Alkenes and Alkynes I: Properties and Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Alkenes and Alkynes I: Properties and Synthesis Chapter 7 Alkenes and Alkynes I: Properties and Synthesis. Elimination Reactions of Alkyl Halides Ch. 7 - 1 1. Introduction Alkenes ● Hydrocarbons containing C=C ● Old name: olefins CH2OH Vitamin A H3C H3C H H Cholesterol HO Ch. 7 - 2 Alkynes ● Hydrocarbons containing C≡C ● Common name: acetylenes H N O I Cl C O C O Cl F3C C Cl C Cl Efavirenz Haloprogin (antiviral, AIDS therapeutic) (antifungal, antiseptic) Ch. 7 - 3 2. The (E) - (Z) System for Designating Alkene Diastereomers Cis-Trans System ● Useful for 1,2-disubstituted alkenes ● Examples: H Br Cl Cl (1) Br vs H H H trans -1-Bromo- cis -1-Bromo- 2-chloroethene 2-chloroethene Ch. 7 - 4 ● Examples H (2) vs H H H trans -3-Hexene cis -3-Hexene Br (3) Br Br vs Br trans -1,3- cis -1,3- Dibromopropene Dibromopropene Ch. 7 - 5 (E) - (Z) System ● Difficulties encountered for trisubstituted and tetrasubstituted alkenes CH3 e.g. Cl cis or trans? Br H Cl is cis to CH3 and trans to Br Ch. 7 - 6 The Cahn-Ingold-Prelog (E) - (Z) Convention ● The system is based on the atomic number of the attached atom ● The higher the atomic number, the higher the priority Ch. 7 - 7 The Cahn-Ingold-Prelog (E) - (Z) Convention ● (E) configuration – the highest priority groups are on the opposite side of the double bond “E ” stands for “entgegen”; it means “opposite” in German ● (Z) configuration – the highest priority groups are on the same side of the double bond “Z ” stands for “zusammer”; it means “together” in German Ch. 7 - 8 ● Examples CH3 Cl 1 2 Br H On carbon 2: Priority of Br > C On carbon 1: Priority of Cl > H ⇒ highest priority groups are Br (on carbon 2) and Cl (on carbon 1) Ch. 7 - 9 ● Examples CH3 Cl Br H ⇒ (E )-2-Bromo-1-chloropropene Br Cl CH3 H ⇒ (Z )-2-Bromo-1-chloropropene Ch. 7 - 10 ● Other examples H (E )-1,2-Dichloroethene (1) Cl [or trans-1,2-Dichloroethene] 1 2 Cl H C1: Cl > H C2: Cl > H Cl 2 (Z )-1-Bromo-1,2-dichloroethene (2) 1 Cl Br C1: Br > Cl C2: Cl > H Ch. 7 - 11 ● Other examples Br 3 1 4 (3) 2 7 5 8 6 (Z )-3-Bromo-4-tert-butyl-3-octene C3: Br > C C4: tBu > nBu Ch. 7 - 12 3. Relative Stabilities of Alkenes Cis and trans alkenes do not have the same stability crowding R R H R C C C C H H R H Less stable More stable Ch. 7 - 13 3A. Heat of Reaction Pt C C + H H C C H H Heat of hydrogenation ● ∆H° ≃ -120 kJ/mol Ch. 7 - 14 + H2 7 kJ/mol + H2 ∆H° = -127 kJ/mol 5 kJ/mol + H2 ∆H° = -120 kJ/mol Enthalpy ∆H° = -115 kJ/mol ≈ ≈ ≈ Ch. 7 - 15 3B. Overall Relative Stabilities of Alkenes The greater the number of attached alkyl groups (i.e., the more highly substituted the carbon atoms of the double bond), the greater the alkene’s stability. Ch. 7 - 16 Relative Stabilities of Alkenes R R R R R H R H R R R H H H > > > > > > R R R H R H H R H H H H H H