A Polycomb Repressive Complex 2 Gene Regulates Apogamy and Gives Evolutionary Insights Into Early Land Plant Evolution

Total Page:16

File Type:pdf, Size:1020Kb

A Polycomb Repressive Complex 2 Gene Regulates Apogamy and Gives Evolutionary Insights Into Early Land Plant Evolution A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution Yosuke Okanoa,1, Naoki Aonoa,1, Yuji Hiwatashia,b, Takashi Murataa,b, Tomoaki Nishiyamac,d, Takaaki Ishikawaa, Minoru Kuboc, and Mitsuyasu Hasebea,b,c,2 aNational Institute for Basic Biology, Okazaki 444-8585, Japan; bSchool of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan; cERATO, Japan Science and Technology Agency, Okazaki 444-8585, Japan; and dAdvanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan Edited by Peter R. Crane, The University of Chicago, Chicago, IL, and approved July 27, 2009 (received for review June 22, 2009) Land plants have distinct developmental programs in haploid ogy, development, and evolution (5–7), the gene regulatory (gametophyte) and diploid (sporophyte) generations. Although network remains undeciphered. usually the two programs strictly alternate at fertilization and Parthenogenetic development of egg cells has been observed meiosis, one program can be induced during the other program. In in some alleles of loss-of-function mutants of the Arabidopsis a process called apogamy, cells of the gametophyte other than the thaliana genes FERTILIZATION-INDEPENDENT SEED 2 egg cell initiate sporophyte development. Here, we report for the (FIS2), MEDEA (MEA), and MULTICOPY SUPPRESSOR OF moss Physcomitrella patens that apogamy resulted from deletion IRA 1 (MSI1) (8, 9), which encode members of the polycomb of the gene orthologous to the Arabidopsis thaliana CURLY LEAF repressive complex 2 (PRC2) (8, 10, 11). The PRC2 complex was (PpCLF), which encodes a component of polycomb repressive first characterized in Drosophila melanogaster as a regulator of complex 2 (PRC2). In the deletion lines, a gametophytic vegetative HOX genes and includes four core proteins: Extra sex comb cell frequently gave rise to a sporophyte-like body. This body grew (ESC), Enhancer of zeste [E(Z)], Suppressor of zeste 12 indeterminately from an apical cell with the character of a sporo- [SU(Z)12], and P55 (12). Orthologs of PRC2 genes were found phytic pluripotent stem cell but did not form a sporangium. in a wide range of organisms including land plants and this Furthermore, with continued culture, the sporophyte-like body complex dynamically mediates transcriptional silencing of nu- branched. Sporophyte branching is almost unknown among extant merous genes, based on modifying trimethylation of lysine 27 on bryophytes. When PpCLF was expressed in the deletion lines once histone H3 (12, 13). Several E(Z) and SU(Z)12 paralogs are the sporophyte-like bodies had formed, pluripotent stem cell coded in the A. thaliana genome and at least three distinct activity was arrested and a sporangium-like organ formed. Sup- complexes, with different combinations of the paralogs, have been implicated in plant development: the FIS complex in seed ported by the observed pattern of PpCLF expression, these results development including the prevention of parthenogenesis, the EVOLUTION demonstrate that, in the gametophyte, PpCLF represses initiation VERNALIZATION (VRN) complex in vernalization response, of a sporophytic pluripotent stem cell and, in the sporophyte, and the EMBRYONIC FLOWER (EMF) complex in flowering represses that stem cell activity and induces reproductive organ and flower development (14–16). development. In land plants, branching, along with indeterminate We sought to investigate the ancestral function and subse- apical growth and delayed initiation of spore-bearing reproductive quent evolution of the PRC2 complex in land plants, taking organs, were conspicuous innovations for the evolution of a advantage of the genomics (17), the feasibility of gene targeting, dominant sporophyte plant body. Our study provides insights into and the accessible development of the moss, Physcomitrella the role of PRC2 gene regulation for sustaining evolutionary patens. During the course of study, we found that deletion in P. innovation in land plants. patens of the gene orthologous to D. melanogaster E(Z) and A. thaliana CURLY LEAF (CLF)/MEA/SWINGER (SWN)(Pp- branching ͉ PRC2 ͉ protracheophytes CLF) induced unusual sporophyte-like bodies. Here, we report the characterization of the role of the PpCLF gene in