Probe Set I Title Gene Symbomap Locatiogo Bio Procgo Cell

Total Page:16

File Type:pdf, Size:1020Kb

Probe Set I Title Gene Symbomap Locatiogo Bio Procgo Cell Probe Set I Title Gene SymboMap LocatioGO bio procGO cell comGO molec fu 1000_at mitogen-activMAPK3 16p12-p11.2 GO:7165;signal transduct GO:4707;MA 1005_at dual specific DUSP1 5q34 GO:6979;oxidative stress GO:4726;non 1007_s_at 1008_f_at 1009_at histidine triadHINT1 5q31.2 GO:7165;sig GO:5856;cyt GO:5080;pro 101_at dual-specific DYRK4 12p13.33 GO:6468;protein phosphoGO:4672;pro 1011_s_at tyrosine 3-moYWHAE 17p13.3 GO:7242;intracellular signGO:5515;pro 1014_at polymerase (POLG 15q25 GO:6261;DNGO:5739;mitGO:3895;gam 1018_at wingless-typeWNT10B 12q13 GO:7165;signal transduction;not record 1019_g_at wingless-typeWNT10B 12q13 GO:7165;signal transduction;not record 1020_s_at calcium and CIB1 15q25.3-q26 GO:6302;double-strand b GO:5515;pro 1030_s_at topoisomerasTOP1 20q12-q13.1 GO:3917;DN 1031_at SFRS proteinSRPK1 6p21.3-p21.2GO:8380;RNGO:5634;nucGO:3750;cel 1034_at tissue inhibitoTIMP3 22q12.3 GO:6508;proteolysis and GO:8191;me 1035_g_at tissue inhibitoTIMP3 22q12.3 GO:6508;proteolysis and GO:8191;me 1038_s_at 1039_s_at hypoxia-induHIF1A 14q21-q24 GO:6950;stress response GO:3700;tra 1040_s_at abl-interacto ABI-2 2q33 GO:5070;SH 1044_s_at E2F transcripE2F5 8q21.13 GO:74;cell cycle control;p GO:5515;pro 1046_at retinoic acid-RI58 10q23.33 1048_at retinoid X recRXRG 1q22-q23 GO:4886;ret 1049_g_at retinoid X recRXRG 1q22-q23 GO:4886;ret 1050_at melan-A MLANA 9p24.1 GO:5887;inteGO:8222;tum 1051_g_at melan-A MLANA 9p24.1 GO:5887;inteGO:8222;tum 1052_s_at CCAAT/enhaCEBPD 8p11.2-p11.1GO:6366;transcription from Pol II prom 1053_at replication faRFC2 7q11.23 GO:5663;DNGO:3687;DN 1054_at replication faRFC4 3q27 GO:6271;DNGO:5663;DNGO:3687;DN 1055_g_at replication faRFC4 3q27 GO:6271;DNGO:5663;DNGO:3687;DN 1057_at 1058_at WAS protein WASF3 13q12 GO:6461;proGO:15629;acGO:8651;act 106_at runt-related tRUNX3 1p36 GO:6366;transcription fromGO:5524;AT 1064_at protein tyros PTK9 12p11.22 GO:6468;protein phosphoGO:4713;pro 1067_at fms-related t FLT3LG 19q13.3 GO:7165;sig GO:5625;sol GO:5102;liga 1070_at general transGTF2B 1p22-p21 GO:6366;transcription fromGO:16251;ge 1071_at GATA bindinGATA2 3q21 GO:6366;tra GO:5634;nucGO:3700;tra 1072_g_at GATA bindinGATA2 3q21 GO:6366;tra GO:5634;nucGO:3700;tra 1073_at transcription TCEA1 3p22-p21.3 GO:6357;transcription regGO:16251;ge 1074_at RAB1A, memRAB1A 2p14 GO:16192;vesicle transpoGO:3928;RA 1081_at 1085_s_at phospholipasPLCG2 16q24.1 GO:7166;cell surface receGO:4629;pho 109_at Rab9 effectoRAB9P40 9q34.11 GO:6898;recGO:5768;endGO:5482;ves 1093_at protein phos PPP2R1B 11q23 GO:8601;pro 1100_at interleukin-1 IRAK1 