Synthesis of Indole and Oxindole Derivatives Incorporating Pyrrolidino, Pyrrolo Or Imidazolo Moieties

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Indole and Oxindole Derivatives Incorporating Pyrrolidino, Pyrrolo Or Imidazolo Moieties From DEPARTMENT OF BIOSCIENCES AT NOVUM Karolinska Institutet, Stockholm, Sweden SYNTHESIS OF INDOLE AND OXINDOLE DERIVATIVES INCORPORATING PYRROLIDINO, PYRROLO OR IMIDAZOLO MOIETIES Stanley Rehn Stockholm 2004 All previously published papers have been reproduced with permission from the publishers. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Stanley Rehn, 2004 ISBN 91-7140-169-5 Till Amanda Abstract The focus of this thesis is on the synthesis of oxindole- and indole-derivatives incorporating pyrrolidins, pyrroles or imidazoles moieties. Pyrrolidino-2-spiro-3’-oxindole derivatives have been prepared in high yielding three-component reactions between isatin, α-amino acid derivatives, and suitable dipolarophiles. Condensation between isatin and an α-amino acid yielded a cyclic intermediate, an oxazolidinone, which decarboxylate to give a 1,3-dipolar species, an azomethine ylide, which have been reacted with several dipolarophiles such as N- benzylmaleimide and methyl acrylate. Both N-substituted and N-unsubstituted α- amino acids have been used as the amine component. 3-Methyleneoxindole acetic acid ethyl ester was reacted with p- toluenesulfonylmethyl isocyanide (TosMIC) under basic conditions which gave (in a high yield) a colourless product. Two possible structures could be deduced from the analytical data, a pyrroloquinolone and an isomeric ß-carboline. To clarify which one of the alternatives that was actually formed from the TosMIC reaction both the ß- carboline and the pyrroloquinolone were synthesised. The ß-carboline was obtained when 3-ethoxycarbonylmethyl-1H-indole-2-carboxylic acid ethyl ester was treated with a tosylimine. An alternative synthesis of the pyrroloquinolone was performed via a reduction of a 2,3,4-trisubstituted pyrrole obtained in turn by treatment of a vinyl sulfone with ethyl isocyanoacetate under basic conditions. This molecule (the pyrroloquinolone), obtained in a low yield by a multistep procedure, proved to be identical with the product obtained easily via the TosMIC route. The reaction between 3-aminocrotonates and 3-acetonylideneoxindole in refluxing toluene resulted in 2-pyrrolo-3’-yloxindoles in high yields, (around 90 %). At room temperature the 2-pyrrolo-3’-yloxindoles exist as a mixture of keto-enol tautomers. Treatment with POCl3 yielded the corresponding 2-chloro-3-pyrrolyl indole, which gave a pyrrolo annulated indolopyrane upon basic hydrolysis of the ester function of the methyl ester. 3-Imidazolylindoles were synthesised in good yields from the corresponding benzylimine and TosMIC. Treatment of cyclohexanone benzylimine with α- chloroacrylonitrile yielded, after expulsion of HCN by refluxing in ethanol, 1-benzyl- 4,5,6,7-tetrahydroindole. Formylation and benzylimine formation followed by treatment with TosMIC furnished the desired 2-imidazolyltetrahydroindole. Keywords: isatin, three-component reaction, α-amino acid, azomethine ylide, pyrrolidino-3-spiro-3’-oxindole derivatives, 3-methyleneoxindole derivatives, pyrroloquinolone, TosMIC, β-carboline, tosylimine, pyrrole, keto-enol tautomerism, indolopyran-2-one, imidazole, benzylimine, tetrahydroindole. iv List of publications The thesis is based on the following papers, referred to in the text by the Roman numerals I-IV: I. The Three-Component Reaction between Isatin, α-Amino Acids, and Dipolarophiles. Rehn, S.; Bergman, J.; Stensland, B. Eur. J. Org. Chem, 2004, 413-418. II. Synthesis of 4-oxo-4,5-dihydro-3H-pyrrolo[2,3-c]quinoline-1-carboxylic acid ethyl ester and its isomer 1-oxo-2,9-dihydro-1H-β-carboline-4-carboxylic acid ethyl ester. Bergman, J.; Rehn, S. Tetrahedron, 2002, 45, 9179-9185. III. The reaction between 3-aminocrotonates and oxindole 3-ylidene derivatives: synthesis of highly substituted pyrroles. Rehn, S.; Bergman, J. Tetrahedron, accepted. IV. Synthetic studies towards the alkaloid granulatimide: synthesis of 3- imidazolylindole and 2-imidazolyltetrahydroindole. Rehn, S.; Bergman, J. Manuscript v Contents Abstract…….………………...……………………………………………………….iv List of papers………………………………………………………………………….v Contents……………………….