P. patens evelopment of land plants starts from a zygote in the development, revealing multiple functions, including the repres- Dsporophyte generation and from a spore in the gametophyte sion of apogamy in the haploid generation, that bear on the generation. Although sporophyte development is usually pre- evolution of body plan in land plants. vented in the gametophyte until fertilization, it can occur naturally and be induced experimentally. Female gametes (egg Results cells) can initiate embryogenesis with parthenogenetic develop- Molecular Cloning of a CURLY LEAF Ortholog in Physcomitrella patens. ment in the absence of fertilization (1, 2). Additionally, in a A candidate cDNA sequence of PpCLF was obtained using the process called apogamy, somatic gametophyte cells are repro- A. thaliana CLF amino acid sequence (18) as the query for a grammed to start a sporophytic developmental program (3). While apogamy can be induced experimentally in flowering Author contributions: Y.O., N.A., Y.H., and M.H. designed research; Y.O., N.A., Y.H., T.M., plants from synergid and antipodal cells, this is rare and not T.N., T.I., and M.H. performed research; M.K. contributed new reagents/analytic tools; Y.O., known to happen naturally (4); in contrast, this type of asexual N.A., Y.H., and M.H. analyzed data; and Y.O., T.M., M.K., and M.H. wrote the paper. reproduction is more widely observed in non-seed plants, in- The authors declare no conflict of interest. cluding pteridophytes (5) and bryophytes (6). Bypassing game- This article is a PNAS Direct Submission. togenesis and fertilization, gametophyte somatic cells of non- Data deposition: The sequences reported in this paper have been deposited in the GenBank seed plants divide several times to form a sporophyte apical database (accession nos. AB472766). meristem including a pluripotent stem cell. Apogamy in these 1Y.O. and N.A. contributed equally to this work. species can be induced with exogenous factors, such as hydration, 2To whom correspondence should be addressed. E-mail: [email protected]. sugars, chloral hydrate, and phytohormones (6). Even though This article contains supporting information online at www.pnas.org/cgi/content/full/ apogamy has been well-studied from the viewpoints of physiol- 0906997106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0906997106 PNAS ͉ September 22, 2009 ͉ vol. 106 ͉ no. 38 ͉ 16321–16326 Downloaded by guest on September 30, 2021 TBLASTN search (19) against the P. patens subsp. patens v. 1.1 genome database. The PpCLF cDNA sequence was obtained by RT-PCR using gene-specific primers. With the sequenced ge- nome (17), we identified PpCLF as the sole homolog of the E(Z) component of PRC2 (Fig. S1). This component is represented in the A. thaliana genome by three genes, CLF, MEA, and SWN. PpCLF has the SET, CXC, and C5 domains as other E(Z) proteins have. The P. patens genome also includes homologues of the other members of the PRC2 complex (10, 20). Deletion of PpCLF Gene Induces Sporophyte-Like Body. Using gene targeting, we generated four deletion lines of PpCLF (ppclf-del-1 to -4) (Fig. S2), and the phenotypes of the lines were indistin- guishable from each other. Following spore germination in P. patens, a cell filament forms, known as a protonema, whose apical, or tip, cell has the characteristics of a pluripotent stem cell. When grown under red-light (21), in both wild-type and deletion lines, the apical cell continuously produced protonema cells (Fig. 1 A and B), although the chloroplasts in the deletion lines were smaller than those of the wild type. When red-light- grown wild-type protonemata were transferred to white light, the protonema cells formed side-branch initial cells that gave rise to protonema apical cells, which are pluripotent (Fig. 1C). In contrast, when red-light-grown PpCLF deletion lines were moved into white light, although side-branch initials formed, they gave rise to tissue that differed from protonemata (Fig. 1D). This tissue had a single apical cell with two faces, each producing a row of cells, with subsequent periclinal divisions forming inner and outer cell layers (Fig. 1 E and F). The development and three-dimensional cellular organization of this tissue is similar to those of a young sporophyte (22). The frequency of side branch formation of whatever fate was approximately similar in wild type and deletion lines, but while the fate of side-branch development in the wild type, as expected (23), could be effectively