New Methods for the Synthesis of Vicinal Stereocenters: Palladium-Catalyzed Domino Reactions and Asymmetric Transfer Hydrogenation

Total Page:16

File Type:pdf, Size:1020Kb

New Methods for the Synthesis of Vicinal Stereocenters: Palladium-Catalyzed Domino Reactions and Asymmetric Transfer Hydrogenation New Methods for the Synthesis of Vicinal Stereocenters: Palladium-Catalyzed Domino Reactions and Asymmetric Transfer Hydrogenation Brinton Seashore-Ludlow Doctoral Thesis Stockholm 2012 Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av doktorsexamen i kemi med inriktning mot organisk kemi fredagen den 17 augusti 2012 kl 10.00 i sal F3, KTH, Lindstedtsvägen 26, Stockholm. Avhandlingen försvaras på engelska. Opponent är Kevin Booker-Milburn, School of Chemistry, University of Bristol. ISBN 978-91-7501-374-9 ISSN 1654-1081 TRITA-CHE-Report 2012:27 © Brinton Seashore-Ludlow, 2012 Universitetsservice US AB, Stockholm Brinton Seashore-Ludlow 2012: “New Methods for the Synthesis of Vicinal Stereocenters: Palladium-Catalyzed Domino Reactions and Asymmetric Transfer Hydrogenation”, KTH Chemical Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Abstract In this thesis the synthesis of vicinal stereocenters is investigated in two distinct contexts, namely the construction of 3,3-disubstituted oxindoles and the synthesis of β-hydroxy-α-amino acids. Both scaffolds are prevalent in a range of natural products and biologically relevant compounds and, therefore, methods for their synthesis are of great import. First, the construction of 3,3-disubstituted oxindoles using palladium-catalyzed domino reactions is described. This covers two stereospecific methods for the construction of the desired oxindoles based on domino carbopalladation sequences. The termination events for these domino reactions are carbonylation or cross- coupling. In the carbopalladation-carbonylation reaction, we studied the possibilty of suppressing β-hydride elimination for substrates possessing pendant β- hydrogens. In the carbopalladation-cross-coupling sequence, we examined the role of the boron source and substrate scaffold in the outcome of the reaction. In both of these methods, an intricate balance of rates needs to be attained in order to achieve the desired domino sequences. Thus, these investigations offer insight into the rates of the competing reactions, and the factors that influence these processes. Secondly, the stereoselective synthesis of β-hydroxy-α-amino acids is explored. This has lead to two separate methods for the construction of this scaffold. We first examined a 1,3-dipolar cycloaddition of azomethine ylides to aldehydes for the construction of syn-β-hydroxy-α-amino esters. It was found that one set of azomethine ylides reacted through a 1,3-dipolar cycloaddition, while the other set reacted via a direct aldol reaction. Finally, we studied an asymmetric transfer hydrogenation reaction to provide anti-β-hydroxy-α-amido esters from the corresponding α-amido-β-ketoesters. Two protocols were developed for the reduction of these substrates, one using triethylammonium formate and the other using sodium formate in an emulsion. The latter method gives high yields, diastereoselectivities and enantioselectivities for a broad range of substrates. Keywords: asymmetric synthesis, dynamic kinetic resolution, domino reactions, Pd-catalyzed reactions, 1,3-dipolar cycloadditions, amino alcohols, oxindoles Abbreviations AH - asymmetric hydrogenation ATH - asymmetric transfer hydrogenation DABCO -1,4-diazabicyclo[2.2.2]octane DKR- dynamic kinetic resolution DMAP - 4-Dimethylaminopyridine Dppf - 1,1′-Bis(diphenylphosphino)ferrocene Lg - leaving group LiHMDS – Lithium bis(trimethylsilyl)amide MeOBiPHEP - (S)-(−)-(6,6′-Dimethoxybiphenyl-2,2′-diyl)bis(diphenylphosphine) n.d. - not determined P(biphenyl)(t-Bu)2 - (2-Biphenyl)di-tert-butylphosphine Pg - protecting group PCy3 - tricyclohexylphosphine Pd2dba3⋅CHCl3 - Tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct SIMes - 1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazolium tetrafluoroborate TBDMS (TBS)- tert-butyl dimethyl silyl TBDPS - tert-butyl diphenyl silyl TS - transition state Xanthphos - 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene List of Publications This thesis is based on the following papers, referred to in the text by their Roman numerals I-VI: I. Addition of Azomethine Ylides to Aldehydes: Mechanistic Dichotomy of Differentially Substituted α-Imino Esters Brinton Seashore-Ludlow, Staffan Torssell, and Peter Somfai Eur. J. Org. Chem. 2010, 3927-3933. II. Domino Carbopalladation-Carbonylation: Generating Quaternary Stereocenters while Controlling β-Hydride Elimination Brinton Seashore-Ludlow and Peter Somfai Org. Lett. 2010, 12, 3732-3735. III. Enantioselective Synthesis of anti-β-Hydroxy-α-Amido Esters via Transfer Hydrogenation Brinton Seashore-Ludlow, Piret Villo, Christine Häcker and Peter Somfai Org. Lett. 2010, 12, 5274-5277. IV. Domino Carbopalladation-Carbonylation: Investigation of Substrate Scope Brinton Seashore-Ludlow, Jakob Danielsson and Peter Somfai Adv. Synth. Catal. 