………………………………………………………vi 1 Introduction to isatin chemistry .............................................................................1 1.1 Synthesis of isatin ..............................................................................................1 1.2 Fundamental reactivity of isatins.......................................................................2 1.2.1 Aromatic substitution.....................................................................................2 1.2.2 N-Alkylation and N-acylation.......................................................................3 1.2.3 Carbonyl reactions .........................................................................................3 2 Pyrrolidino-2-spiro-3’-oxindole..............................................................................9 2.1 Naturally occuring 3-spiro-oxindoles................................................................9 2.2 Ninhydrin and the Strecker degradation............................................................9 2.3 Azomethine ylides...........................................................................................10 2.3.1 1,2-prototropic shift .....................................................................................10 2.3.2 Decarboxylative condensation ....................................................................11 2.3.3 Three-component reactions (paper I) ..........................................................12 3 Reactions on 3-methyleneoxindole derivatives...................................................15 3.1 3-Methyleneoxindole acetic acid ethyl ester...................................................15 3.1.1 Isocyanides...................................................................................................16 3.2 Addition of TosMIC to 3-methyleneoxindole derivatives (paper II).............16 3.2.1 Mechanistic aspects .....................................................................................17 3.2.2 β-Carbolines.................................................................................................18 3.2.3 Pyrroloquinolones........................................................................................20 3.3 3-(Pyrrol-4-yl)-oxindole (paper III) ................................................................22 3.3.1 Introduction..................................................................................................22 3.3.2 3-Aminocrotonates and 3-methyleneoxindole acetic acid ethyl ester........23 3.3.3 3-Aminocrotonates and 3-acetonylideneoxindole ......................................24 3.3.4 Chlorination of pyrrolo-oxindoles with POCl3 ...........................................26 4 Synthetic studies towards the alkaloid granulatimide (paper IV) ...................28 4.1 Introduction to imidazolyl indoles...................................................................28 4.2 3-(Imidazolyl)-indoles .....................................................................................29 4.3 2-(Imidazolyl)-tetrahydroindoles ....................................................................29 4.3.1 Published procedures to granulatimide .......................................................29 4.3.2 Retrosynthesis of granulatimide..................................................................30 4.3.3 Synthesis of 2-imidazolyltetrahydroindole .................................................31 5 Acknowledgements.................................................................................................33 6 Appendix: supplementary material .....................................................................34 6.1 Experimental part to section 4 .........................................................................34 7 Abbreviations..........................................................................................................38 vi 1 Introduction to isatin chemistry Isatin 1 (indole-2,3-dione)1 has been known since 1841 when Erdmann and Laurent prepared it by oxidation of indigo 2 by nitric and chromic acids. Although known as a synthetic molecule for almost 140 years, isatin was later found in nature, for instance in the fruits of the cannon ball tree, Couroupita quianensis Aubl.2 In man, isatin has been found to function as an endogenous monoamine oxidase inhibitor.3 4 O O 3 H 5 2 N O 6 N1 N H H 7 O 1 2 Figure 1. Isatin 1 and indigo 2. 