tetra- tri- di- mono- un- substituted substituted substituted substituted substituted Ch. 7 - 17 Examples of stabilities of alkenes (1) > (2) > Ch. 7 - 18 4. Cycloalkenes Cycloalkenes containing 5 carbon atoms or fewer exist only in the cis form cyclopropene cyclobutene cyclopentene Ch. 7 - 19 Trans – cyclohexene and trans – cycloheptene have a very short lifetime and have not been isolated cyclohexene Hypothetical trans - cyclohexene (too strained to exist at r.t.) Ch. 7 - 20 Trans – cyclooctene has been isolated and is chiral and exists as a pair of enantiomers cis - cyclooctene trans - cyclooctenes Ch. 7 - 21 5. Synthesis of Alkenes via Elimination Reactions Dehydrohalogenation of Alkyl Halides H H H H H base C C -HX H X H H H Dehydration of Alcohols H H H H+, heat H H C C H OH -HOH H H H Ch. 7 - 22 6. Dehydrohalogenation of Alkyl Halides The best reaction conditions to use when synthesizing an alkene by dehydrohalogenation are those that promote an E2 mechanism H E2 B: C C C C + B:H + X X Ch. 7 - 23 6A. How to Favor an E2 Mechanism Use a secondary or tertiary alkyl halide if possible. (Because steric hinderance in the substrate will inhibit substitution) When a synthesis must begin with a primary alkyl halide, use a bulky base. (Because the steric bulk of the base will inhibit substitution) Ch. 7 - 24 Use a high concentration of a strong and nonpolarizable base, such as an alkoxide. (Because a weak and polarizable base would not drive the reaction toward a bimolecular reaction, thereby allowing unimolecular processes (such as SN1 or E1 reactions) to compete. Ch. 7 - 25 Sodium ethoxide in ethanol (EtONa/EtOH) and potassium tert- butoxide in tertbutyl alcohol (t-BuOK/t- BuOH) are bases typically used to promote E2 reactions Use elevated temperature because heat generally favors elimination over substitution. (Because elimination reactions are entropically favored over substitution reactions) Ch. 7 - 26 6B. Zaitsev’s Rule Examples of dehydrohalogenations where only a single elimination product is possible EtONa (1) (79%) Br EtOH, 55oC EtONa (2) (91%) Br EtOH, 55oC t -BuOK (3) ( ) Br ( ) (85%) n t -BuOH, 40oC n Ch. 7 - 27 H Rate = k H3C C CH3 EtO Br (2nd order overall) ⇒ bimolecular ̶̶̶ Ha B Ha Hb 2-methyl-2-butene Br ̶̶̶ Hb 2-methyl-1-butene Ch. 7 - 28 When a small base is used (e.g. EtO⊖ or HO⊖) the major product will be the more highly substituted alkene (the more stable alkene) Examples: a b H H NaOEt (1) + EtOH 70oC Br 69% 31% (eliminate Ha) (eliminate Hb) Br KOEt (2) + + EtOH 51% 18% 31% 69% Ch. 7 - 29 Zaitsev’s Rule ● In elimination reactions, the more highly substituted alkene product predominates Stability of alkenes Me Me Me Me Me H C C > C C > C C Me Me Me H H Me Me Me Me H > C C > C C H H H H Ch. 7 - 30 Mechanism for an E2 Reaction Et O Et O H CH3 H CH3 α δ− H3C CH3 C C CH3 C C CH3 C C H C H C 3 β 3 δ− H CH3 H Br H Br + Et OH + Br EtO