Xq28 GO:6952;defense responsGO:4704;NF 1101_at amyloid betaAPBB1 11p15 GO:7165;signal transduct GO:5208;am 1104_s_at 1105_s_at T cell receptoTRB 7q34 1106_s_at T cell receptoTRA 14q11.2 1107_s_at interferon-sti ISG15 1p36.33 111_at Rab geranylgRABGGTA 14q11.2 GO:6464;protein modifica GO:4663;RA 1113_at bone morphoBMP2 20p12 GO:1501;skeletal developGO:5102;liga 1114_at bone morphoBMP4 14q22-q23 GO:7498;mesoderm deveGO:4871;sig 1116_at CD19 antige CD19 16p11.2 GO:7166;cel GO:5887;inteGO:5057;rec 1119_at replication prRPA2 1p35 GO:6261;DNGO:5662;DNGO:3697;sin 1120_at glutathione SGSTM3 1p13.3 GO:8065;establishment o GO:4364;glu 1121_g_at glutathione SGSTM3 1p13.3 GO:8065;establishment o GO:4364;glu 1122_f_at 1126_s_at 1130_at mitogen-activMAP2K1 15q22.1-q22 GO:7165;signal transduct GO:4708;MA 1131_at mitogen-activMAP2K2 7q32 1133_at EN2 7q36 1134_at activated p21ACK1 3q29 GO:7010;cyt GO:5737;cyt GO:4715;non 1135_at G protein-co GPRK5 10q24-qter GO:7188;G-pGO:5737;cyt GO:4678;G-p 1136_at deoxythymid DTYMK 2 GO:6259;DNA metabolismGO:4798;thy 1138_at solute carrierSLC20A1 2q11-q14 GO:6832;smGO:5887;inteGO:4872;rec 1140_at integrin, alphITGAE 17p13 GO:7159;leuGO:8305;inteGO:4895;cel 1141_at 1147_at 1148_s_at 1150_at 1151_at 1154_at eukaryotic traEIF2S1 14q23.3 GO:5844;polGO:3743;tra 1158_s_at calmodulin 3 CALM3 19q13.2-q13.3 GO:5509;cal 1160_at 1161_at 1162_g_at 1164_at 1166_at proteasome PSMD2 3q27.3 GO:5837;26S proteasome 1170_at 1173_g_at 1177_at 1178_at 1179_at 1180_g_at 1184_at proteasome PSME2 14q11.2 GO:5837;26S proteasome 1189_at cyclin-depen CDK8 13q12 GO:74;cell cycle control;p GO:3750;cel 1191_s_at proteasome PSMD11 17q11.2 GO:5837;26S proteasome 1192_at proteasome PSMD12 17q24.2 GO:5837;26S proteasome 1195_s_at integrin cytopICAP-1A 2p25.2 GO:7155;cel GO:157;peripGO:4895;cel 1196_at 1197_at 1198_at 1199_at eukaryotic traEIF4A1 17p13 GO:6441;mRGO:8304;eukGO:3729;mR 120_at integrin, alphITGA1 5q11.1 1201_at RAB33A, meRAB33A Xq26.1 GO:3928;RA 1202_g_at RAB33A, meRAB33A Xq26.1 GO:3928;RA 1206_at cyclin-depen CDK5 7q36 GO:8283;cell proliferation GO:3750;cel 121_at paired box gePAX8 2q12-q14 GO:7397;histogenesis andGO:4996;thy 1211_s_at CASP2 and CRADD 12q21.33-q2 GO:8625;induction of apo GO:5037;dea 1212_at glutathione trGSTZ1 14q24.3 GO:6559;phenylalanine caGO:4602;glu 1213_at SFRS proteinSRPK2 7q22-q31.1 GO:245;splicGO:5634;nucGO:4672;pro 1216_at 1217_g_at protein kinasPRKCB1 16p11.2 GO:7165;sig GO:5737;cyt GO:4697;pro 1218_at 1224_at PCTAIRE proPCTK1 Xp11.3-p11.2GO:74;cell cycle control;p GO:4674;pro 1225_g_at PCTAIRE proPCTK1 Xp11.3-p11.2GO:74;cell cycle control;p GO:4674;pro 1226_at a disintegrin ADAM17 2p25 GO:7267;cel GO:157;peripGO:8237;me 1228_s_at meningioma MGEA6 14q GO:5515;pro 