1.1 Synthesis of isatin The importance of indigo as a possible synthetic dyestuff whithin the textile industry led to intense research in the area of indigo chemistry. As an offspring to the efforts in indigo research, the chemistry of isatin was explored, and several synthetic pathways to isatin were developed. The oldest and the most important method of synthesising isatin is the Sandmeyer methodology that starts from an aniline 3, which reacts with chloral hydrate and hydroxylamine hydrochloride in water containing sodium sulfate to form an isonitrosoacetanilide 4. The isolated isonitrosoanilide 4 is then treated with concentrated sulfuric acid to yield the isatin 5. O NOH a b R R R O c NH2 N O N H H 34 5 Scheme 1. The Sandmeyer synthesis. a) Cl3CCH(OH)2, H2NOH·HCl, Na2SO4. b) H2SO4. c) H2O. Second to Sandmeyer’s procedure of isatin synthesis is the method of Stollé whereby the aniline (usually as its hydrochloride) is reacted with oxalyl chloride to form an intermediate, chlorooxalyl anilide, which in turn can
Recommended publications
  • Visible Light Photoredox Catalysis with Transition Metal Complexes: Application in Organic Synthesis
    Visible Light Photoredox Catalysis with Transition Metal Complexes: Application in Organic Synthesis Penghao Chen Dong Group Seminar April, 10th, 2013 Introduction Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159 Introduction Stern‐Volmer Relationship Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo Park, CA, 1978. Stoichiometric Net Reductive Reactionreductant1. Reduction is required of Electron Poor Olefin O Bn NH2 2 Pac, C. et. al., J. Am. Chem. Soc. 1981, 103, 6495 Net Reductive Reaction 2. Reductive Dehalogenation Fukuzumi, S. et. al., J. Phys. Chem. 1990, 94, 722. Net Reductive Reaction 2. Reductive Dehalogenation Stephenson, C. R. J. et. al., J. Am. Chem. Soc. 2009, 131, 8756. Stephenson, C. R. J. et. al., Nature Chem. 2012, 4, 854 Net Reductive Reaction 3. Radical Cyclization Stephenson, C. R. J. et. al., Chem. Commun. 2010, 46, 4985 Stephenson, C. R. J. et. al., Nature Chem. 2012, 4, 854 Net Reductive Reaction 4. Epoxide and Aziridine Opening Fensterbank, L. et. al., Angew. Chem., Int. Ed. 2011, 50, 4463 Hasegawa, E. et. al., Tetrahedron 2006, 62, 6581 Guindon, Y. et. al., Synlett 1998, 213 Guindon, Y. et. al., Synlett 1995, 449 Net Oxidative Reaction 1. Functional Group Reactions Cano‐Yelo, H.; Deronzier, A. Tetrahedron Lett. 1984, 25, 5517 Net Oxidative Reaction 1. Functional Group Reactions Jiao, N. et. al., Org. Lett. 2011, 13, 2168 Net Oxidative Reaction 1. Functional Group Reactions Jørgensen, K. A.; Xiao, W.‐J. Angew. Chem., Int. Ed. 2012, 51, 784 Net Oxidative Reaction 2. Oxid. Generation of Iminium Ions Stephenson, C. R. J. et. al., J. Am. Chem. Soc. 2010, 132, 1464 Net Oxidative Reaction 2.
    [Show full text]
  • Synthesis and Antimicrobial Evaluation of Novelisatin Derivatives
    International Archive of Applied Sciences and Technology Int. Arch. App. Sci. Technol; Vol 5 [1]March 2014: 28-32 © 2014 Society of Education, India IAAST [ISO 9001: 2008 Certified Organization] ONLINE ISSN 2277- 1565 www.soeagra.co/iaast.html PRINT ISSN 0976 - 4828 CODEN: IAASCA ORIGINAL ARTICLE Synthesis and Antimicrobial Evaluation of Novelisatin Derivatives Kiran Mishra Department of Applied Sciences Universal Instt.of Engg.&Tech.,Lalau,Mohali,Pb. Email: [email protected] ABSTRACT The proposed research program is continuation of the research work, which has been carried out on the synthesis and biological studies of some isatin (indole 2,3-diones). In this connection fifty-seven derivatives were prepared.The substitution was made at position such as 1 and 3. The isatin derivatives (MP VA-F) were prepared by the substituted of different aldehydes by reacting the mixture of (3Z)-3-[(4-hydrazinylphenyl)imino]-1,3-dihydro-2H-indol-2-one with the presence of with glacial acetic acid. Isatin derivatives with acid anhydride were prepared and isatin derivatives were also reacted with isatin having 85% yield.All these new compounds have been screened for their antimicrobial activity against test organism. Keyword: isatin, Antimicrobial Activity, p-chloro aniline and hydrazine hydrate. Received 29/12/2013 Revised 02/02/2014 Accepted 18/02/2014 INTRODUCTION Isatin chemically 1H-indole-2,3-dione, was first obtained by Erdman and Laurent in 1841 [1] as a product from the oxidation of indigo by nitric and chromic acids. In nature, isatin is found in plants of the genus Isatis, in Calanthe discolor LINDL and in Couroupitaguianensis.[2].