removes Partial bonds in a β ⊖proton; the transition C=C is fully C−H breaks; state: C−H and formed and new π bond C−Br bonds the other forms and Br break, new π products are begins to C−C bond forms EtOH and Br depart Ch. 7 -⊖31 δ− O Et H3C H δ− CH3CH2 C C Et O δ− H Br H H CH3 C C CH3 H3C δ− ‡ Br ∆G y H 1 g ‡ r G e ∆ 2 n E CH 3 e - e CH3 CH CH C CH + EtOH + Br r 3 2 2 F - EtO + CH3CH2 C CH3 Br CH3 - CH3CH C CH3 + EtOH + Br Reaction Coordinate Ch. 7 - 32 6C. Formation of the Less Substituted Alkene Using a Bulky Base Hofmann’s Rule ● Most elimination reactions follow Zaitsev’s rule in which the most stable alkenes are the major products. However, under some circumstances, the major elimination product is the less substituted, less stable alkene Ch. 7 - 33 ● Case 1: using a bulky base EtO CH3CH CHCH3 (80%) + (small) CH3CH2CH CH2 (20%) CH3CH2CHCH3 Br t BuO CH3CH CHCH3 (30%) + (bulky) CH3CH2CH CH2 (70%) EtO⊖ (small base) H H H H tBuO⊖ H C C C C H (bulky base) H H Br H Ch. 7 - 34 ● Case 2: with a bulky group next to the leaving halide less crowded β-H Me H Br H Me H EtO H3C C C C C H H3C C C C CH2 Me H Me H Me H Me (mainly) more crowded β-H Ch. 7 - 35 Zaitsev Rule vs. Hofmann Rule ● Examples Ha Hb (1) + Br (eliminate Ha) (eliminate Hb) NaOEt, EtOH, 70oC 69% 31% KOtBu, tBuOH, 75oC 28% 72% Ch. 7 - 36 ● Examples Hb Br Ha (2) + (eliminate Ha) (eliminate Hb) NaOEt, EtOH, 70oC 91% 9% KOtBu, tBuOH, 75oC 7% 93% Ch. 7 - 37 6D. The Stereochemistry of E2 Reactions The 5 atoms involved in the transition state of an E2 reaction (including the base) must lie in the same plane The anti coplanar conformation is the preferred transition state geometry ● The anti coplanar transition state is staggered (and therefore of lower energy), while the syn coplanar transition state is eclipsed Ch. 7 - 38 B B H H LG C C C C LG Anti coplanar Syn coplanar transition state transition state (preferred) (only with certain rigid molecules) Ch. 7 - 39 Orientation Requirement ● H and Br have to be anti periplanar (trans-coplanar) ● Examples CH3CH2 + EtO CH3CH2 Br CH3 CH3 since: Br CH3CH2 H Only H is H anti periplanar H CH3 to Br EtO Ch. 7 - 40 E2 Elimination where there are two axial β hydrogens EtO (a) 1 H3C 4 CH(CH3)2 a 3 2 EtO b H H 1-Menthene (78%) CH(CH ) 1 3 2 (more stablealkene) H3C 4 3 H H 2 H Cl 1 H C 4 CH(CH ) (b) 3 3 2 Both Ha and Hb hydrogens 3 2 are anti to the chlorine in 2-Menthene (22%) this, the more stable (less stable alkene) conformation Ch. 7 - 41 E2 elimination where the only axial β hydrogen is from a less stable Conformer H CH3 H Cl 1 CH(CH3)2 H3C 4 2 H 3 Cl H H H H H H CH(CH3)2 Menthyl chloride Menthyl chloride (more stable conformer) (less stable conformer) Elimination is not possible Elimination is possible for for this conformation this conformation because because no hydrogen is anti the green hydrogen is anti to the leaving group to the chlorine Ch.