changed from protonema to gametophore by cytoki- nin, the fate of the sporophyte-like side branches in the deletion line remained unchanged on cytokinin (Table S1). Expression Patterns of MKN4 and PpLFY2 in the Sporophyte-Like Body Are Similar to Those of the Wild-Type Sporophyte. To examine whether side-branch initial cells are fated to form sporophyte apical cells instead of protonema or gametophore apical cells, we deleted the PpCLF gene in the MKN4-GUS-3 (22) and PpLFY2- GUS-1 (24) lines (Fig. S3). In the parental MKN4-GUS-3 line, the MKN4-GUS fusion protein is detected specifically in sporo- phyte apical cells but not in gametophyte apical cells (22). In a Fig. 1. A PpCLF deletion line (ppclf-del-3) forms sporophyte-like bodies as PpCLF deletion background, the MKN4-GUS signal was de- side branches. (A and B) Wild-type (A) and ppclf-del-3 (B) protonemata grown tected only in the apical cells of sporophyte-like tissue (Fig. 1G). under red light for 7 days. Asterisks and arrows indicate apical cells and septa, In the PpLFY2-GUS-1 line, GUS signal is present throughout respectively. (C and D) Protonema of the wild type (C) and ppclf-del-3 (D) the young sporophyte (24), similar to its appearance in the grown in white light for 2 days after 7 days of culture in red light.
Recommended publications
  • The MADS-Domain Protein PPM2 Preferentially Occurs in Gametangia
    Gene 400 (2007) 25–34 www.elsevier.com/locate/gene The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens ⁎ Vanessa Quodt, Wolfram Faigl, Heinz Saedler, Thomas Münster Max Planck Institute for Plant Breeding Research, Department of Molecular Plant Genetics, Cologne, Germany Received 4 April 2007; received in revised form 23 May 2007; accepted 24 May 2007 Available online 5 June 2007 Received by W. Martin Abstract To date, the function of MADS-domain transcription factors in non-seed plants remains largely elusive, although a number of genes have been isolated and characterized from a variety of species. In our study we analyzed PPM2, a classical MIKC-type MADS-box gene from the moss Physcomitrella patens, taking advantage of the unique technical properties Physcomitrella offers in terms of efficient homologous recombination. We determined mRNA and protein distribution and performed targeted disruption of the genomic locus for functional analysis of PPM2. Despite weak ubiquitous expression, PPM2 protein is mostly found in male and female gametangia and basal parts of developing sporophytes. Therefore, PPM2 seems to function in both the haploid and the diploid phase of the moss life cycle. This situation reflects an evolutionary transition state of gene recruitment from an ancestral gametophytic generation into a derived sporophytic generation which became dominating in tracheophytes. However, a knock-out of the PPM2 gene did not cause visible phenotypical changes in the respective structures. The implications of our findings for the understanding of the evolutionary history of MADS-box transcription factors in plants are discussed. © 2007 Elsevier B.V.
    [Show full text]
  • Gametophore Buds
    Glime, J. M. 2017. Ecophysiology of Development: Gametophore Buds. Chapt. 5-4. In: Glime, J. M. Bryophyte Ecology. Volume 1. 5-4-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 5-4 ECOPHYSIOLOGY OF DEVELOPMENT: GAMETOPHORE BUDS TABLE OF CONTENTS Establishment Success ........................................................................................................................................ 5-4-2 Light and Photoperiod ......................................................................................................................................... 5-4-3 Growth Regulators .............................................................................................................................................. 5-4-4 Cytokinins .................................................................................................................................................... 5-4-4 Auxin-Cytokinin Interaction ........................................................................................................................ 5-4-6 Ethylene ....................................................................................................................................................... 5-4-8 Interactions with Other Organisms.....................................................................................................................
