Jointed Appendages

Total Page:16

File Type:pdf, Size:1020Kb

Jointed Appendages Advanced Invertebrates Have Complex Bodies and Internal Systems • Arthropoda • Most successful phylum on Earth-Animal phylum with largest number of species: insects, crustaceans, spiders, etc. • Exoskeleton – chitin • Striated muscle • Articulation What is an Arthropod? • Exoskeleton- • Tough outer covering • Protection and support • three layers excreted from the epidermis: • composed of Chitin and proteins, often hardened with calcium carbonate • Segmented body • Body often divided into head, thorax, and abdomen (segmentation) • Head and thorax can be fused in a cephalothorax • Fewer body segments • Highly specialized appendages for feeding, movement, etc. • Different body plans for different environments What is an Arthropod? • Jointed appendages • Appendage is a structure that extends from body wall • Example: legs and antennae • True coelom • Cephalization • Divided into Subphyla Subphylum Trilobitomorpha-Triolobites-extinct Subphylum Chelicerata-arachnids, horseshoe crabs, and sea spiders Subphylum Myriapoda-centipedes, millipedes, etc. Subphylum Crustacea-shrimp, lobsters, crabs Subphylum Hexapoda-insects Form and Function in the Arthropods • Feeding: • Arthropods can be: • herbivores, carnivores, parasites, etc. • Mouth parts vary from groups of arthropods. • Respiration • 2 ways aquatic arthropods respire: • Featherlike gills -Found in crabs and other aquatic arthropods. • Book gills -Found in Horseshoe crab. • Circulation: All have an Open Circulatory system • Process: • 1) Heart pumps blood through arteries into tissue. • 2) Blood leaves vessel and moves through sinuses. • 3) Blood then collects in large sinus around heart. • 4) Reenters blood. Form and Function in the Arthropods • Response: • All arthropods have a brain • Also a ventral nerve cord • Ganglia are found along this chord. • Compound eye – multiple lens each w/ light detectors • Movement: • Arthropods use muscles to move. • Muscles generate force by Contracting and pulling • Muscles flex (bend) or Extend (straighten) at the joint causing movement. Growth and Development in Arthropods • Aquatic arthropods • External fertilization and internal fertilization • Molting • Exoskeleton does not grow with body. • When exoskeleton is outgrown arthropods molt • Molting – the removing and replacement of arthropod exoskeleton • Molting is controlled by Endocrine system and hormones Crustaceans • Dominant marine arthropods: copepods, barnacles, isopods, amphipods, shrimps, lobsters, crabs • The form and function of the crustaceans 1st three appendages: • 1st and 2nd antennae – sensory hairs. • 3rd mandibles – chewing mouthpart. • Some are filter feeders, others scavengers, parasites, carnivores • Appendages specialized for different functions: feeding, swimming, carrying eggs, etc. • Male transfers sperm directly to female to ensure reproductive success. Arthropods: Subphylum Crustacea • Basic characteristics: • The parts of a crustacean’s body: • Cephalothorax – fusion of head and thorax • Thorax – body segment that houses most internal organs • Carapace – part of the exoskeleton that covers the cephalothorax • Abdomen – posterior part of body Crustaceans • Decopods-Order Decapoda • Examples: Crayfish, Lobster, and crabs • 5 pairs of legs • first pair called Chelipeds • Modified in to Claws • rest of the pair of legs for Walking legs • Along the abdomen Swimmerets • Final abdominal segment fused into Paddle like appendage called the telson • Most have Larva stage called Nauplius • Copepods-Class Hexanauplia ”oar-feet” • Barnacles- Class Maxillopoda Cirripedia-"curl-footed“ • Horseshoe Crabs-Class Merostomata • Sea Spiders -Class Pycnogonida Copepods-”oar-feet” Found in the sea and nearly every freshwater habitat. Some species are planktonic (drifting in sea waters), some are benthic (living on the ocean floor) Eggs hatch into larval form (Nauplius), with a head and a tail but no true thorax or abdomen. The larva molts several times until it resembles the adult. The Nauplius form is so different from the adult form that it was once thought to be a separate species. Lobster Body Structure (bkgd)Comstock Images/PictureQuest Barnacles- Cirripedia-"curl-footed". Exclusively marine, and tend to live in shallow and tidal waters, typically in erosive settings. Related to crabs and lobsters Sessile suspension feeders 2 nektonic (active swimming) larval stages Around 1,220 species are currently known. Horseshoe Crabs (Class Merostomata): Among the oldest creatures on Earth, having remained virtually unchanged for millions of years • Horse-shaped carapace that encloses a body with five pairs of legs • They live and burrow in soft sediments, normally near shore, where they scavenge and feed on other invertebrates • Mating pairs come onto beaches each spring to breed and lay their eggs in wet sand Sea Spiders (Class Pycnogonida): • Four or more pairs of jointed legs • Proboscis for feeding on soft invertebrates like sea anemones and hydrozoans - More common in cold water, but found worldwide http://www.serc.si.edu/education/resources/bluecrab/molting.jsp MOLTING- Periodic shedding of exoskeleton to allow growth •Growth puts pressure on old shell •Stimulating molting hormones to digest old exoskeleton and make new one underneath •Shell cracks open and animal backs out •Animal pumps up with water and expands •New shell hardens in few days •While waiting for new exoskeleton to harden = particularly vulnerable to predators “soft shelled crabs”.