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • The Use of Spirocyclic Scaffolds in Drug Discovery ⇑ Yajun Zheng , Colin M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Bioorganic & Medicinal Chemistry Letters 24 (2014) 3673–3682 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl BMCL Digest The use of spirocyclic scaffolds in drug discovery ⇑ Yajun Zheng , Colin M. Tice, Suresh B. Singh Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States article info abstract Article history: Owing to their inherent three-dimensionality and structural novelty, spiro scaffolds have been increas- Received 15 April 2014 ingly utilized in drug discovery. In this brief review, we highlight selected examples from the primary Revised 17 June 2014 medicinal chemistry literature during the last three years to demonstrate the versatility of spiro scaffolds. Accepted 27 June 2014 With recent progress in synthetic methods providing access to spiro building blocks, spiro scaffolds are Available online 5 July 2014 likely to be used more frequently in drug discovery. Ó 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Keywords: license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Spirocyclic Scaffold Drug discovery One widely used strategy in drug design is to rigidify the ligand present in a number of bioactive natural products such as mito- conformation by introducing a ring.1 The resulting cyclic analog mycins, it is generally difficult to construct such aziridines from will suffer a reduced conformational entropy penalty upon binding unfunctionalized olefins. A recent report of a facile synthetic route to a protein target.
    [Show full text]
  • Chapter 77 These Powerpoint Lecture Slides Were Created and Prepared by Professor William Tam and His Wife, Dr
    About The Authors Chapter 77 These PowerPoint Lecture Slides were created and prepared by Professor William Tam and his wife, Dr. Phillis Chang. Professor William Tam received his B.Sc. at the University of Hong Kong in Alkenes and Alkynes I: 1990 and his Ph.D. at the University of Toronto (Canada) in 1995. He was an NSERC postdoctoral fellow at the Imperial College (UK) and at Harvard Properties and Synthesis. University (USA). He joined the Department of Chemistry at the University of Guelph (Ontario, Canada) in 1998 and is currently a Full Professor and Associate Chair in the department. Professor Tam has received several awards Elimination Reactions in research and teaching, and according to Essential Science Indicators , he is currently ranked as the Top 1% most cited Chemists worldwide. He has of Alkyl Halides published four books and over 80 scientific papers in top international journals such as J. Am. Chem. Soc., Angew. Chem., Org. Lett., and J. Org. Chem. Dr. Phillis Chang received her B.Sc. at New York University (USA) in 1994, her Created by M.Sc. and Ph.D. in 1997 and 2001 at the University of Guelph (Canada). She lives in Guelph with her husband, William, and their son, Matthew. Professor William Tam & Dr. Phillis Chang Ch. 7 - 1 Ch. 7 - 2 1. Introduction Alkynes ● Hydrocarbons containing C ≡C Alkenes ● Common name: acetylenes ● Hydrocarbons containing C=C H ● Old name: olefins N O I Cl C O C O CH2OH Cl F3C C Cl Vitamin A C H3C Cl H3C HH Efavirenz Haloprogin Cholesterol (antiviral, AIDS therapeutic) (antifungal, antiseptic) HO Ch.
    [Show full text]
  • Aldehydes and Ketones
    Organic Lecture Series Aldehydes And Ketones Chap 16 111 Organic Lecture Series IUPAC names • the parent alkane is the longest chain that contains the carbonyl group • for ketones, change the suffix -e to -one • number the chain to give C=O the smaller number • the IUPAC retains the common names acetone, acetophenone, and benzophenone O O O O Propanone Acetophenone Benzophenone 1-Phenyl-1-pentanone (Acetone) Commit to memory 222 Organic Lecture Series Common Names – for an aldehyde , the common name is derived from the common name of the corresponding carboxylic acid O O O O HCH HCOH CH3 CH CH3 COH Formaldehyde Formic acid Acetaldehyde Acetic acid – for a ketone , name the two alkyl or aryl groups bonded to the carbonyl carbon and add the word ketone O O O Ethyl isopropyl ketone Diethyl ketone Dicyclohexyl ketone 333 Organic Lecture Series Drawing Mechanisms • Use double-barbed arrows to indicate the flow of pairs of e - • Draw the arrow from higher e - density to lower e - density i.e. from the nucleophile to the electrophile • Removing e - density from an atom will create a formal + charge • Adding e - density to an atom will create a formal - charge • Proton transfer is fast (kinetics) and usually reversible 444 Organic Lecture Series Reaction Themes One of the most common reaction themes of a carbonyl group is addition of a nucleophile to form a tetrahedral carbonyl addition compound (intermediate). - R O Nu - + C O Nu C R R R Tetrahedral carbonyl addition compound 555 Reaction Themes Organic Lecture Series A second common theme is
