the distribution of planktonic ciliates along the sea area. ACKNOWLEDGMENTS It was revealed that, in the southern Baltic, 12Ð24% of This work was supported by the Russian Founda- the variations in ciliates numbers in particular relate to tion for Basic Research, (project no. 07-04-00662), these factors [36]. the Science School of Production Hydrobiology (grant The trophic factor (quality and amount of food, as nos. NShÐ5577.2006.4 and NShÐ1993.2008.4), and the well as the presence of predators) influences the abun- program “Scientific Bases of Preserving Biodiversity in dance of planktonic ciliates. In different Baltic regions Russia” of the Russian Academy of Science. the number of ciliates in the water column greatly corre- lated with the primary production and raised alongside the eutrophication [7, 23, 36]. In the southern Baltic, REFERENCES where the level of primary production was noted to be 1. Agamaliev, F., Infuzorii Kaspiiskogo morya (Infusorians higher than in the northern part, the small microphagous of the Caspian Sea), Leningrad: Nauka, 1983. ciliates developed predominantly [36]. As it was shown 2. Boikova, E.G., Prosteishie - biomonitory morskoi sredy by studies on the coastal pelagic communities at the Bal- (Protozoans: Biomonitoring Organisms of the Marine tic south, during the summer the ciliates biomass is con- Environment), Riga: Zinatne, 1989.