1230_g_at cisplatin resisCRA 1q12-q21 1235_at tyrosine 3-moYWHAZ 8q23.1 GO:5515;pro 1237_at immediate eaIER3 6p21.3 GO:6916;anti-apoptosis;p GO:8189;apo 1238_at mitogen-activMAPK9 5q35 GO:7165;signal transduct GO:4705;JU 1240_at caspase 2, aCASP2 7q34-q35 GO:8632;apoptotic prograGO:4202;cas 1241_at protein tyros PTP4A2 1p35 GO:4725;pro 1242_at Ets2 repress ERF 19q13 GO:6357;transcription regGO:8181;tum 1243_at damage-spe DDB2 11p12-p11 GO:6281;DNA repair;expeGO:3684;dam 1244_at 1248_at polymerase (POLR2H 3q28 GO:6366;tra GO:5665;DNA-directed R 125_r_at 1250_at protein kinasPRKDC 8q11 GO:6464;protein modifica GO:4672;pro 1251_g_at RAP1, GTPaRAP1GA1 1p36.1-p35 GO:7165;signal transduct GO:5096;GT 1252_at DNA segmenD5S346 5q22-q23 GO:9626;hypersensitive response;pred 1253_at glycogen synGSK3B 3q13.3 GO:5977;glycogen metab GO:4696;gly 1257_s_at quiescin Q6 QSCN6 1q24 GO:74;cell cycle control;predicted/com 1258_s_at 126_s_at synovial sarcSSX2 Xp11.23-p11.22 1265_g_at protein tyros PTPN2 18p11.3-p11 GO:6470;protein dephospGO:4725;pro 1268_at ubiquitin-acti UBE1 Xp11.23 GO:6260;DNA replication GO:4839;ubi 1269_at phosphoinosPIK3R1 5q12-q13 1270_at RAP1, GTPaRAP1GA1 1p36.1-p35 GO:7165;signal transduct GO:5096;GT 1271_g_at v-rel reticuloeRELA 11q13 GO:6366;tra GO:5667;tra GO:5515;pro 1272_at eukaryotic traEIF2S3 Xp22.2-p22.1 GO:5850;eukGO:8135;tra 1274_s_at cell division cCDC34 19p13.3 GO:76;DNA replication chGO:4840;ubi 1278_at 1284_at 1287_at ADP-ribosylt ADPRT 1q41-q42 GO:6471;proGO:5634;nucGO:3677;DN 1288_s_at 1294_at ubiquitin-acti UBE1L 3p21 GO:6464;protein modifica GO:4840;ubi 1295_at v-rel reticuloeRELA 11q13 GO:6366;tra GO:5667;tra GO:5515;pro 1296_at cadherin 15, CDH15 16q24.3 GO:7155;cel GO:5886;plaGO:5194;cel 1300_at X-ray repair cXRCC2 7q36.1 GO:7126;meiosis;predicted/computed G 1302_s_at 1306_at eukaryotic traEIF4G1 3q27-qter GO:6445;tra GO:8304;eukGO:8135;tra 1307_at xeroderma p XPA 9q22.3 GO:6281;DNGO:5634;nucGO:3685;DN 1308_g_at xeroderma p XPA 9q22.3 GO:6281;DNGO:5634;nucGO:3685;DN 1309_at proteasome PSMB3 17q12 GO:5837;26S proteasome 131_at TAF11 RNA TAF11 6p21.2 GO:5669;TF GO:5515;pro 1310_at proteasome PSMB2 1p34.2 GO:5837;26S proteasome 1311_at proteasome PSMB4 1q21 GO:5837;26S proteasome 1312_at proteasome PSMD8 19q13.13 GO:74;cell cyGO:5838;19S proteasome 1313_at proteasome PSMB7 9q34.11-q34.12 GO:5837;26S proteasome 1314_at proteasome PSMD1 2q36.1 GO:5837;26S proteasome 1315_at 1316_at thyroid horm THRA 17q11.2 GO:6366;tra GO:5634;nucGO:3700;tra 1318_at retinoblastomRBBP4 1p34.3 GO:8285;negGO:5634;nucleus;experim 1319_at discoidin domDDR2 1q12-q23 GO:7155;cel GO:5887;inteGO:4714;tra 1323_at 1325_at MAD, mothe MADH1 4q28 1326_at caspase 10, CASP10 2q33-q34 GO:6917;induction