    [Show full text]
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]
  • 13C-13C Vicinal Coupling Constan
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 12, pp. 4948-4952, December 1975 Biophysics 13C-nuclear magnetic resonance study of [85% 13C-enriched proline]thyrotropin releasing factor: 13C-13C vicinal coupling constants and conformation of the proline residue (hypothalamic hormone/13C labeling/pH effects/angular dependence/pyrrolidine ring puckering) WOLFGANG HAAR*, SERGE FERMANDJIAN*§, JAROSLAV VICARt, KAREL BLAHAf, AND PIERRE FROMAGEOT* * Service de Biochimie, Centre d'Etudes Nucleaires de Saclay, B.P. no. 2, 91190-GIF-sur-Yvette, France; t Institute of Organic Chemistry and Biochemistry, Flemingoro Namesti 2, Prague, Czechoslovakia; and * Institute for Medical Chemistry, Palacky University, Olomouc, Czechoslovakia Communicated by Irvtine H. Page, September 22, 1975 ABSTRACT To understand fully interactions between with a natural peptide containing a single '3C-enriched peptides and cellular receptors, peptide side chain conforma- amino acid. In previous papers, we have demonstrated that tion must be defined. In many cases the complexity of proton 85% '3C-enrichment of amino acids offers several advan- nuclear magnetic resonance (NMR) prevents this but the tages (25-27) when compared to unenriched samples. Not present work demonstrates this problem can be solved by also those of using 13C enrichment. Selective '3C enrichment of a natural only are problems of concentration solved, but peptide hormone has been achieved by preparing [85% '3C signal assignment if only one amino acid is selectively la- enriched prolinelthyrotropin releasing factor which was ex- beled in the peptide. Furthermore '3C-'3C coupling con- amined by '3C NMR spectroscopy at various pH values. Be- stants, undetectable with unenriched samples, are easily cause of the '3C enrichment, one-bonded and three-bonded measured (28-89).
    [Show full text]
  • Unit 11 Halogen Derivatives
    UNIT 11 HALOGEN DERIVATIVES Structure 11.1 Introduction Objectives 11.2 Classification of Halogen Derivatives 11.3 Preparation of Halogen Derivatives Alkyl Halides Aryl Halides Alkenyl Halides 11.4 Structure and Properties of Halogen Derivatives Structure of Halogen Derivatives Physical Properties of Halogen Derivatives Spectral Properties of Halogen Derivatives Chemical Properties of Alkyl Halides Chemical Properties of Aryl and Alkenyl Halides 11.5 Organometallic Compounds 11.6 Polyhalogen Derivatives Dihalogen Derivatives Trihalogen Derivatives 11.7 Uses of Halogen Derivatives 11.8 Lab Detection 11.9 Summary 11.10 Terminal Questions 11.11 Answers 11.1 INTRODUCTION In Block 2, we have described the preparation and reactions of hydrocarbons and some heterocyclic compounds. In this unit and in the next units, we will srudy some derivatives of hydrocarbons. Replacement of one or more hydrogen atoms in a hycimcarbon by halogen atom(s) [F, CI, Br, or I:] gives the halogen derivatives. These compounds are important laboratory and industrial solvents and serve as intermediates in the synthesis of other organic compounds. Many chlorohydrocarbons have acquired importance as insecticides. Although there are not many naturally occurring halogen derivatives yet you might be familiar with one such compound, thyroxin-a thyroid hormone. In this unit, we shall take up the chemistry of the halogen derivatives in detail beginning with classification of halogen derivatives and then going over to methods of their preparation. We shall also discuss the reactivity'of halogen compounds and focus our attention specially, on some important reactions such as nucleophilic substitution (SN)and elimination (E) reactions. Finally, we shall take up uses of halogen derivatives and the methods for their detection.