    [Show full text]
  • Priya Mathew
    PROGRESS TOWARDS THE TOTAL SYNTHESIS OF MITOMYCIN C By Priya Ann Mathew Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2012 Nashville, Tennessee Approved: Professor Jeffrey N. Johnston Professor Brian O. Bachmann Professor Ned A. Porter Professor Carmelo J. Rizzo ACKNOWLEDGMENTS I would like to express my gratitude to everyone who made my graduate career a success. Firstly, I would like to thank my advisor, Professor Jeffrey Johnston, for his dedication to his students. He has always held us to the highest standards and he does everything he can to ensure our success. During the challenges we faced in this project, he has exemplified the true spirit of research, and I am especially grateful to him for having faith in my abilities even when I did not. I would like to acknowledge all the past and present members of the Johnston group for their intellectual discussion and their companionship. In particular, I would like to thank Aroop Chandra and Julie Pigza for their incredible support and guidance during my first few months in graduate school, Jayasree Srinivasan who worked on mitomycin C before me, and Anand Singh whose single comment “A bromine is as good as a carbon!” triggered the investigations detailed in section 2.6. I would also like to thank the other members of the group for their camaraderie, including Jessica Shackleford and Amanda Doody for their friendship, Hubert Muchalski for everything related to vacuum pumps and computers, Michael Danneman and Ken Schwieter for always making me laugh, and Matt Leighty and Ki Bum Hong for their useful feedback.
    [Show full text]
  • Phosphodiesterase Isoforms and Camp Compartments in The
    University of Groningen Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases Schmidt, Martina; Cattani-Cavalieri, Isabella; Nuñez, Francisco J; Ostrom, Rennolds S Published in: Current Opinion in Pharmacology DOI: 10.1016/j.coph.2020.05.002 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Schmidt, M., Cattani-Cavalieri, I., Nuñez, F. J., & Ostrom, R. S. (2020). Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases. Current Opinion in Pharmacology, 51, 34-42. https://doi.org/10.1016/j.coph.2020.05.002 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Last Decade of Unconventional Methodologies for the Synthesis Of
    Review molecules Last Decade of Unconventional Methodologies for theReview Synthesis of Substituted Benzofurans Last Decade of Unconventional Methodologies for the Lucia Chiummiento *, Rosarita D’Orsi, Maria Funicello and Paolo Lupattelli Synthesis of Substituted Benzofurans Department of Science, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (R.D.); [email protected] (M.F.); [email protected] (P.L.) Lucia Chiummiento * , Rosarita D’Orsi, Maria Funicello and Paolo Lupattelli * Correspondence: [email protected] Department of Science, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (R.D.); Academic Editor: Gianfranco Favi [email protected] (M.F.); [email protected] (P.L.) Received:* Correspondence: 22 April 2020; [email protected] Accepted: 13 May 2020; Published: 16 May 2020 Abstract:Academic This Editor: review Gianfranco describes Favi the progress of the last decade on the synthesis of substituted Received: 22 April 2020; Accepted: 13 May 2020; Published: 16 May 2020 benzofurans, which are useful scaffolds for the synthesis of numerous natural products and pharmaceuticals.Abstract: This In review particular, describes new the intramolecular progress of the and last decadeintermolecular on the synthesis C–C and/or of substituted C–O bond- formingbenzofurans, processes, which with aretransition-metal useful scaffolds catalysi for thes or synthesis metal-free of numerous are summarized. natural products(1) Introduction. and (2) Ringpharmaceuticals. generation via In particular, intramolecular new intramolecular cyclization. and (2.1) intermolecular C7a–O bond C–C formation: and/or C–O (route bond-forming a). (2.2) O– C2 bondprocesses, formation: with transition-metal (route b).
