Ferns: the Missing Link in Shoot Evolution and Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RI Equisetopsida and Lycopodiopsida.Indd
IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants. -
Maine's Endangered and Threatened Plants
University of Southern Maine USM Digital Commons Maine Collection 1990 Maine's Endangered and Threatened Plants Maine State Planning Office Follow this and additional works at: https://digitalcommons.usm.maine.edu/me_collection Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, Plant Biology Commons, and the Weed Science Commons Recommended Citation Maine State Planning Office, "Maine's Endangered and Threatened Plants" (1990). Maine Collection. 49. https://digitalcommons.usm.maine.edu/me_collection/49 This Book is brought to you for free and open access by USM Digital Commons. It has been accepted for inclusion in Maine Collection by an authorized administrator of USM Digital Commons. For more information, please contact [email protected]. BACKGROUND and PURPOSE In an effort to encourage the protection of native Maine plants that are naturally reduced or low in number, the State Planning Office has compiled a list of endangered and threatened plants. Of Maine's approximately 1500 native vascular plant species, 155, or about 10%, are included on the Official List of Maine's Plants that are Endangered or Threatened. Of the species on the list, three are also listed at the federal level. The U.S. Fish and Wildlife Service. has des·ignated the Furbish's Lousewort (Pedicularis furbishiae) and Small Whorled Pogonia (lsotria medeoloides) as Endangered species and the Prairie White-fringed Orchid (Platanthera leucophaea) as Threatened. Listing rare plants of a particular state or region is a process rather than an isolated and finite event. -
The MADS-Domain Protein PPM2 Preferentially Occurs in Gametangia
Gene 400 (2007) 25–34 www.elsevier.com/locate/gene The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens ⁎ Vanessa Quodt, Wolfram Faigl, Heinz Saedler, Thomas Münster Max Planck Institute for Plant Breeding Research, Department of Molecular Plant Genetics, Cologne, Germany Received 4 April 2007; received in revised form 23 May 2007; accepted 24 May 2007 Available online 5 June 2007 Received by W. Martin Abstract To date, the function of MADS-domain transcription factors in non-seed plants remains largely elusive, although a number of genes have been isolated and characterized from a variety of species. In our study we analyzed PPM2, a classical MIKC-type MADS-box gene from the moss Physcomitrella patens, taking advantage of the unique technical properties Physcomitrella offers in terms of efficient homologous recombination. We determined mRNA and protein distribution and performed targeted disruption of the genomic locus for functional analysis of PPM2. Despite weak ubiquitous expression, PPM2 protein is mostly found in male and female gametangia and basal parts of developing sporophytes. Therefore, PPM2 seems to function in both the haploid and the diploid phase of the moss life cycle. This situation reflects an evolutionary transition state of gene recruitment from an ancestral gametophytic generation into a derived sporophytic generation which became dominating in tracheophytes. However, a knock-out of the PPM2 gene did not cause visible phenotypical changes in the respective structures. The implications of our findings for the understanding of the evolutionary history of MADS-box transcription factors in plants are discussed. © 2007 Elsevier B.V. -
The Ferns and Their Relatives (Lycophytes)
N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants. -
Gametophore Buds
Glime, J. M. 2017. Ecophysiology of Development: Gametophore Buds. Chapt. 5-4. In: Glime, J. M. Bryophyte Ecology. Volume 1. 5-4-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 5-4 ECOPHYSIOLOGY OF DEVELOPMENT: GAMETOPHORE BUDS TABLE OF CONTENTS Establishment Success ........................................................................................................................................ 5-4-2 Light and Photoperiod ......................................................................................................................................... 5-4-3 Growth Regulators .............................................................................................................................................. 5-4-4 Cytokinins .................................................................................................................................................... 5-4-4 Auxin-Cytokinin Interaction ........................................................................................................................ 5-4-6 Ethylene ....................................................................................................................................................... 5-4-8 Interactions with Other Organisms..................................................................................................................... -
Bryopsida- Sphagnum