2012, 354, 205-216. V. Enantioselective Synthesis of anti-β-Hydroxy-α-Amido Esters by Asymmetric Transfer Hydrogenation in Emulsions Brinton Seashore-Ludlow, Piret Villo and Peter Somfai Chem. – Eur. J. accepted. VI. Domino Carbopalladation-Cross-Coupling for the Synthesis of 3,3- Disubstituted Oxindoles Brinton Seashore-Ludlow and Peter Somfai Submitted. Papers not included in this thesis: VII. 1,3-bis(silyl)propenes Brinton Seashore-Ludlow and Peter Somfai e-EROS, Encyclopedia of Organic Reagents [Online], John Wiley & Sons, Ltd., 2011. VIII. Sigmatropic Rearrangements in Stereoselective Synthesis Brinton Seashore-Ludlow and Peter Somfai Stereoselective Synthesis of Drugs and Natural Products Andrushko, V.; Andrushko, N., Eds. Wiley-Blackwell: 2012, accepted. IX. Organosilicon Reagents: Vinyl-, Alkynyl- and Arylsilanes Brinton Seashore-Ludlow and Peter Somfai Comprehensive Organic Synthesis Molander, G.; Knochel, P. Eds. Elsevier: 2012; Vol. 1, submitted. Table of Contents Abstract Abbreviations List of publications Abstract .................................................................................................................. I 1. Introduction ................................................................................................... 1 1.1. Domino Reactions ................................................................................................ 3 1.1.1. Oxindoles ...................................................................................................................... 5 1.2. Synthesis of β-Hydroxy-α-Amino Acids and their Derivatives .......................... 7 1.3. The Aim of this Thesis ....................................................................................... 11 2. Palladium-Catalyzed Domino Reactions ..................................................... 13 2.1. Introduction ........................................................................................................ 13 2.2. Domino Carbopalladation-Carbonylation .......................................................... 15 2.2.1. α,β-Unsaturated Amides: Trisubstituted Olefins ........................................................ 20 2.2.2. α,β-Unsaturated Amides: Tetrasubstituted Olefins .................................................... 25 2.2.3. Allylic Amines ............................................................................................................ 28 2.2.4. Construction of Carbocycles ....................................................................................... 30 2.2.5. Conclusion .................................................................................................................. 31 2.3. Domino Carbopalladation-Cross-Coupling ....................................................... 31 2.3.1. Domino Carbopalladation-Cross-Coupling with Alkyl Organoboranes ..................... 36 2.3.2. Conclusion .................................................................................................................. 39 3. Addition of Azomethine Ylides to Aldehydes: Synthesis of β-Hydroxy-α- Amino Esters ....................................................................................................... 40 3.1. Introduction ........................................................................................................ 40 3.2. Investigation of 1,3-Dipolar Cycloadditions between Azomethine Ylides and Aldehydes ............................................................................................................... 44 3.3. Conclusion .......................................................................................................... 48 4. Asymmetric Transfer Hydrogenation Coupled with Dynamic Kinetic Resolution for the Synthesis of β-Hydroxy-α-Amino Esters .............................. 50 4.1. Introduction ........................................................................................................ 50 4.2. Asymmetric Hydrogenation and Asymmetric Transfer Hydrogenation ............ 51 4.3. Synthesis of anti-β-Hydroxy-α-Amido Esters ................................................... 53 4.3.1. ATH in Emulsions using Sodium Formate ................................................................. 55 4.3.2. Conclusion .................................................................................................................. 59 4.4. Applications to Natural Products ....................................................................... 59 4.4.1. Conclusion .................................................................................................................. 62 5. Concluding Remarks ..................................................................................