of apo GO:4206;cas 1327_s_at mitogen-activMAP3K5 6q22.33 GO:7257;activation of JUNGO:4709;MA 133_at cathepsin C CTSC 11q14.1-q14 GO:6508;proGO:5764;lysosome;not re 1336_s_at protein kinasPRKCB1 16p11.2 GO:7165;sig GO:5737;cyt GO:4697;pro 1342_g_at telomeric repTERF1 8q13 GO:7088;conGO:5696;telomere;experim 1347_at cell division cCDC25B 20p13 GO:74;cell cycle control;p GO:4725;pro 1348_s_at propionyl Co PCCA 13q32 GO:6631;fattGO:5739;mitGO:4658;pro 1351_at EphB4 EPHB4 7q22 GO:7397;his GO:5887;inteGO:4714;tra 1356_at death associ DAP3 1q21-q22 GO:8624;induction of apoptosis by extr 1357_at ubiquitin spe USP4 3p21.3 GO:6514;deuGO:5737;cyt GO:4843;ubi 1361_at telomeric repTERF1 8q13 GO:7088;conGO:5696;telomere;experim 1362_s_at retinoid X recRXRB 6p21.3 GO:5634;nucGO:3713;tra 1363_at fibroblast groFGFR2 10q26 1364_at protein tyros PTPRZ1 7q31.3 GO:7417;cenGO:5887;inteGO:5001;tra 1366_i_at ubiquitin C UBC 12q24.3 GO:5552;pol 1367_f_at ubiquitin C UBC 12q24.3 GO:5552;pol 1368_at interleukin 1 IL1R1 2q12 GO:7166;cel GO:5887;inteGO:4908;inte 1370_at interleukin 7 IL7R 5p13 GO:7166;cell surface receGO:4917;inte 1372_at tumor necrosTNFAIP6 2q23.3 GO:7267;cel GO:5576;extGO:4895;cel 1373_at transcription TCF3 19p13.3 GO:6955;immune responsGO:3702;RN 1375_s_at tissue inhibitoTIMP2 17q25 GO:8191;me 1377_at nuclear factoNFKB1 4q24 GO:6954;infl GO:5634;nucGO:3700;tra 1378_g_at nuclear factoNFKB1 4q24 GO:6954;infl GO:5634;nucGO:3700;tra 1379_at EphA2 EPHA2 1p36 GO:7275;devGO:5887;inteGO:4714;tra 1382_at replication prRPA1 17p13.3 GO:6310;DNGO:5662;DNGO:3697;sin
Recommended publications
  • UBE2M (Mouse; Full Length), Pab
    UBE2M (mouse; full length), pAb Alternate Names: Nedd8-conjugating enzyme, Ubc12, UBC-RS2, UBC12. Cat. No. 68-0025-100 Quantity: 100 µg Lot. No. 30262 Storage: -20˚C FOR RESEARCH USE ONLY NOT FOR USE IN HUMANS CERTIFICATE OF ANALYSIS Page 1 of 2 This antibody was developed and Physical Characteristics validated by the Medical Research Council Protein Phosphorylation and Quantity: 100 μg Formulation: phosphate-buffered Ubiquitylation Unit (University of saline Dundee, Dundee, UK). Concentration: to be provided on shipping Specificity:detects Ube2M at ~22 kDa Source: sheep polyclonal antibody Reactivity: mouse; other species not Background tested. Immunogen: mouse Ube2M (residues 1-183) [GST-tagged] Stability/Storage: 12 months at The enzymes of the NEDDylation pathway -20˚C; aliquot as required play a pivotal role in a number of cellular Purification:affinity-purified using processes including the indirect regula- immobilized immunogen tion and targeting of substrate proteins for proteasomal degradation. Three classes of enzymes are involved in the process of NEDDylation; the