Recommended publications
  • First Molecular Data and Morphological Re-Description of Two
    Journal of King Saud University – Science 33 (2021) 101290 Contents lists available at ScienceDirect Journal of King Saud University – Science journal homepage: www.sciencedirect.com Original article First molecular data and morphological re-description of two copepod species, Hatschekia sargi and Hatschekia leptoscari, as parasites on Parupeneus rubescens in the Arabian Gulf ⇑ Saleh Al-Quraishy a, , Mohamed A. Dkhil a,b, Nawal Al-Hoshani a, Wejdan Alhafidh a, Rewaida Abdel-Gaber a,c a Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia b Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt c Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt article info abstract Article history: Little information is available about the biodiversity of parasitic copepods in the Arabian Gulf. The pre- Received 6 September 2020 sent study aimed to provide new information about different parasitic copepods gathered from Revised 30 November 2020 Parupeneus rubescens caught in the Arabian Gulf (Saudi Arabia). Copepods collected from the infected fish Accepted 9 December 2020 were studied using light microscopy and scanning electron microscopy and then examined using stan- dard staining and measuring techniques. Phylogenetic analyses were conducted based on the partial 28S rRNA gene sequences from other copepod species retrieved from GenBank. Two copepod species, Keywords: Hatschekia sargi Brian, 1902 and Hatschekia leptoscari Yamaguti, 1939, were identified as naturally 28S rRNA gene infected the gills of fish. Here we present a phylogenetic analysis of the recovered copepod species to con- Arabian Gulf Hatschekiidae firm their taxonomic position in the Hatschekiidae family within Siphonostomatoida and suggest the Marine fish monophyletic origin this family.
    [Show full text]
  • Evolutionary History of Inversions in the Direction of Architecture-Driven
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset.
    [Show full text]
  • A Systematic and Experimental Analysis of Their Genes, Genomes, Mrnas and Proteins; and Perspective to Next Generation Sequencing
    Crustaceana 92 (10) 1169-1205 CRUSTACEAN VITELLOGENIN: A SYSTEMATIC AND EXPERIMENTAL ANALYSIS OF THEIR GENES, GENOMES, MRNAS AND PROTEINS; AND PERSPECTIVE TO NEXT GENERATION SEQUENCING BY STEPHANIE JIMENEZ-GUTIERREZ1), CRISTIAN E. CADENA-CABALLERO2), CARLOS BARRIOS-HERNANDEZ3), RAUL PEREZ-GONZALEZ1), FRANCISCO MARTINEZ-PEREZ2,3) and LAURA R. JIMENEZ-GUTIERREZ1,5) 1) Sea Science Faculty, Sinaloa Autonomous University, Mazatlan, Sinaloa, 82000, Mexico 2) Coelomate Genomic Laboratory, Microbiology and Genetics Group, Industrial University of Santander, Bucaramanga, 680007, Colombia 3) Advanced Computing and a Large Scale Group, Industrial University of Santander, Bucaramanga, 680007, Colombia 4) Catedra-CONACYT, National Council for Science and Technology, CDMX, 03940, Mexico ABSTRACT Crustacean vitellogenesis is a process that involves Vitellin, produced via endoproteolysis of its precursor, which is designated as Vitellogenin (Vtg). The Vtg gene, mRNA and protein regulation involve several environmental factors and physiological processes, including gonadal maturation and moult stages, among others. Once the Vtg gene, mRNAs and protein are obtained, it is possible to establish the relationship between the elements that participate in their regulation, which could either be species-specific, or tissue-specific. This work is a systematic analysis that compares the similarities and differences of Vtg genes, mRNA and Vtg between the crustacean species reported in databases with respect to that obtained from the transcriptome of Callinectes arcuatus, C. toxotes, Penaeus stylirostris and P. vannamei obtained with MiSeq sequencing technology from Illumina. Those analyses confirm that the Vtg obtained from selected species will serve to understand the process of vitellogenesis in crustaceans that is important for fisheries and aquaculture. RESUMEN La vitelogénesis de los crustáceos es un proceso que involucra la vitelina, producida a través de la endoproteólisis de su precursor llamado Vitelogenina (Vtg).