Recommended publications
  • Synthesis of Indole and Oxindole Derivatives Incorporating Pyrrolidino, Pyrrolo Or Imidazolo Moieties
    From DEPARTMENT OF BIOSCIENCES AT NOVUM Karolinska Institutet, Stockholm, Sweden SYNTHESIS OF INDOLE AND OXINDOLE DERIVATIVES INCORPORATING PYRROLIDINO, PYRROLO OR IMIDAZOLO MOIETIES Stanley Rehn Stockholm 2004 All previously published papers have been reproduced with permission from the publishers. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Stanley Rehn, 2004 ISBN 91-7140-169-5 Till Amanda Abstract The focus of this thesis is on the synthesis of oxindole- and indole-derivatives incorporating pyrrolidins, pyrroles or imidazoles moieties. Pyrrolidino-2-spiro-3’-oxindole derivatives have been prepared in high yielding three-component reactions between isatin, α-amino acid derivatives, and suitable dipolarophiles. Condensation between isatin and an α-amino acid yielded a cyclic intermediate, an oxazolidinone, which decarboxylate to give a 1,3-dipolar species, an azomethine ylide, which have been reacted with several dipolarophiles such as N- benzylmaleimide and methyl acrylate. Both N-substituted and N-unsubstituted α- amino acids have been used as the amine component. 3-Methyleneoxindole acetic acid ethyl ester was reacted with p- toluenesulfonylmethyl isocyanide (TosMIC) under basic conditions which gave (in a high yield) a colourless product. Two possible structures could be deduced from the analytical data, a pyrroloquinolone and an isomeric ß-carboline. To clarify which one of the alternatives that was actually formed from the TosMIC reaction both the ß- carboline and the pyrroloquinolone were synthesised. The ß-carboline was obtained when 3-ethoxycarbonylmethyl-1H-indole-2-carboxylic acid ethyl ester was treated with a tosylimine. An alternative synthesis of the pyrroloquinolone was performed via a reduction of a 2,3,4-trisubstituted pyrrole obtained in turn by treatment of a vinyl sulfone with ethyl isocyanoacetate under basic conditions.