    [Show full text]
  • Recent Applications of Isatin in the Synthesis of Organic Compounds
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2017, part i, 148-201 Organic Chemistry Recent applications of isatin in the synthesis of organic compounds Razieh Moradi,a Ghodsi Mohammadi Ziarani,*a and Negar Lashgari b a Department of Chemistry, Alzahra University, Tehran, Iran b School of Chemistry, College of Science, University of Tehran, Tehran, Iran E-mail: [email protected] [email protected] Received 12-06-2016 Accepted 02-25-2017 Published on line 04-10-2017 Abstract Isatin has been used in design and synthesis of diverse types of heterocyclic and carbocyclic compounds and considered as a valuable building block in organic synthesis. There is a diversity of multicomponent reactions of this useful reagent. This article aims to review the advances in the use of isatin as starting material in the synthesis of various organic compounds and drugs up to June 2016. Keywords: Isatin, organic compounds, heterocyclic compounds, carbocyclic compounds DOI: https://doi.org/10.24820/ark.5550190.p009.980 Page 148 ©ARKAT USA, Inc Arkivoc 2017, i, 148-201 Moradi, R. et al. Table of Contents 1. Introduction 2. Reactions at the C-3 Position of Isatin 3. Synthesis of Isatin-based Spiro-fused Heterocyclic Frameworks 3.1 Synthesis involving two-component reactions of isatins 3.1.1 Three-membered heterocycles 3.1.2 Five-membered heterocycles 3.1.3 Six-membered heterocycles 3.1.4 Seven-membered heterocycles 4. Synthesis Involving Multicomponent Reactions 4.1 Three-membered heterocycles 4.2 Five-membered heterocycles 4.3 Six-membered heterocycles 4.4 Seven-membered heterocycles 5.
    [Show full text]
  • Highly Efficient Endo'- Selective Synthesis of (Dispiro 3,2
    J. Chem. Sci. Ó (2020) 132:76 Indian Academy of Sciences https://doi.org/10.1007/s12039-020-01772-7Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) REGULAR ARTICLE Highly efficient endo’- selective synthesis of (dispiro 3,20- pyrrolidinyl) bisoxindoles containing three contiguous chiral stereocenters with two contiguous quaternary spirostereocenters PANNEERSELVAM YUVARAJa,* , HUIDROM BIRKUMAR SINGHa, ARUN PRASATH LINGAM KANDAPALAMb, DEVARAJAN KATHIRVELANc and SANKARANARAYANAN NAGARAJANd aCSIR-North East Institute of Science and Technology, Branch Laboratory, Imphal, Manipur 795004, India bDepartment of Chemistry, Kamaraj College, Thoothukudi, Tamil Nadu 628003, India cDepartment of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, Telangana 502285, India dDepartment of Chemistry, National Institute of Technology Manipur, Imphal 795004, India E-mail: [email protected]; [email protected] MS received 15 November 2019; revised 6 January 2020; accepted 9 January 2020 Abstract. An efficient, atom economical, one-pot synthesis of endo’- selective (dispiro 3,20-pyrrolidinyl) bisoxindole containing three contiguous chiral stereocenters with two contiguous quaternary spirostereo centers have been achieved by three-component reaction of isatins, malononitrile (cyanoacetic ester) and 1,3- dicarbonyl compounds in water in the presence of L-proline. One-pot, azomethine ylide cycloaddition with a dipolarophile without using any catalyst have also been achieved in good yields. This new methodology offers many advantages of catalyst-free,
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.260,446 B2 Cadieux Et Al
    USOO926O446B2 (12) United States Patent (10) Patent No.: US 9.260,446 B2 Cadieux et al. (45) Date of Patent: Feb. 16, 2016 (54) SYNTHETIC METHODS FOR 5,663,431 A 9, 1997 Di Malta et al. SPIRO-OXINDOLE COMPOUNDS 5,686,624 A 11/1997 Di Malta et al. 5,696,145 A 12/1997 Foulon et al. (71) Applicant: Xenon Pharmaceuticals Inc., Burnaby 5,723,625 A 3/1998 Keplinger et al. (CA) 5,726,322 A 3, 1998 Di Malta et al. Inventors: 5,728,723 A 3, 1998 Di Malta et al. (72) Jean-Jacques Alexandre Cadieux, 5,763,471 A 6/1998 Fourtillan et al. Burnaby (CA); Mikhail Chafeev, 5,767,128 A 6/1998 Guillaumet et al. Khimki (RU); Sultan Chowdhury, 5,776,936 A 7/1998 Lee et al. Surrey (CA); Jianmin Fu, Coquitlam 5,849,780 A 12/1998 Di Malta et al. (CA); Qi Ji, Burnaby (CA); Stefanie 5,886,026 A 3, 1999 Hunter et al. 5,994,350 A 11/1999 Foulon et al. Abel, Thalwil (CH); Emad El-Sayed, 6,046,341 A 4/2000 Foulon et al. Zumikon (CH); Elke Huthmann, Buchs 6,090,818 A 7/2000 Foulon et al. (CH); Thomas Isarno, Niffer (FR) 6,099,562 A 8/2000 Ding et al. 6,110,969 A 8, 2000 Tani et al. (73) Assignee: Xenon Pharmaceuticals Inc., Burnaby 6,225,347 B1 5/2001 Buchmann et al. 6,235,780 B1 5, 2001 Ohuchida et al. (CA) 6,262.293 B1 7/2001 Tani et al.