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Order HARPACTICOIDA Manual Versión Española
    Revista IDE@ - SEA, nº 91B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Maxillopoda: Copepoda Order HARPACTICOIDA Manual Versión española CLASS MAXILLOPODA: SUBCLASS COPEPODA: Order Harpacticoida Maria José Caramujo CE3C – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. [email protected] 1. Brief definition of the group and main diagnosing characters The Harpacticoida is one of the orders of the subclass Copepoda, and includes mainly free-living epibenthic aquatic organisms, although many species have successfully exploited other habitats, including semi-terrestial habitats and have established symbiotic relationships with other metazoans. Harpacticoids have a size range between 0.2 and 2.5 mm and have a podoplean morphology. This morphology is char- acterized by a body formed by several articulated segments, metameres or somites that form two separate regions; the anterior prosome and the posterior urosome. The division between the urosome and prosome may be present as a constriction in the more cylindric shaped harpacticoid families (e.g. Ectinosomatidae) or may be very pronounced in other familes (e.g. Tisbidae). The adults retain the central eye of the larval stages, with the exception of some underground species that lack visual organs. The harpacticoids have shorter first antennae, and relatively wider urosome than the copepods from other orders. The basic body plan of harpacticoids is more adapted to life in the benthic environment than in the pelagic environment i.e. they are more vermiform in shape than other copepods. Harpacticoida is a very diverse group of copepods both in terms of morphological diversity and in the species-richness of some of the families.
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Orden POECILOSTOMATOIDA Manual
    Revista IDE@ - SEA, nº 97 (30-06-2015): 1-15. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Maxillopoda: Copepoda Orden POECILOSTOMATOIDA Manual CLASE MAXILLOPODA: SUBCLASE COPEPODA: Orden Poecilostomatoida Antonio Melic Sociedad Entomológica Aragonesa (SEA). Avda. Francisca Millán Serrano, 37; 50012 Zaragoza [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos El orden Poecilostomatoida Thorell, 1859 tiene una posición sistemática discutida. Tradicionalmente ha sido considerado un orden independiente, dentro de los 10 que conforman la subclase Copepoda; no obstante, algunos autores consideran que no existen diferencias suficientes respeto al orden Cyclopoida, del que vendrían a ser un suborden (Stock, 1986 o Boxshall & Halsey, 2004, entre otros). No obstante, en el presente volumen se ha considerado un orden independiente y válido. Antes de entrar en las singularidades del orden es preciso tratar sucintamente la morfología, ecolo- gía y biología de Copepoda, lo que se realiza en los párrafos siguientes. 1.1. Introducción a Copepoda Los copépodos se encuentran entre los animales más abundantes en número de individuos del planeta. El plancton marino puede alcanzar proporciones de un 90 por ciento de copépodos respecto a la fauna total presente. Precisamente por su número y a pesar de su modesto tamaño (forman parte de la micro y meiofauna) los copépodos representan una papel fundamental en el funcionamiento de los ecosistemas marinos. En su mayor parte son especies herbívoras –u omnívoras– y por lo tanto transformadoras de fito- plancton en proteína animal que, a su vez, sirve de alimento a todo un ejército de especies animales, inclu- yendo gran número de larvas de peces.