    [Show full text]
  • Bryopsida- Sphagnum
    Bryopsida- Sphagnum Dr. Pallavi J.N.L. College Khagaul • Distribution: • Classification • Sphagnum is commonly known as “Peat moss” and Division: Bryophyta is represented by around 336 species which are Class: Sphagnopsida found all around the world and under different environmental condition. Order: Sphagnales These species are aquatic and grow in dense masses Family: Sphagnaceae forming cushion like condition in swamps, ponds Genus: Sphagnum and lake margins. External morphology • Plant body is gametophytic and consists of two stages, Juvenile stage and leafy gametophore stage respectively. • Juvenile stage: It is also called protonema and is formed by the germination of the spores. It is irregularly lobed thallus like structure and one cell in thickness. It is attached to the substratum by multicellular rhizoids with oblique septa. From the protonema arises the erect leafy gametophyte called the gametophore Leafy Gametophore: • It represents the adult form. The adult gametophyte (gametophore) is perennial and can be differentiated into axis or ‘stem’ and ‘leaves’. Stem: • It is erect and may be a foot or more in length with a diameter up to 1.2 mm. The stem is well branched, the branching being usually lateral. Near the apex of the stem the branches are short and of limited growth and are clustered together closely to form a compact head due to shortened nodes at the end and are called comal tuft or coma. • (b) Leaf: • Leaves are borne on the main stem as well as on the branches. On the stem they are little apart while on the branches they are overlapping. Mid rib is lacking.
    [Show full text]
  • A Mycorrhizae-Like Gene Regulates Stem Cell and Gametophore Development in Mosses
    ARTICLE https://doi.org/10.1038/s41467-020-15967-6 OPEN A mycorrhizae-like gene regulates stem cell and gametophore development in mosses Shuanghua Wang1,2, Yanlong Guan1, Qia Wang1, Jinjie Zhao1, Guiling Sun 3, Xiangyang Hu4, Mark P. Running5, ✉ ✉ Hang Sun1 & Jinling Huang 1,3,6 Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae- like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and 1234567890():,; how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings pro- vide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants. 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China. 4 Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
    [Show full text]
  • Cryptogamic Botany
    McGRAW-HILL PUBLIOA:r'IONS IN THE BOTANIOAL SOIENOES EDMUND W. SINNOTT, CONSULTING EDlTOR CRYPTOGAMIC BOTANY VOLUME II BRYOPHYTES AND PTERIDOPHYTES This book is produced in jul! compliance with the government's regulations jor con­ serving paper and other essential materials. SELECTED TITLES FROM McGRAW-HILL PUBLICATIONS IN THE BOTANICAL SCIENCES.. EDMUND W. SINNOTT, Consulting Editor Babcock and Clausen-Genetics Lutman-Microbiology Belling-The Use of the Microscope Maximov-Plant Physiology Boysen Jensen-Growth Hormones Miller-Plant Physiology in Plants Pool-Flowers and Flowering Plants Braun-Blanquet and Fuller and Con­ Sass-Elements of Botanical Micro- ard-Plant Sociology technique Curtis-The Translocation of Solutes Seifriz~ Protoplasm in Plants Sharp-Introduction to Cytology Eames-Morphology of Vascular Plants Sharp-Fundamentals of Cytology Eames and MacDaniels-Plant Sinnott-Botany Anatomy Sinnott and Dunn-Genetics Fitzpatrick-The Lower Fungi Smith-Cryptogamic Botany Gltumann and Dodge-Com}Jarative Vol. I, Algae and Fungi Morphology of Fungi Vol. II, Bryophytes and Haupt-An Introduction to Botany Pteridophytes Haupt-Laboratory Manual of Ele- Fresh-water Algae of the U. S. mentary Botany Swingle-Systematic Botany Hill'-Economic Botany Weaver-Root Development of Field Hill, OV6rhoZts, and*Popp-Botany Crops Weaver and Bruner-Root Develop­ Johansen-Plant Microtechnique ment of Vegetable Crops Loomis and Shull-Methods in Plant Physiology Weaver and Clements-Plant Ecology Experiments in Plant Physiology W odehouse-Pollen Grains There are also the related series of McGraw-Hill Publications in the Zoologi­ cal Sciences, of which A. Franklin Shull is Consulting Edit_.9r, and in the Agricultural Sciences, of which Leon J. Cole is Consulting Editor.