    [Show full text]
  • Enzyme Evolution in Fungal Indole Alkaloid Biosynthesis Amy E
    REVIEW ARTICLE Enzyme evolution in fungal indole alkaloid biosynthesis Amy E. Fraley1,2 and David H. Sherman1,2,3,4 1 Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 2 Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA 3 Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 4 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA Keywords The class of fungal indole alkaloids containing the bicyclo[2.2.2]diazaoc- biosynthesis; Diels–Alderase; natural tane ring is comprised of diverse molecules that display a range of biologi- products; nonribosomal peptides; cal activities. While much interest has been garnered due to their monooxygenase therapeutic potential, this class of molecules also displays unique chemical Correspondence functionality, making them intriguing synthetic targets. Many elegant and D. H. Sherman, Life Sciences Institute, 210 intricate total syntheses have been developed to generate these alkaloids, Washtenaw Avenue, Ann Arbor, MI 48104, but the selectivity required to produce them in high yield presents great USA barriers. Alternatively, if we can understand the molecular mechanisms Tel: +734 615 9907 behind how fungi make these complex molecules, we can leverage the E-mail: [email protected] power of nature to perform these chemical transformations. Here, we describe the various studies regarding the evolutionary development of (Received 21 August 2019, revised 24 November 2019, accepted 27 February enzymes involved in fungal indole alkaloid biosynthesis. 2020) doi:10.1111/febs.15270 Introduction to fungal indole alkaloids The fungal indole alkaloid class of natural products knowledge gaps with detailed biochemical characteri- contains molecules with unique structural properties zation.
    [Show full text]
  • Prebiotic Formation of Cyclic Dipeptides Under Potentially Early Earth
    www.nature.com/scientificreports OPEN Prebiotic formation of cyclic dipeptides under potentially early Earth conditions Received: 10 October 2017 Jianxi Ying1, Rongcan Lin1, Pengxiang Xu1, Yile Wu 1, Yan Liu1 & Yufen Zhao1,2 Accepted: 27 December 2017 Cyclic dipeptides, also known as 2,5-diketopiperazines (DKPs), represent the simplest peptides Published: xx xx xxxx that were frst completely characterized. DKPs can catalyze the chiral selection of reactions and are considered as peptide precursors. The origin of biochemical chirality and synthesis of peptides remains abstruse problem believed to be essential precondition to origin of life. Therefore, it is reasonable to believe that the DKPs could have played a key role in the origin of life. How the formation of the DKPs through the condensation of unprotected amino acids in simulated prebiotic conditions has been unclear. Herein, it was found that cyclo-Pro-Pro could be formed directly from unprotected proline in the aqueous solution of trimetaphosphate (P3m) under mild condition with the yield up to 97%. Other amino acids were found to form proline-containing DKPs under the same conditions in spite of lower yield. During the formation process of these DKPs, P3m promotes the formation of linear dipeptides in the frst step of the mechanism. The above fndings are helpful and signifcant for understanding the formation of DKPs in the process of chemical evolution of life. As one of the simplest peptide derivatives in nature1,2, Cyclic dipeptides, also known as 2, 5-diketopiperazines (DKPs), which were ubiquitously observed in microorganism, plants and animals3–10, have been found to have many biological activities (e.g., antiviral, antibiotic, anticancer)11–14 and chiral catalysis properties15.