Bryopsida- Sphagnum Dr. Pallavi J.N.L. College Khagaul • Distribution: • Classification • Sphagnum is commonly known as “Peat moss” and Division: Bryophyta is represented by around 336 species which are Class: Sphagnopsida found all around the world and under different environmental condition. Order: Sphagnales These species are aquatic and grow in dense masses Family: Sphagnaceae forming cushion like condition in swamps, ponds Genus: Sphagnum and lake margins. External morphology • Plant body is gametophytic and consists of two stages, Juvenile stage and leafy gametophore stage respectively. • Juvenile stage: It is also called protonema and is formed by the germination of the spores. It is irregularly lobed thallus like structure and one cell in thickness. It is attached to the substratum by multicellular rhizoids with oblique septa. From the protonema arises the erect leafy gametophyte called the gametophore Leafy Gametophore: • It represents the adult form. The adult gametophyte (gametophore) is perennial and can be differentiated into axis or ‘stem’ and ‘leaves’. Stem: • It is erect and may be a foot or more in length with a diameter up to 1.2 mm. The stem is well branched, the branching being usually lateral. Near the apex of the stem the branches are short and of limited growth and are clustered together closely to form a compact head due to shortened nodes at the end and are called comal tuft or coma. • (b) Leaf: • Leaves are borne on the main stem as well as on the branches. On the stem they are little apart while on the branches they are overlapping. Mid rib is lacking. -
PJS Special Issue Yi and Tan.Indd
Philippine Journal of Science 142: 245-248, Special Issue ISSN 0031 - 7683 Date Received: ?? ???????? 2013 The Non-Functional Stomata on the Leaf Margin of Selaginella Yi Youguang and Benito C. Tan Department of Biological sciences, National University of Singapore Singapore 119267 Stomata are structures on the surface of leaves known for their function in gaseous exchange in plants. After examining 26 species of Selaginella collected from Peninsular Malaysia and Singapore, we discover and report the presence of stomatal structures that are located right on the border of adaxial surface of lateral and axillary leaves of four species of Selaginella (S. roxburghii, S. ridleyi, S. rivalis and S.ciliaris). The marginal stomata appear to be non-functional due to their position on the leaf border which is one to two cells thick. Key Words: Selaginella, stomata, leaf border, SE Asia, guard cells INTRODUCTION diagnostic characters have been rather extensively conducted (Van Cotthem 1970, Nadeau & Sack 2002, Casson & Gray Stomata are small apertures found in the above ground 2008, Gabriel y Galan et al. 2011, Nurit-Silva & Agra 2011, parts of all terrestrial plants, especially on the leaf surfaces. Wang et al. 2011, Giuliano & Gregorio 2012, Nurit-Silva They function to account for approximately 95% of et al. 2012). For example, stomata are observed to be gaseous exchange and regulate water loss via transpiration distributed mainly on the abaxial surface of leaf of 35 species and CO2 uptake during photosynthesis (Taiz & Zeiger of tropical trees, while the adaxial surface of the leaf possess 2010, Camargo & Marenco 2011). few or no stomata (Camargo & Marenco 2011). -
A Physiological and Evolutionary Study of the Plant Hormone Ethylene
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects Summer 6-2010 A Physiological and Evolutionary Study of the Plant Hormone Ethylene Christopher Stephen Givens College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Givens, Christopher Stephen, "A Physiological and Evolutionary Study of the Plant Hormone Ethylene" (2010). Undergraduate Honors Theses. Paper 867. https://scholarworks.wm.edu/honorstheses/867 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. 2 ABSTRACT The plant hormone ethylene plays many roles in the development and physiology of plants, such as coordination of ripening, wound response, and cell fate specification. The final step of the ethylene biosynthetic pathway is catalyzed by 1-aminocylopropane- 1-carboxylate oxidase (ACC oxidase or ACO). There are five ACO genes in Arabidopsis thaliana, all coding for different isozymes of ACO. The expression domains in the plant and expression levels of all five ACO genes are not well understood. Part of the aim of this thesis is to elucidate the expression domains and levels of the five ACO genes in Arabidopsis using promoter::GUS fusions and quantitative reverse transcription PCR (qRT-PCR) analysis, respectively. The genus Selaginella is part of the lycophyte family of plants. Selaginella species are heterosporous, vascularized, microphyllous plants. The processes of ethylene perception and biosynthesis are poorly understood in Selaginella. -
Addendum to the Guide to the Natural Communities of the Delaware Estuary