    [Show full text]
  • Volume 1, Chapter 5-3: Ecophysiology of Development: Protonemata
    Glime, J. M. 2017. Ecophysiology of Development: Protonemata. Chapt. 5-3. In: Glime, J. M. Bryophyte Ecology. Volume 1. 5-3-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 5-3 ECOPHYSIOLOGY OF DEVELOPMENT: PROTONEMATA TABLE OF CONTENTS The Protonema .................................................................................................................................................... 5-3-2 Water Relations ................................................................................................................................................... 5-3-5 Seasonal Light/Temperature Changes ................................................................................................................. 5-3-5 Light .................................................................................................................................................................... 5-3-6 Light Intensity .............................................................................................................................................. 5-3-6 Light Quality ................................................................................................................................................ 5-3-9 Photoperiod ...............................................................................................................................................
    [Show full text]
  • Usefulness of Physcomitrella Patens for Studying Plant Organogenesis Sandrine Bonhomme, Fabien Nogué, Catherine Rameau, Didier Schaefer
    Usefulness of physcomitrella patens for studying plant organogenesis Sandrine Bonhomme, Fabien Nogué, Catherine Rameau, Didier Schaefer To cite this version: Sandrine Bonhomme, Fabien Nogué, Catherine Rameau, Didier Schaefer. Usefulness of physcomitrella patens for studying plant organogenesis. Plant Organogenesis: Methods and Protocols, 959, Humana Press, 2013, Methods in Molecular Biology. hal-01203967 HAL Id: hal-01203967 https://hal.archives-ouvertes.fr/hal-01203967 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 2 Usefulness of Physcomitrella patens for Studying Plant Organogenesis Sandrine Bonhomme , Fabien Nogué , Catherine Rameau , and Didier G. Schaefer Abstract In this chapter, we review the main organogenesis features and associated regulation processes of the moss Physcomitrella patens (P. patens) , the model plant for the Bryophytes. We highlight how the study of this descendant of the earliest plant species that colonized earth, brings useful keys to understand the mecha- nisms that determine and control both vascular and non vascular plants organogenesis. Despite its simple morphogenesis pattern, P. patens still requires the fi ne tuning of organogenesis regulators, including hormone signalling, common to the whole plant kingdom, and which study is facilitated by a high number of molecular tools, among which the powerful possibility of gene targeting/replacement.
    [Show full text]
  • Morphology of Mosses (Phylum Bryophyta)
    Morphology of Mosses (Phylum Bryophyta) Barbara J. Crandall-Stotler Sharon E. Bartholomew-Began With over 12,000 species recognized worldwide (M. R. Superclass IV, comprising only Andreaeobryum; and Crosby et al. 1999), the Bryophyta, or mosses, are the Superclass V, all the peristomate mosses, comprising most most speciose of the three phyla of bryophytes. The other of the diversity of mosses. Although molecular data have two phyla are Marchantiophyta or liverworts and been undeniably useful in identifying the phylogenetic Anthocerotophyta or hornworts. The term “bryophytes” relationships among moss lineages, morphological is a general, inclusive term for these three groups though characters continue to provide definition of systematic they are only superficially related. Mosses are widely groupings (D. H. Vitt et al. 1998) and are diagnostic for distributed from pole to pole and occupy a broad range species identification. This chapter is not intended to be of habitats. Like liverworts and hornworts, mosses an exhaustive treatise on the complexities of moss possess a gametophyte-dominated life cycle; i.e., the morphology, but is aimed at providing the background persistent photosynthetic phase of the life cycle is the necessary to use the keys and diagnostic descriptions of haploid, gametophyte generation. Sporophytes are this flora. matrotrophic, permanently attached to and at least partially dependent on the female gametophyte for nutrition, and are unbranched, determinate in growth, Gametophyte Characters and monosporangiate. The gametophytes of mosses are small, usually perennial plants, comprising branched or Spore Germination and Protonemata unbranched shoot systems bearing spirally arranged leaves. They rarely are found in nature as single isolated A moss begins its life cycle when haploid spores are individuals, but instead occur in populations or colonies released from a sporophyte capsule and begin to in characteristic growth forms, such as mats, cushions, germinate.