    [Show full text]
  • Transition Metal-Free Homologative Cross-Coupling of Aldehydes and Ketones with Geminal Bis(Boron) Compounds Thomas C
    Transition metal-free homologative cross-coupling of aldehydes and ketones with geminal bis(boron) compounds Thomas C. Stephens and Graham Pattison* Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. Supporting Information Placeholder ABSTRACT: We report a transition metal-free coupling of aldehydes and ketones with geminal bis(boron) building blocks which provides the coupled, homologated carbonyl compound upon oxidation. This reaction not only extends an alkyl chain containing a carbonyl group, it also simultaneously introduces a new carbonyl substituent. We demonstrate that enantiopure aldehydes with an enolizable stereogenic centre undergo this reaction with complete retention of stereochemistry. A range of coupling processes, both metal-catalyzed and proceed with a very high degree of stereocontrol over double metal-free, are transforming the way chemists build mole- bond geometry. 1 cules. Transition metal-free coupling processes are of particu- The key to our general synthetic strategy was the realization lar attraction due to very stringent requirements for low ppm that oxidation of this vinyl boronate will afford a homologated values of toxic transition metal residues in pharmaceutical aldehyde or ketone. Carbonyl compounds have proven to be products. As a result, a series of such transition metal-free some of the key mainstays of organic synthesis over the years, coupling processes are beginning to emerge, using in particu- being found in a broad range of biologically active compounds lar readily available building blocks such as organoboron as well as being key substrates for the synthesis of many alco- 2,3 compounds. hols, heterocycles and enolate condensation products. One class of organoboron building block which is seeing Homologation reactions of carbonyl compounds are significant recent attention are geminal-bis(boronates).
    [Show full text]
  • Chapter 7 - Alkenes and Alkynes I
    Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name of acetylene 7.2 - The (E)-(Z) System for Designating Alkene Diastereomers - To determine E or Z, look at the two groups attached to one carbon atom of the double bond and decide which has higher priority. Then, repeat this at the other carbon atom. This system is not used for cycloalkenes - If the two groups of higher priority are on the same side of the double bond, the alkene is designated Z. If the two groups of higher priority are on opposite sides of the double bond, the alkene is designated E - Hydrogenation is a syn/cis addition 7.3 - Relative Stabilities of Alkenes - The trans isomer is generally more stable than the cis isomer due to electron repulsions - The addition of hydrogen to an alkene, hydrogenation, is exothermic (heat of hydrogenation) - The greater number of attached alkyl groups, the greater the stability of an alkene 7.5 - Synthesis of Alkenes via Elimination Reactions, 7.6 - Dehydrohalogenation of Alkyl Halides How to Favor E2: - Reaction conditions that favor elimination by E1 should be avoided due to the highly competitive SN 1 mechanism - To favor E2, a secondary or tertiary alkyl halide should be used - If there is only a possibility for a primary alkyl halide, use a bulky base - Use a higher concentration of a strong and nonpolarizable base, like an alkoxide - EtONa=EtOH favors the more substituted double bond
    [Show full text]
  • Transcription 11.12.07
    Lab 17A • 12/07/11 [lab quiz] Nomenclature of alkenes The first molecule that I want to look at is this one, where we have the two methyl groups on one side, two hydrogens on the other side. Would it be appropriate to use cis or trans, or E or Z, or both, or neither? One carbon of the double bond versus the other, those are the two different sides of the double, then the top versus the bottom are the two faces of the double bond. If we notice, on both the top face and the bottom face, we have a methyl group that is pointed the same way as a hydrogen. There is a steric factor as far as what alkene would prefer to form thermodynamically, so there is an importance that there’s some interaction there. That methyl group with one hydrogen is exactly the same interaction as you’d have the methyl group and the other hydrogen pointed the opposite way – meaning that if you were to switch the two hydrogens, you’d end up with exactly the same molecule again. The only reason that we use the term cis or trans or E or Z is to describe that it is one configuration versus another, but since there’s only one configuration possible, there’s therefore no term that should be used. It would, in fact, be wrong to call this cis, trans, E, or Z. When an alkene has two of the same substituent on the same side, there is only one unique configuration of that alkene, and so it cannot be called cis, trans, E, or Z.