    [Show full text]
  • Highly Efficient Endo'- Selective Synthesis of (Dispiro 3,2
    J. Chem. Sci. Ó (2020) 132:76 Indian Academy of Sciences https://doi.org/10.1007/s12039-020-01772-7Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) REGULAR ARTICLE Highly efficient endo’- selective synthesis of (dispiro 3,20- pyrrolidinyl) bisoxindoles containing three contiguous chiral stereocenters with two contiguous quaternary spirostereocenters PANNEERSELVAM YUVARAJa,* , HUIDROM BIRKUMAR SINGHa, ARUN PRASATH LINGAM KANDAPALAMb, DEVARAJAN KATHIRVELANc and SANKARANARAYANAN NAGARAJANd aCSIR-North East Institute of Science and Technology, Branch Laboratory, Imphal, Manipur 795004, India bDepartment of Chemistry, Kamaraj College, Thoothukudi, Tamil Nadu 628003, India cDepartment of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, Telangana 502285, India dDepartment of Chemistry, National Institute of Technology Manipur, Imphal 795004, India E-mail: [email protected]; [email protected] MS received 15 November 2019; revised 6 January 2020; accepted 9 January 2020 Abstract. An efficient, atom economical, one-pot synthesis of endo’- selective (dispiro 3,20-pyrrolidinyl) bisoxindole containing three contiguous chiral stereocenters with two contiguous quaternary spirostereo centers have been achieved by three-component reaction of isatins, malononitrile (cyanoacetic ester) and 1,3- dicarbonyl compounds in water in the presence of L-proline. One-pot, azomethine ylide cycloaddition with a dipolarophile without using any catalyst have also been achieved in good yields. This new methodology offers many advantages of catalyst-free,
    [Show full text]
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.260,446 B2 Cadieux Et Al
    USOO926O446B2 (12) United States Patent (10) Patent No.: US 9.260,446 B2 Cadieux et al. (45) Date of Patent: Feb. 16, 2016 (54) SYNTHETIC METHODS FOR 5,663,431 A 9, 1997 Di Malta et al. SPIRO-OXINDOLE COMPOUNDS 5,686,624 A 11/1997 Di Malta et al. 5,696,145 A 12/1997 Foulon et al. (71) Applicant: Xenon Pharmaceuticals Inc., Burnaby 5,723,625 A 3/1998 Keplinger et al. (CA) 5,726,322 A 3, 1998 Di Malta et al. Inventors: 5,728,723 A 3, 1998 Di Malta et al. (72) Jean-Jacques Alexandre Cadieux, 5,763,471 A 6/1998 Fourtillan et al. Burnaby (CA); Mikhail Chafeev, 5,767,128 A 6/1998 Guillaumet et al. Khimki (RU); Sultan Chowdhury, 5,776,936 A 7/1998 Lee et al. Surrey (CA); Jianmin Fu, Coquitlam 5,849,780 A 12/1998 Di Malta et al. (CA); Qi Ji, Burnaby (CA); Stefanie 5,886,026 A 3, 1999 Hunter et al. 5,994,350 A 11/1999 Foulon et al. Abel, Thalwil (CH); Emad El-Sayed, 6,046,341 A 4/2000 Foulon et al. Zumikon (CH); Elke Huthmann, Buchs 6,090,818 A 7/2000 Foulon et al. (CH); Thomas Isarno, Niffer (FR) 6,099,562 A 8/2000 Ding et al. 6,110,969 A 8, 2000 Tani et al. (73) Assignee: Xenon Pharmaceuticals Inc., Burnaby 6,225,347 B1 5/2001 Buchmann et al. 6,235,780 B1 5, 2001 Ohuchida et al. (CA) 6,262.293 B1 7/2001 Tani et al.
    [Show full text]
  • Enzyme Evolution in Fungal Indole Alkaloid Biosynthesis Amy E
    REVIEW ARTICLE Enzyme evolution in fungal indole alkaloid biosynthesis Amy E. Fraley1,2 and David H. Sherman1,2,3,4 1 Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 2 Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA 3 Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 4 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA Keywords The class of fungal indole alkaloids containing the bicyclo[2.2.2]diazaoc- biosynthesis; Diels–Alderase; natural tane ring is comprised of diverse molecules that display a range of biologi- products; nonribosomal peptides; cal activities. While much interest has been garnered due to their monooxygenase therapeutic potential, this class of molecules also displays unique chemical Correspondence functionality, making them intriguing synthetic targets. Many elegant and D. H. Sherman, Life Sciences Institute, 210 intricate total syntheses have been developed to generate these alkaloids, Washtenaw Avenue, Ann Arbor, MI 48104, but the selectivity required to produce them in high yield presents great USA barriers. Alternatively, if we can understand the molecular mechanisms Tel: +734 615 9907 behind how fungi make these complex molecules, we can leverage the E-mail: [email protected] power of nature to perform these chemical transformations. Here, we describe the various studies regarding the evolutionary development of (Received 21 August 2019, revised 24 November 2019, accepted 27 February enzymes involved in fungal indole alkaloid biosynthesis. 2020) doi:10.1111/febs.15270 Introduction to fungal indole alkaloids The fungal indole alkaloid class of natural products knowledge gaps with detailed biochemical characteri- contains molecules with unique structural properties zation.