ADDENDUM TO THE UIDE TO THE ATURAL OMMUNITIES G N C OF THE DELAWARE ESTUARY SEPTEMBER0 2009 Citation: Largay, E. and L. Sneddon. 2009. Addendum to the Guide to the Ecological Systems and Vegetation Communities of the Delaware Estuary. NatureServe. Arlington, Virginia. Partnership for the Delaware Estuary, Report #09-XX. 112 pp. PDE Report No. 09-XX Copyright © 2009 NatureServe COVER PHOTOS Top L: Overwash Dunes, photo from Delaware Natural Heritage Program Top R: Coastal Plain Muck Pondshore, photo by Kathleen Strakosch Walz, New Jersey Natural Heritage Program Bottom L: Dry Oak Hickory Forest, photo by Tony Davis, Pennsylvania Natural Heritage Program Bottom R: Inland Dune and Ridge Forest/Woodland, Kathleen Strakosch Walz, New Jersey Natural Heritage Program ADDENDUM TO THE GUIDE TO THE NATURAL COMMUNITIES OF THE DELAWARE ESTUARY Ery Largay Lesley Sneddon September 2009 Acknowledgements: This work was made possible through funding from the Delaware Estuary Program (EPA 320 Funding). Kristin Snow and Mary Russo from NatureServe provided essential data management services to develop this report and report format. Robert Coxe and Bill McAvoy from the Delaware Natural Heritage Program, Kathleen Strakosch Walz from the New Jersey Natural Heritage Program, Tony Davis from the Pennsylvania Natural Heritage Program, Linda Kelly and Karl Anderson, independent botanists, provided ecological expertise, energy and insight. Mark Anderson and Charles Ferree from The Nature Conservancy developed ecological systems maps to accompany this work. Danielle Kreeger, Laura Whalen, and Martha-Maxwell Doyle from the Partnership for the Delaware Estuary provided support and guidance throughout this project. We thank everyone who helped us with this effort. -
A Mycorrhizae-Like Gene Regulates Stem Cell and Gametophore Development in Mosses
ARTICLE https://doi.org/10.1038/s41467-020-15967-6 OPEN A mycorrhizae-like gene regulates stem cell and gametophore development in mosses Shuanghua Wang1,2, Yanlong Guan1, Qia Wang1, Jinjie Zhao1, Guiling Sun 3, Xiangyang Hu4, Mark P. Running5, ✉ ✉ Hang Sun1 & Jinling Huang 1,3,6 Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae- like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and 1234567890():,; how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings pro- vide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants. 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China. 4 Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China. -
Cryptogamic Botany
McGRAW-HILL PUBLIOA:r'IONS IN THE BOTANIOAL SOIENOES EDMUND W. SINNOTT, CONSULTING EDlTOR CRYPTOGAMIC BOTANY VOLUME II BRYOPHYTES AND PTERIDOPHYTES This book is produced in jul! compliance with the government's regulations jor con serving paper and other essential materials. SELECTED TITLES FROM McGRAW-HILL PUBLICATIONS IN THE BOTANICAL SCIENCES.. EDMUND W. SINNOTT, Consulting Editor Babcock and Clausen-Genetics Lutman-Microbiology Belling-The Use of the Microscope Maximov-Plant Physiology Boysen Jensen-Growth Hormones Miller-Plant Physiology in Plants Pool-Flowers and Flowering Plants Braun-Blanquet and Fuller and Con Sass-Elements of Botanical Micro- ard-Plant Sociology technique Curtis-The Translocation of Solutes Seifriz~ Protoplasm in Plants Sharp-Introduction to Cytology Eames-Morphology of Vascular Plants Sharp-Fundamentals of Cytology Eames and MacDaniels-Plant Sinnott-Botany Anatomy Sinnott and Dunn-Genetics Fitzpatrick-The Lower Fungi Smith-Cryptogamic Botany Gltumann and Dodge-Com}Jarative Vol. I, Algae and Fungi Morphology of Fungi Vol. II, Bryophytes and Haupt-An Introduction to Botany Pteridophytes Haupt-Laboratory Manual of Ele- Fresh-water Algae of the U. S. mentary Botany Swingle-Systematic Botany Hill'-Economic Botany Weaver-Root Development of Field Hill, OV6rhoZts, and*Popp-Botany Crops Weaver and Bruner-Root Develop Johansen-Plant Microtechnique ment of Vegetable Crops Loomis and Shull-Methods in Plant Physiology Weaver and Clements-Plant Ecology Experiments in Plant Physiology W odehouse-Pollen Grains There are also the related series of McGraw-Hill Publications in the Zoologi cal Sciences, of which A. Franklin Shull is Consulting Edit_.9r, and in the Agricultural Sciences, of which Leon J. Cole is Consulting Editor. -
Volume 1, Chapter 5-3: Ecophysiology of Development: Protonemata
Glime, J. M. 2017. Ecophysiology of Development: Protonemata. Chapt. 5-3. In: Glime, J. M. Bryophyte Ecology. Volume 1. 5-3-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 5-3 ECOPHYSIOLOGY OF DEVELOPMENT: PROTONEMATA TABLE OF CONTENTS The Protonema .................................................................................................................................................... 5-3-2 Water Relations ................................................................................................................................................... 5-3-5 Seasonal Light/Temperature Changes ................................................................................................................. 5-3-5 Light .................................................................................................................................................................... 5-3-6 Light Intensity .............................................................................................................................................. 5-3-6 Light Quality ................................................................................................................................................ 5-3-9 Photoperiod ...............................................................................................................................................