ubiquitin-like activating Research Applications and Quality Assurance enzyme APP-BP1/Uba3 (E1), the ubiquitin- Western Immunoblotting: Immunoprecipitation: like conjugating enzymes (E2s) and pro- Use 0.5 µg/ml Not tested tein ligases (E3s). UBE2M is a member of the E2 conjugating enzyme family and the gene for human UBE2M was first de- scribed by Osaka et al. (1998) and shares Dot Blotting Analysis: By dot blot assay the specific 42% sequence identity with yeast UBE2M. recognition of recombinant A trapped ubiquitin like activation complex Ube2M protein was observed has been described for the NEDD8 pathway under native and denaturing comprising, the E1 APP-BP1/Uba3, two conditions when probed with NEDD8 molecules, UBE2M and MgATP.
    [Show full text]
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Identification and Diagnostic Performance of a Small RNA Within the PCA3 and BMCC1 Gene Locus That Potentially Targets Mrna
    Published OnlineFirst November 12, 2014; DOI: 10.1158/1055-9965.EPI-14-0377 Research Article Cancer Epidemiology, Biomarkers Identification and Diagnostic Performance of a & Prevention Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA Ross M. Drayton1, Ishtiaq Rehman1, Raymond Clarke2, Zhongming Zhao3,4, Karl Pang1, Saiful Miah1, Robert Stoehr5, Arndt Hartmann5, Sheila Blizard1, Martin Lavin2, Helen E. Bryant1, Elena S. Martens-Uzunova6, Guido Jenster6, Freddie C. Hamdy7, Robert A. Gardiner2, and James W.F. Catto1 Abstract Background: PCA3 is a long noncoding RNA (lncRNA) with malignant prostatic tissues, exfoliated urinary cells from men unknown function, upregulated in prostate cancer. LncRNAs may with prostate cancer (13–273 fold change; t test P < 0.003), and be processed into smaller active species. We hypothesized this for closely correlated to PCA3 expression (r ¼ 0.84–0.93; P < 0.001). PCA3. Urinary PCA3-shRNA2 (C-index, 0.75–0.81) and PCA3 (C-index, Methods: We computed feasible RNA hairpins within the 0.78) could predict the presence of cancer in most men. PCA3- BMCC1 gene (encompassing PCA3) and searched a prostate shRNA2 knockup altered the expression of predicted target transcriptome for these. We measured expression using qRT- mRNAs, including COPS2, SOX11, WDR48, TEAD1, and Noggin. PCR in three cohorts of prostate cancer tissues (n ¼ 60), PCA3-shRNA2 expression was negatively correlated with COPS2 exfoliated urinary cells (n ¼ 484 with cancer and n ¼ 166 in patient samples (r ¼0.32; P < 0.001). controls), and in cell lines (n ¼ 22). We used in silico predictions Conclusion: We identified a short RNA within PCA3, whose and RNA knockup to identify potential mRNA targets of short expression is correlated to PCA3, which may target mRNAs transcribed RNAs.