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 PLANKTONIC CILIATES OF THE BALTIC SEA (A REVIEW) 23

3. Mamaeva, N.V., Infusorians of the Pelagic Zone of the 19. Fenchel, T., The Ecology of Marine Microbenthos. I. Baltic Sea in MayÐJune 1984, in Ekosistemy Baltiki v The Quantitative Importance of Ciliates As Compared mae - iyune 1984 g. (po materialam 39-go reisa NIS with Metazoans in Various Types of Sediments, Ophelia, “Akademik Kurchatov”) (Ecosystems of the Baltic Sea 1967, vol. 4, pp. 121Ð 137. in MayÐJune 1984 (by Materials of the 39th Voyage of 20. Fenchel, T., The Ecology of Marine Microbenthos. II. the Academician Kurchatov Research Vessel), Moscow: The Food of Marine Benthic Ciliates, Ophelia, 1968, Nauka, 1987, pp. 152Ð160. vol. 5, pp. 73Ð121. 4. Opredelitel’ flory i fauny Severnykh morei SSSR (Identi- 21. Fenchel, T., The Ecology of Marine Microbenthos. III. fication Guide to the Flora and Fauna of the Northern The Reproductive Potential of Ciliates, Ophelia, 1968, Seas of the USSR), Moscow: Sov. Nauka, 1948. vol. 5, pp. 123Ð136. 5. Khlebovich, T.V., Planktonic Infusorians, in Neva Bay: gidrobiologicheskie issledovaniya (The Neva Bay: 22. Fenchel, T., The Ecology of Marine Microbenthos. IV. Hydrobiological Studies), Leningrad: Nauka, 1987, pp. Structure and Function of the Benthic Ecosystem, Its 77Ð82. Chemical and Physical Factors and the Microfauna Communities with the Special Reference to the Ciliated 6. Alekperov, I., Fauna of Free-Living Ciliates in Azer- Protozoa, Ophelia, 1969, vol. 6, pp. 1Ð182. baijan: Modern Studies and Perspectives, Protistology, 2007, vol. 5, no. 1, p. 11. 23. Garstecki, T., Verhoeven, R., Wickham, S., and Arndt, H., Benthic-Pelagic Coupling: A Comparison of the Commu- 7. Arndt, H., On the Importance of Planktonic Protozoans nity Structure of Benthic and Planktonic Heterotrophic in the Eutrophication Process of the Baltic Sea, Int. Rev. Protists in Shallow Inlets of the Southern Baltic, Fresh- Hydrobiol., 1991, vol. 76, pp. 387Ð396. water Biol., 2000, vol. 45, pp. 147Ð167. 8. Axelsson, B. and Norrgren, L., Parasite Frequency and Liver Anomalies in Three-Spined Stickleback, Gasteros- 24. Gerlach, S., Checkliste Der Fauna Der Kieler Bucht Und teus aculeatus (L.), after Long-Term Exposure to Pulp Eine Bibliographie Zur Biologie Und Oekologie Der Mill Effluents in Marine Mesocosms, Arch. Environ. Kieler Bucht, Die Biodiversitat in der deutschen Nord- Contam. Toxicol., 1991, vol. 21, pp. 505Ð513. und Ostsee, Koblenz: Bundesanstalt fur Gewasserkunde, 2000. 9. Beusekom, J., Mengedoht, D., Augustin, C., et al., Phy- toplankton, Protozooplankton and Nutrient Dynamics in 25. Granskog, M., Kaartokallio, H., Kuosa, H., et al., Sea Ice the Bornholm Basin (the Baltic Sea) in 2002Ð2003 dur- in the Baltic Sea—A Review, Estuarine, Coastal Shelf ing the German GLOBEC Project, Int. J. Earth Sci., Sci., 2006, vol. 70, pp. 145Ð160. 2007 (Doi: 10/1007/s00531-007-0231-x). 26. Hansson, H., South Scandinavian Marine Protoctista, 10. Biernacka, I., Tintinnoinea W Zatoce Gdanskiej I Provisional Check-list compiled at the Tjarno Marine Wodach Przyleglych, Biul. Morsk. Lab. Rybackiego w Biological Laboratory, 1991Ð1997 Gdyni, 1948, vol. T. 4, pp. 73Ð91. (www.tmbl.gu.se/libdb/taxon/neat_pdf/NEAT*Protista.pdf). 11. Biernacka, I., Studia Nad Rozrodem Niektorych 27. Hedin, H., Tintinnids of the Swedish West Coast, Zoon, Gatunkow Rodzaju Tintinnopsis Stein, Ann. Univ. M. 1974, vol. 2, pp. 123Ð133. Curie-Sklodowska, 1952, vol. T. 6, pp. 211Ð247. 28. Hedin, H., On the Ecology of Tintinnids of the Swedish 12. Biernacka, I., Die Protozoenfauna in Der Danziger West Coast, Zoon, 1975, vol. 3, pp. 125Ð140. Bucht. 1. Die Protozoen in Einigen Biotopen Der 29. Kahl, A., Urtiere Oder Protozoa: Wimpertiere Oder Cil- Seekuste, Pol. Arch. Hydrobiol., 1962, vol. 10, pp. 39Ð iata, Die Tierwelt Deutschlands, Jena: G. Fisher, 1930. 109. 30. Kahl, A., Ciliata Libera et Ectocommensalia, Die Tier- 13. Biernacka, I., Die Protozoenfauna in Der Danziger welt Der Nord- Und Ostsee, Leipzig: G. Grimpe, Bucht. 2. Die Charakteristik Der Protozoen in Unter- E. Wagler, 1933. suchten Biotopen Der Seekuste, Pol. Arch. Hydrobiol., 1963, vol. 11, pp. 17Ð75. 31. Kivi, K. and Setala, O., Simultaneous Measurement of 14. Bock, K., Biologische Untersuchungen, Insbesondere Food Particle Selection and Clearance Rates of Plank- Der Ciliatenfauna, in Der Durch Abwasser Belasteten tonic Oligotrich Ciliates (Ciliophora: Oligotrichina), Schlei (Westliche Ostsee), Kiel. Meeresforsch, 1960, Mar. Ecol. Prog. Ser., 1995, vol. 119, pp. 125Ð137. vol. 16, pp. 57Ð68. 32. Klinkenberg, G. and Schumann, R., Micro-Organism 15. Boikova, E., Ecological Character of Protozoans (Cili- Activity in Aggregate Layers in Shallow Eutrophic ata, Flagellata) in the Baltic Sea, Ophelia, 1984, vol. 3, Brackish Water As Influenced by Wind Induced Mixing; pp. 23Ð32. An Experimental Approach, Neth. J. Aquat. Ecol., 1994, vol. 28, no. 3, pp. 421Ð426. 16. Czapik, A. and Jordan, A., Les Cilies Psammophilles de la Mer Baltique aux Environs de Gdansk, Acta Proto- 33. Kurilov, A., A Synopsis of the Black Sea Fauna of Plank- zool., 1976, vol. 15, pp. 423Ð445. tonic Ciliates, Protistology, 2007, vol. 5, no. 1, p. 47. 17. Czapik, A. and Jordan, A., Les Cilies Psammophilles de 34. Lindquist, A., Studien Fiber Das Zooplankton Der Bott- la Mer Baltique aux Environs de Gdansk (Partie 2), Acta ensee II. Zur Verbreitung and Zusammensetzung Des Protozool., 1977, vol. 16, pp. 165Ð168. Zooplanktons, Inst. Mar. Res. Lysekil. Ser. Biol. Rep., 18. Dietrich, D. and Arndt, H., Biomass Partitioning of 1959, vol. 11, pp. 1Ð136. Benthic Microbes in a Baltic Inlet: Relationships 35. Palm, H. and Dobberstein, R., Occurrence of Trichod- between Bacteria, Algae, Heterotrophic Flagellates and inid Ciliates (Peritricha: Urceolariidae) in the Kiel Fjord, Ciliates, Mar. Biol. (Berlin), 2000, vol. 136, pp. 309Ð the Baltic Sea, and Its Possible Use As a Biological Indi- 322. cator, Parasitol. Res., 1999, vol. 85, pp. 726Ð732.