    [Show full text]
  • Transcription 11.12.07
    Lab 17A • 12/07/11 [lab quiz] Nomenclature of alkenes The first molecule that I want to look at is this one, where we have the two methyl groups on one side, two hydrogens on the other side. Would it be appropriate to use cis or trans, or E or Z, or both, or neither? One carbon of the double bond versus the other, those are the two different sides of the double, then the top versus the bottom are the two faces of the double bond. If we notice, on both the top face and the bottom face, we have a methyl group that is pointed the same way as a hydrogen. There is a steric factor as far as what alkene would prefer to form thermodynamically, so there is an importance that there’s some interaction there. That methyl group with one hydrogen is exactly the same interaction as you’d have the methyl group and the other hydrogen pointed the opposite way – meaning that if you were to switch the two hydrogens, you’d end up with exactly the same molecule again. The only reason that we use the term cis or trans or E or Z is to describe that it is one configuration versus another, but since there’s only one configuration possible, there’s therefore no term that should be used. It would, in fact, be wrong to call this cis, trans, E, or Z. When an alkene has two of the same substituent on the same side, there is only one unique configuration of that alkene, and so it cannot be called cis, trans, E, or Z.
    [Show full text]
  • Prebiotic Formation of Cyclic Dipeptides Under Potentially Early Earth
    www.nature.com/scientificreports OPEN Prebiotic formation of cyclic dipeptides under potentially early Earth conditions Received: 10 October 2017 Jianxi Ying1, Rongcan Lin1, Pengxiang Xu1, Yile Wu 1, Yan Liu1 & Yufen Zhao1,2 Accepted: 27 December 2017 Cyclic dipeptides, also known as 2,5-diketopiperazines (DKPs), represent the simplest peptides Published: xx xx xxxx that were frst completely characterized. DKPs can catalyze the chiral selection of reactions and are considered as peptide precursors. The origin of biochemical chirality and synthesis of peptides remains abstruse problem believed to be essential precondition to origin of life. Therefore, it is reasonable to believe that the DKPs could have played a key role in the origin of life. How the formation of the DKPs through the condensation of unprotected amino acids in simulated prebiotic conditions has been unclear. Herein, it was found that cyclo-Pro-Pro could be formed directly from unprotected proline in the aqueous solution of trimetaphosphate (P3m) under mild condition with the yield up to 97%. Other amino acids were found to form proline-containing DKPs under the same conditions in spite of lower yield. During the formation process of these DKPs, P3m promotes the formation of linear dipeptides in the frst step of the mechanism. The above fndings are helpful and signifcant for understanding the formation of DKPs in the process of chemical evolution of life. As one of the simplest peptide derivatives in nature1,2, Cyclic dipeptides, also known as 2, 5-diketopiperazines (DKPs), which were ubiquitously observed in microorganism, plants and animals3–10, have been found to have many biological activities (e.g., antiviral, antibiotic, anticancer)11–14 and chiral catalysis properties15.