    [Show full text]
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • Mass Spectrometry-Based Proteomics Techniques and Their Application in Ovarian Cancer Research Agata Swiatly, Szymon Plewa, Jan Matysiak and Zenon J
    Swiatly et al. Journal of Ovarian Research (2018) 11:88 https://doi.org/10.1186/s13048-018-0460-6 REVIEW Open Access Mass spectrometry-based proteomics techniques and their application in ovarian cancer research Agata Swiatly, Szymon Plewa, Jan Matysiak and Zenon J. Kokot* Abstract Ovarian cancer has emerged as one of the leading cause of gynecological malignancies. So far, the measurement of CA125 and HE4 concentrations in blood and transvaginal ultrasound examination are essential ovarian cancer diagnostic methods. However, their sensitivity and specificity are still not sufficient to detect disease at the early stage. Moreover, applied treatment may appear to be ineffective due to drug-resistance. Because of a high mortality rate of ovarian cancer, there is a pressing need to develop innovative strategies leading to a full understanding of complicated molecular pathways related to cancerogenesis. Recent studies have shown the great potential of clinical proteomics in the characterization of many diseases, including ovarian cancer. Therefore, in this review, we summarized achievements of proteomics in ovarian cancer management. Since the development of mass spectrometry has caused a breakthrough in systems biology, we decided to focus on studies based on this technique. According to PubMed engine, in the years 2008–2010 the number of studies concerning OC proteomics was increasing, and since 2010 it has reached a plateau. Proteomics as a rapidly evolving branch of science may be essential in novel biomarkers discovery, therapy decisions, progression predication, monitoring of drug response or resistance. Despite the fact that proteomics has many to offer, we also discussed some limitations occur in ovarian cancer studies.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Broad Poster Vivek
    A novel computational method for finding regions with copy number abnormalities in cancer cells Vivek, Manuel Garber, and Mike Zody Broad Institute of MIT and Harvard, Cambridge, MA, USA Introduction Results Cancer can result from the over expression of oncogenes, genes which control and regulate cell growth. Sometimes oncogenes increase in 1 2 3 activity due to a specific genetic mutation called a translocation (Fig 1). SMAD4 – a gene known to be deleted in pancreatic COX10 – a gene deleted in cytochrome c oxidase AK001392 – a hereditary prostate cancer protein This translocation allows the oncogene to remain as active as its paired carcinoma deficiency, known to be related to cell proliferation gene. Amplification of this mutation can occur, thereby creating the proper conditions for uncontrolled cell growth; consequently, each Results from Analysis Program Results from Analysis Program Results from Analysis Program component of the translocation will amplify in similar quantities. In this mutation, the chromosomal region containing the oncogene displaces to Region 1 Region 2 R2 Region 1 Region 2 R2 Region 1 Region 2 R2 a region on another chromosome containing a gene that is expressed Chr18:47044749-47311978 Chr17:13930739-14654741 0.499070821478475 Chr17:13930739-14654741 Chr18:26861790-27072166 0.47355172850856 Chr17:12542326-13930738 Chr8:1789292-1801984 0.406208680312004 frequently. Actual region containing gene Actual region containing gene Actual region containing gene chr18: 45,842,214 - 48,514,513 chr17: 13,966,862 - 14,068,461 chr17: 12,542,326 - 13,930,738 Fig 1. Two chromosomal regions (abcdef and ghijk) are translocating to create two new regions (abckl and ghijedf).