INLAND WATER BIOLOGY Vol. 2 No. 1 2009 24 MIRONOVA et al.

36. Samuelsson, K., Berglund, J., and Andersson, A., Fac- 40. Vuorinen, I. and Purasjoki, J., Quantitative Untersuchun- tors Structuring the Heterotrophic Flagellate and Ciliate gen Uber Die Mikrofauna Des Meeresbodens in Der Community along a Brackish Water Primary Production Umbegung Der Zoologischen Station Tvarminne An Der Gradient, J. Plankton. Res., 2006, vol. 28, pp. 345Ð359. Sudkuste Finnlands, Soc. Sci. Fenn. Comm. Biol., 1945, 37. Sauerbrey, E., Beobachtungen Uber Einige Neue Oder vol. 9, no. 14, pp. 1Ð24. Wenig Bekannte Marine Ciliaten, Arch. Protistenkd., 41. Vuorinen, I. and Ranta, E., Can Signs of Eutrophication 1928, vol. 62, pp. 355Ð407. Be Found in the Mesozooplankton of Seili, Archipelago 38. Telesh, I., Postel, L., Heerkloss, R., Mironova, E., and Sea?, Kiel. Meeresforschung (Sonderh.), 1988, vol. 6, Skarlato, S., Zooplankton of the Open Baltic Sea: Atlas, pp. 126Ð140. Meereswiss. Ber. Warnemünde: Inst. Ostseeforschung, 42. Wasik, A., Mikolajczyk, E., and Ligowski, R., Aggluti- 2008, no. 73, pp. 1Ð251. nated Loricae of Some Baltic and Antarctic Tintinnina 39. Vannini, C., Petroni, G., Verni, F., and Rosati, G., A Bac- Species (Ciliophora), J. Plankton Res., 1996, vol. 18, terium Belonging to the Rickettsiaceae Family Inhabits pp. 1931Ð1940. the Cytoplasm of the Marine Ciliate Diophrys appendic- 43. Witec, M., Annual Changes of Abundance and Biomass ulata (Ciliophora, Hypotrichia), Microbial Ecol., 2005, of Planktonic Ciliates in the Gdansk Basin, Southern vol. 49, pp. 434Ð442. Baltic, Int. Rev. Hydrobiol., 1998, vol. 83, pp. 163Ð182.

INLAND WATER BIOLOGY Vol. 2 No. 1 2009