    [Show full text]
  • Facile Synthesis of 3-Spiropyrrolizidine Oxindoles and 3-Spirotetrahydroquinoline Oxindoles Via [3+2] and [4+2] Cycloaddition Reactions
    id2143625 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com OOrrggaanniicc ISSN: 0974 - 7516 Volume 8 Issue 3 CCHHEEMMAn IIInSSdiTTan RRJouYrYnal Trade Science Inc. Full Paper OCAIJ, 8(3), 2012 [94-102] Facile synthesis of 3-spiropyrrolizidine oxindoles and 3-spirotetrahydroquinoline oxindoles via [3+2] and [4+2] cycloaddition reactions A.Sudhakara1, H.C.Kiran Kumar2, H.Jayadevappa1, K.M.Mahadevan2* 1Department of Chemistry, Sahyadri Science College, Shimoga, Karnataka, 577 203, (INDIA) 2Department of Postgraduate Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, Karnataka, 577 451, (INDIA) E-mail: [email protected] Received: 22nd June, 2011 ; Accepted: 22nd July, 2011 ABSTRACT KEYWORDS A rapid and efficient synthesis of a number of functionalized 3- Isatin; spiropyrrolizidine oxindoles from [3+2] cycloaddition of azomethine ylide Imino Diels-Alder; and 3-spirotetrahydroquinoline oxindoles from [4+2] imino Diels-Alder re- Antimony(III)chloride; action; catalyzed by Antimony(III)chloride in excellent yields are reported. Spiropyrrolizidine oxindoles; 2012 Trade Science Inc. - INDIA Spirotetrahydroquinoline- oxindoles. INTRODUCTION sor for the synthesis of biologically active indole de- rivatives and natural products[2]. The Spirooxindoles core Heterocyclic compounds containing isatin (1H-in- is featured in a number of natural products and recently dole-2, 3-dione) scaffold have a wide range of biologi- has been the subject of significant synthetic interest[3]. cal activities[1] and also serves as an important precur- Oxindoles derivatized like Spirotryprostatin B, Horsfiline O Me H H O NH MeO N Me N N H MeO O H O O N N N O Me H H Spirotryprostatin B Horsfiline Alstonisine Spirooxindole alkaloid natural products Figure 1 : Spirotryprostatin B, horsfiline and alstonisine are alkaloids present in nature and are elegant targets in the organic synthesis due to their significant biological activities.
    [Show full text]
  • Dppm-Derived Phosphonium Salts and Ylides As Ligand Precursors for S-Block Organometallics
    Issue in Honor of Prof. Rainer Beckert ARKIVOC 2012 (iii) 210-225 Dppm-derived phosphonium salts and ylides as ligand precursors for s-block organometallics Jens Langer,* Sascha Meyer, Feyza Dündar, Björn Schowtka, Helmar Görls, and Matthias Westerhausen Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena Humboldtstraße 8, D-07743 Jena, Germany E-mail: [email protected] Dedicated to Professor Rainer Beckert on the Occasion of his 60th Birthday DOI: http://dx.doi.org/10.3998/ark.5550190.0013.316 Abstract The addition reaction of 1,1-bis(diphenylphosphino)methane (dppm) and haloalkanes R-X yields the corresponding phosphonium salts [Ph2PCH2PPh2R]X (1a: R = Me, X = I; 1b: R = Et, X = Br; 1c: R = iPr, X = I; 1d: R = CH2Mes, X = Br; 1e: R = tBu, X = Br). In case of the synthesis of 1e, [Ph2MePH]Br (3) was identified as a by-product. Deprotonation of 1 by KOtBu offers access to the corresponding phosphonium ylides [Ph2PCHPPh2R] (2a: R = Me; 2b: R = Et; 2c: R = iPr; 2d: R = CH2Mes) in good yields. Further deprotonation of 2a using n-butyllithium allows the isolation of the lithium complex [Li(Ph2PCHPPh2CH2)]n (4) and its monomeric tmeda adduct [(tmeda)Li(Ph2PCHPPh2CH2)] (4a). All compounds were characterized by NMR measurements and, except of 4, by X-ray diffraction experiments. Keywords: Phosphonium salt, phosphonium ylide, lithium, lithium phosphorus coupling Introduction Phosphonium ylides gained tremendous importance in organic chemistry, since Wittig and co- workers developed their alkene synthesis in the
    [Show full text]