    [Show full text]
  • Facile Synthesis of 3-Spiropyrrolizidine Oxindoles and 3-Spirotetrahydroquinoline Oxindoles Via [3+2] and [4+2] Cycloaddition Reactions
    id2143625 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com OOrrggaanniicc ISSN: 0974 - 7516 Volume 8 Issue 3 CCHHEEMMAn IIInSSdiTTan RRJouYrYnal Trade Science Inc. Full Paper OCAIJ, 8(3), 2012 [94-102] Facile synthesis of 3-spiropyrrolizidine oxindoles and 3-spirotetrahydroquinoline oxindoles via [3+2] and [4+2] cycloaddition reactions A.Sudhakara1, H.C.Kiran Kumar2, H.Jayadevappa1, K.M.Mahadevan2* 1Department of Chemistry, Sahyadri Science College, Shimoga, Karnataka, 577 203, (INDIA) 2Department of Postgraduate Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, Karnataka, 577 451, (INDIA) E-mail: [email protected] Received: 22nd June, 2011 ; Accepted: 22nd July, 2011 ABSTRACT KEYWORDS A rapid and efficient synthesis of a number of functionalized 3- Isatin; spiropyrrolizidine oxindoles from [3+2] cycloaddition of azomethine ylide Imino Diels-Alder; and 3-spirotetrahydroquinoline oxindoles from [4+2] imino Diels-Alder re- Antimony(III)chloride; action; catalyzed by Antimony(III)chloride in excellent yields are reported. Spiropyrrolizidine oxindoles; 2012 Trade Science Inc. - INDIA Spirotetrahydroquinoline- oxindoles. INTRODUCTION sor for the synthesis of biologically active indole de- rivatives and natural products[2]. The Spirooxindoles core Heterocyclic compounds containing isatin (1H-in- is featured in a number of natural products and recently dole-2, 3-dione) scaffold have a wide range of biologi- has been the subject of significant synthetic interest[3]. cal activities[1] and also serves as an important precur- Oxindoles derivatized like Spirotryprostatin B, Horsfiline O Me H H O NH MeO N Me N N H MeO O H O O N N N O Me H H Spirotryprostatin B Horsfiline Alstonisine Spirooxindole alkaloid natural products Figure 1 : Spirotryprostatin B, horsfiline and alstonisine are alkaloids present in nature and are elegant targets in the organic synthesis due to their significant biological activities.
    [Show full text]
  • Non-Fullerene-Based Acce
    791 Index a – – pyridyldiimine-ligated Fe and Co complexes acceptor materials molecular design and 540–542 engineering 662 alkynylindoles 740 – fullerene-based acceptors 662–669 allenoates and electron-deficient alkenes, – non-fullerene-based acceptors 669–671 phosphine-catalyzed reaction mechanisms of acenes 760–761 574–577 Actinomycetales 157 Alstonia actinophylla 54 actinomycete bacteria 166 Alzheimer’s disease 785 actinophyllic acid 54–56 amides formation 506–508 Actinotalea fermentans 155 amination and halogenation, asymmetric acylimine and acyliminium ions 747 351–352 acyl transfer method 230 2-amino-2-deoxyglycosides 188 aerobic oxidation mechanistic study anion–π-interactions 529–530 – mechanistic characterization anomeric/gauche effect 414 – – kinetic investigations 629–634 anthradithiophene (ADT) 762 – recent progress 627–629 aplykurodinone-1 60–62 agelagalastatin 184 aqueous ascorbate procedure 253 agostic interaction 290 Arixtra (fondaparinux) 196 Agrobacterium sp. 194 aromatic hydrazide and amide oligomers aldol reaction 367–371 487–497 alkane metathesis 284 alkene polymerization, cooperative catalysis in Arthrobacter protophormiae 205 393–394 arylamide oligomers alkene polymerization, novel catalysis for – flexible 492 537–538 – modified 494–497 – early transition metal complexes 544 arylazides 111 – – chelating bis(phenoxy)-ligated group 4 metal aryl dienyl ketones Nazarov cyclization complexes 549–551 mechanism 580–583 – – phenoxyimine-ligated group 4 metal ascorbate 252 complexes 544–549 Aspergillus fumigatus 46 – – pyridylamine-ligated Hf complexes aspidophytine 43 551–553 aspirin 714 – late transition metal complexes 538 asymmetric allylic alkylation (AAA) 344–345, – – diimine-ligated Ni and Pd complexes 346 538–540 asymmetric anti-Mannich reactions 588–590 – – phenoxyimine-ligated Ni complexes asymmetric organocatalysis 378, 379 542–544 – early status of 377–378 Organic Chemistry – Breakthroughs and Perspectives, First Edition.