    [Show full text]
  • Cirripedios CD.Pdf
    F R E P L A T A COMISIÓN ADMINISTRADORA DEL RÍO DE LA PLATA COMISIÓN TÉCNICA MIXTA DEL FRENTE MARÍTIMO Proyecto PROTECCIÓN AMBIENTAL DEL RÍO DE LA PLATA Y SU FRENTE MARÍTIMO: PREVENCIÓN Y CONTROL DE LA CONTAMINACIÓN Y RESTAURACIÓN DE HÁBITATS Proyecto PNUD/GEF RLA/99/G31 Subproyecto ESPECIES ANIMALES BENTÓNICAS INTRODUCIDAS, ACTUAL O POTENCIALMENTE INVASORAS EN EL SISTEMA DEL RIO DE LA PLATA Y LA REGION COSTERA OCEÁNICA ALEDAÑA DEL URUGUAY Y DE LA ARGENTINA. ALCANCE: DIAGNÓSTICO DE SITUACIÓN. RESPONSABLE: Pablo Enrique Penchaszadeh MUSEO ARGENTINO DE CIENCIAS NATURALES “BERNARDINO RIVADAVIA” Buenos Aires 2003 Este informe puede ser citado como This report may be cited as: Penchaszadeh, P.E., M.E. Borges, C. Damborenea, G. Darrigran, S. Obenat, G. Pastorino, E. Schwindt y E. Spivak. 2003. Especies animales bentónicas introducidas, actual o potencialmente invasoras en el sistema del Río de la Plata y la región costera oceánica aledaña del Uruguay y de la Argentina. En “Protección ambiental del Río de la Plata y su frente marítimo: prevención y control de la contaminación y restauración de habitats” Proyecto PNUD/GEF RLA/99/g31, 357 páginas (2003). Editor: Pablo E. Penchaszadeh Asistentes al editor: Guido Pastorino, Martin Brögger y Juan Pablo Livore. 2 TABLA DE CONTENIDOS RESUMEN ...................................................................................................................... 7 INTRODUCCIÓN........................................................................................................ 11 ALGUNAS DEFINICIONES.............................................................................................
    [Show full text]
  • Introduction to Arthropoda
    1 1 2 Introduction to Arthropoda The arthropods are the most successful phylum of animals, both in diversity of distribution and in numbers of species and individuals. They have adapted successfully to life in water, on land and in the air. About 80% of all known animal species belong to the Arthropoda - about 800,000 species have been described, and recent estimates put the total number of species in the phylum at about 6 million. Evolution : • Probably evolved from a Peripatus - like ancestor, which in turn evolved from a segmented worm Metamerism • Metamerism- body is segmented. Exoskeleton and metamerism causes molting Exoskeleto • Exoskeleton- body covered with a hard external skeleton • Why an exoskeleton? • Why not bones? Exoskeleton good for small things, protects body from damage (rainfall, falling, etc.). • Bones better for large things Bilateral Symmetry : • Bilateral Symmetry- body can be divided into two identical halves Jointed Appendages : • Jointed Appendages- each segment may have one pair of appendages, such as: • legs , wings , mouthparts Open Circulatory System : • Open Circulatory System- blood washes over organs and is not entirely closed by blood vessels. Our system is a closed one Ventral Nerve Cord : • one nerve cord, similar to our spinal column • 2 3 Open Circulatory System Closed Circulatory System Classification : 1-Subphylum Trilobitomorpha 2-Subphylum Cheliceriformes Class Chelicerata Subclass Merostomata (horseshoe crabs) 3- Subclass Arachnida (spiders, scorpions, mites, ticks) Class Pycnogonida (sea
    [Show full text]
  • An Evolutionary Perspective of Dopachrome Tautomerase Enzymes in Metazoans
    Article An Evolutionary Perspective of Dopachrome Tautomerase Enzymes in Metazoans Umberto Rosani 1,2,*, Stefania Domeneghetti 1, Lorenzo Maso 1, K. Mathias Wegner 2 and Paola Venier 1,* 1 Department of Biology, University of Padova, Padova, 35121, Italy; [email protected] (S.D.); [email protected] (L.M.) 2 Alfred Wegener Institute (AWI)—Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, List auf Sylt25992, Germany; [email protected] * Correspondence: [email protected] (U.R.); [email protected] (P.V.) Received: 16 May 2019; Accepted: 24 June 2019; Published: 28 June 2019 Abstract: Melanin plays a pivotal role in the cellular processes of several metazoans. The final step of the enzymically-regulated melanin biogenesis is the conversion of dopachrome into dihydroxyindoles, a reaction catalyzed by a class of enzymes called dopachrome tautomerases. We traced dopachrome tautomerase (DCT) and dopachrome converting enzyme (DCE) genes throughout metazoans and we could show that only one class is present in most of the phyla. While DCTs are typically found in deuterostomes, DCEs are present in several protostome phyla, including arthropods and mollusks. The respective DCEs belong to the yellow gene family, previously reported to be taxonomically restricted to insects, bacteria and fungi. Mining genomic and transcriptomic data of metazoans, we updated the distribution of DCE/yellow genes, demonstrating their presence and active expression in most of the lophotrochozoan phyla as well as in copepods (Crustacea). We have traced one intronless DCE/yellow gene through most of the analyzed lophotrochozoan genomes and we could show that it was subjected to genomic diversification in some species, while it is conserved in other species.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]