    [Show full text]
  • 1 ICR-Geneset Gene List
    ICR-geneset Gene List. IMAGE ID UniGene Locus Name Cluster 20115 Hs.62185 SLC9A6 solute carrier family 9 (sodium/hydrogen exchanger), isoform 6 21738 21899 Hs.78353 SRPK2 SFRS protein kinase 2 21908 Hs.79133 CDH8 cadherin 8, type 2 22040 Hs.151738 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22411 Hs.183 FY Duffy blood group 22731 Hs.1787 PHRET1 PH domain containing protein in retina 1 22859 Hs.356487 ESTs 22883 Hs.150926 FPGT fucose-1-phosphate guanylyltransferase 22918 Hs.346868 EBNA1BP2 EBNA1 binding protein 2 23012 Hs.158205 BLZF1 basic leucine zipper nuclear factor 1 (JEM-1) 23073 Hs.284244 FGF2 fibroblast growth factor 2 (basic) 23173 Hs.151051 MAPK10 mitogen-activated protein kinase 10 23185 Hs.289114 TNC tenascin C (hexabrachion) 23282 Hs.8024 IK IK cytokine, down-regulator of HLA II 23353 23431 Hs.50421 RB1CC1 RB1-inducible coiled-coil 1 23514 23548 Hs.71848 Human clone 23548 mRNA sequence 23629 Hs.135587 Human clone 23629 mRNA sequence 23658 Hs.265855 SETMAR SET domain and mariner transposase fusion gene 23676 Hs.100841 Homo sapiens clone 23676 mRNA sequence 23772 Hs.78788 LZTR1 leucine-zipper-like transcriptional regulator, 1 23776 Hs.75438 QDPR quinoid dihydropteridine reductase 23804 Hs.343586 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 23831 Hs.155247 ALDOC aldolase C, fructose-bisphosphate 23878 Hs.99902 OPCML opioid binding protein/cell adhesion molecule-like 23903 Hs.12526 Homo sapiens clone 23903 mRNA sequence 23932 Hs.368063 Human clone 23932 mRNA sequence 24004
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence After Radical Prostatectomy
    Int. J. Mol. Sci. 2015, 16, 3856-3869; doi:10.3390/ijms16023856 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy Chinyere Ibeawuchi 1, Hartmut Schmidt 2, Reinhard Voss 3, Ulf Titze 4, Mahmoud Abbas 5, Joerg Neumann 6, Elke Eltze 7, Agnes Marije Hoogland 8, Guido Jenster 9, Burkhard Brandt 10 and Axel Semjonow 1,* 1 Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 2 Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 3 Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail: [email protected] 4 Pathology, Lippe Hospital Detmold, Röntgenstrasse 18, Detmold D-32756, Germany; E-Mail: [email protected] 5 Institute of Pathology, Mathias-Spital-Rheine, Frankenburg Street 31, Rheine D-48431, Germany; E-Mail: [email protected] 6 Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail: [email protected] 7 Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail: [email protected] 8 Department
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Download The
    PROBING THE INTERACTION OF ASPERGILLUS FUMIGATUS CONIDIA AND HUMAN AIRWAY EPITHELIAL CELLS BY TRANSCRIPTIONAL PROFILING IN BOTH SPECIES by POL GOMEZ B.Sc., The University of British Columbia, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2010 © Pol Gomez, 2010 ABSTRACT The cells of the airway epithelium play critical roles in host defense to inhaled irritants, and in asthma pathogenesis. These cells are constantly exposed to environmental factors, including the conidia of the ubiquitous mould Aspergillus fumigatus, which are small enough to reach the alveoli. A. fumigatus is associated with a spectrum of diseases ranging from asthma and allergic bronchopulmonary aspergillosis to aspergilloma and invasive aspergillosis. Airway epithelial cells have been shown to internalize A. fumigatus conidia in vitro, but the implications of this process for pathogenesis remain unclear. We have developed a cell culture model for this interaction using the human bronchial epithelium cell line 16HBE and a transgenic A. fumigatus strain expressing green fluorescent protein (GFP). Immunofluorescent staining and nystatin protection assays indicated that cells internalized upwards of 50% of bound conidia. Using fluorescence-activated cell sorting (FACS), cells directly interacting with conidia and cells not associated with any conidia were sorted into separate samples, with an overall accuracy of 75%. Genome-wide transcriptional profiling using microarrays revealed significant responses of 16HBE cells and conidia to each other. Significant changes in gene expression were identified between cells and conidia incubated alone versus together, as well as between GFP positive and negative sorted cells.
    [Show full text]