    [Show full text]
  • Organic Seminar Abstracts
    Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemin1971752univ / a ORGANIC SEMINAR ABSTRACTS 1971-1972 Semester II School of Chemical Sciences Department of Chemistry- University of Illinois Urbana, Illinois 3 SEMINAR TOPICS II Semester 1971-72 Reactions of Alkyl Ethers Involving n- Complexes on a Reaction Pathway 125 Jerome T. Adams New Syntheses of Helicenes 127 Alan Morrice Recent Advances in Drug Detection and Analysis I36 Ronald J. Convers The Structure of Carbonium Ions with Multiple Neighboring Groups 138 William J. Work Recent Reactions of the DMSO-DCC Reagent ll+O James A. Franz Nucleophilic Acylation 1^2 Janet Ollinger The Chemistry of Camptothecin lU^ Dale Pigott Stereoselective Syntheses and Absolute Configuration of Cecropia Juvenile Horomone 1U6 John C. Greenfield Uleine and Related Aspidosperma Alkaloids 155 Glen Tolman Strategies in Oligonucleotide Synthesis 162 Graham Walker Stable Carbocations: C-13 Nuclear Magnetic Resonance Studies 16U Moses W. McMillan Organic Chlorosulfinates 166 Steven W. Moje Recent Advances in the Chemistry of Penicillins and Cephalosporins 168 Ronald Stroshane Cerium (iv) Oxidations 175 William C. Christopfel A New Total Synthesis of Vitamin D 18 William Graham Ketone Transpositions 190 Ann L. Crumrine - 125 - REACTIONS OF ALKYL ETHERS INVOLVING n-COMPLEXES ON A REACTION PATHWAY Reported by Jerome T. Adams February 2k 1972 The n-complex (l) has been described as an intermediate on the reaction pathway for electrophilic aromatic substitution and acid catalyzed rearrange- ment of alkyl aryl ethers along with sigma (2) and pi (3) type intermediates. 1 ' 2 +xR Physical evidence for the existence of n-complexes of alkyl aryl ethers was found in the observation of methyl phenyl ononium ions by nmr 3 and ir observation of n-complexes of anisole with phenol.
    [Show full text]
  • Elimination Reactions Are Described
    Introduction In this module, different types of elimination reactions are described. From a practical standpoint, elimination reactions widely used for the generation of double and triple bonds in compounds from a saturated precursor molecule. The presence of a good leaving group is a prerequisite in most elimination reactions. Traditional classification of elimination reactions, in terms of the molecularity of the reaction is employed. How the changes in the nature of the substrate as well as reaction conditions affect the mechanism of elimination are subsequently discussed. The stereochemical requirements for elimination in a given substrate and its consequence in the product stereochemistry is emphasized. ELIMINATION REACTIONS Objective and Outline beta-eliminations E1, E2 and E1cB mechanisms Stereochemical considerations of these reactions Examples of E1, E2 and E1cB reactions Alpha eliminations and generation of carbene I. Basics Elimination reactions involve the loss of fragments or groups from a molecule to generate multiple bonds. A generalized equation is shown below for 1,2-elimination wherein the X and Y from two adjacent carbon atoms are removed, elimination C C C C -XY X Y Three major types of elimination reactions are: α-elimination: two atoms or groups are removed from the same atom. It is also known as 1,1-elimination. H R R C X C + HX R Both H and X are removed from carbon atom here R Carbene β-elimination: loss of atoms or groups on adjacent atoms. It is also H H known as 1,2- elimination. R C C R R HC CH R X H γ-elimination: loss of atoms or groups from the 1st and 3rd positions as shown below.
    [Show full text]