    [Show full text]
  • IV. the Synthesis of (±)-Horsfiline
    Research Collection Doctoral Thesis Novel approach to spiro-pyrrolidine-oxindoles and its application to the synthesis of (±)-horsfiline and (-)-spirotryprostatin B Author(s): Marti, Christiane Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004489068 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 15001 Novel Approach to Spiro-Pyrrolidine-Oxindoles and its Application to the Synthesis of (±)-Horsfiline and (–)-Spirotryprostatin B A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of Doctor of Natural Sciences Presented by Christiane MARTI Dipl. Ing. ECPM Strasbourg born 25. August 1972 in Stuttgart, Germany Accepted on the recommendation of Prof. Dr. Erick M. Carreira, examiner Prof. Dr. Hans-Jürg Borschberg, co-examiner Karin, Gerhard und Thomas in grosser Dankbarkeit gewidmet Und ist schon jemals ein Ziegel so vom Dach gefallen, wie es das Gesetz vorschreibt? Niemals! Nicht einmal im Laboratorium zeigen sich die Dinge so wie sie sollen. Sie weichen regellos nach allen Richtungen davon ab, und es ist einigermaβen eine Fiktion, daβ wir das als Fehler der Ausführung ansehen und in der Mitte einen wahren Wert vermuten. Robert Musil Acknowledgements My dissertation at ETH was a real learning experience that was enjoyable most of the time. Any successes during this time are also due to substantial support from others. I therefore express my deepest thanks to: Prof. Dr. Erick M. Carreira ― I benefited his guidance and support throughout the course of my thesis.
    [Show full text]
  • Vicinal Difunctionalization of Carbonâ
    ARTICLE https://doi.org/10.1038/s41467-020-19748-z OPEN Vicinal difunctionalization of carbon–carbon double bond for the platform synthesis of trifluoroalkyl amines ✉ Ferenc Béke1, Ádám Mészáros1, Ágnes Tóth1, Bence Béla Botlik1 & Zoltán Novák 1 Regioselective vicinal diamination of carbon–carbon double bonds with two different amines is a synthetic challenge under transition metal-free conditions, especially for the synthesis of 1234567890():,; trifluoromethylated amines. However, the synthesis of ethylene diamines and fluorinated amine compounds is demanded, especially in the pharmaceutical sector. Herein, we demonstrate that the controllable double nucleophilic functionalization of an activated alkene synthon, originated from a trifluoropropenyliodonium salt with two distinct nucleophiles, enables the selective synthesis of trifluoromethylated ethylene amines and diamines on broad scale with high efficiency under mild reaction conditions. Considering the chemical nature of the reactants, our synthetic approach brings forth an efficient methodology and provides versatile access to highly fluorinated amines. 1 ELTE “Lendület” Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 ✉ Budapest, Hungary. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:5924 | https://doi.org/10.1038/s41467-020-19748-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19748-z he vicinal diamine backbone is a prevalent motif in natural free conditions has been presented with bifunctional nucleophiles products, chelating agents, chiral ligands, and pharma- in an intramolecular manner to afford N,N- and N,O-heterocyclic T 1,2 ceuticals . Nature presents this structural motif in the systems using alkenyl-sulfonium salts with two adjacent electro- form of non-proteinogenic amino acids which constitute the philic centers29–32.
    [Show full text]
  • Studies in Stereochemistry Donald Charles Best Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Studies in stereochemistry Donald Charles Best Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Best, Donald Charles, "Studies in stereochemistry " (1968). Retrospective Theses and Dissertations. 3648. https://lib.dr.iastate.edu/rtd/3648 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microiilined exactly as received g 8"14.773 BEST, Donald Charles, 1940- STUDIES IN STEREOCHEMISTRY. Iowa State University, Ph,D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan STUDIES IN STEREOCHEMISTRY by Donald Charles Best A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject : Organic Chemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University of Science and Technology Ames, Iowa 1968 il TABLE OF CONTENTS Page PART I: CONFORMATIONAL PREFERENCES OF ACYCLIC PIASTEREOMERS la HISTORICAL lb I RESULTS AND DISCUSSION 7 EXPERIMENTAL 48 PART II : SUBSTITUENT EFFECTS ON SUSPECTED PHENONIUM ION INTERMEDIATES 82; HISTORICAL R3 RESULTS AND DISCUSSION 94 ' EXPERIMENTAL 109 LITERATURE CITED 155 ACKNOWLEDGEMENTS l40 ' la PART I: CONFORMATIONAL PREFERENCES OF ACYCLIC DIASTEREOMERS lb HISTORICAL The subject of conformational analysis was introduced about seventy-five years ago by Sachse (49).
    [Show full text]