    [Show full text]
  • Moss (Physcomitrella Patens) GH3 Proteins Act in Auxin Homeostasis
    Research MossBlackwellOxford,NPHNew0028-646X1469-8137©267710.1111/j.1469-8137.2008.02677.xOctober0323???338???OriginalXX The Phytologist Authors UK 2008Article Publishing (2008). Ltd Journal compilation © New Phytologist( (2008)Physcomitrella patens) XX GH3 proteins act in auxin homeostasis Jutta Ludwig-Müller1, Sabine Jülke1, Nicole M. Bierfreund2, Eva L. Decker2 and Ralf Reski2,3 1Institute of Botany, Technische Universität Dresden, D–01062 Dresden, Germany; 2Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D–79104 Freiburg, Germany; 3Centre for Biological Signalling Studies (bioss), University of Freiburg, Schänzlestrasse 1, D–79104 Freiburg, Germany Summary Author for correspondence: • Auxins are hormones involved in many cellular, physiological and developmental J. Ludwig-Müller processes in seed plants and in mosses such as Physcomitrella patens. Control of + Tel: 49 351 463 33939 auxin levels is achieved in higher plants via synthesis of auxin conjugates by Fax: +49 351 463 37032 Email: Jutta.Ludwig-Mueller@ members of the GH3 family. The role of the two GH3-like proteins from P. patens tu-dresden.de for growth and auxin homeostasis was therefore analysed. •The in vivo-function of the two P. patens GH3 genes was investigated using Received: 31 July 2008 Accepted: 19 September 2008 single and double knockout mutants. The two P. patens GH3 proteins were also heterologously expressed to determine their enzymatic activity. • Both P. patens GH3 enzymes accepted the auxin indole acetic acid (IAA) as New Phytologist (2009) 181: 323–338 doi: 10.1111/j.1469-8137.2008.02677.x substrate, but with different preferences for the amino acid to which it is attached. Cytoplasmic localization was shown for PpGH3-1 tagged with green fluorescent protein (GFP).
    [Show full text]
  • The Moss Physcomitrella Patens: Methods and Tools from Cultivation to Targeted Analysis of Gene Function CHRISTOPH STROTBEK#, STEFAN KRINNINGER# and WOLFGANG FRANK*
    Int. J. Dev. Biol. 57: 553-564 (2013) doi: 10.1387/ijdb.130189wf www.intjdevbiol.com The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function CHRISTOPH STROTBEK#, STEFAN KRINNINGER# and WOLFGANG FRANK* Ludwig-Maximilians-University Munich (LMU), Faculty of Biology, Department Biology I, Plant Molecular Cell Biology, LMU Biocenter, Germany ABSTRACT To comprehensively understand the major processes in plant biology, it is necessary to study a diverse set of species that represent the complexity of plants. This research will help to comprehend common conserved mechanisms and principles, as well as to elucidate those mechanisms that are specific to a particular plant clade. Thereby, we will gain knowledge about the invention and loss of mechanisms and their biological impact causing the distinct specifica- tions throughout the plant kingdom. Since the establishment of transgenic plants, these studies concentrate on the elucidation of gene functions applying an increasing repertoire of molecular techniques. In the last two decades, the moss Physcomitrella patens joined the established set of plant models based on its evolutionary position bridging unicellular algae and vascular plants and a number of specific features alleviating gene function analysis. Here, we want to provide an over- view of the specific features of P. patens making it an interesting model for many research fields in plant biology, to present the major achievements in P. patens genetic engineering, and to introduce common techniques to scientists who intend to use P. patens as a model in their research activities. KEY WORDS: Physcomitrella patens, genetic engineering, gene function analysis, reverse genetics, homologous recombination Introduction enabled comparative studies to gain knowledge about land plant evolution.
    [Show full text]
  • Mosses, Liverworts, and Ferns
    Mosses, Liverworts, and Ferns Sphagnum 86 W4400 Riccia 86 W7775 Species: magellanicum and/or Species: fluitans papillosum Genus: Riccia Genus: Sphagnum Family: Ricciaceae Family: Sphagnaceae Order: Marchantiales Order: Sphagnales Class: Hepaticae Class: Bryopsida (Musci) Phylum: Bryophyta Phylum: Bryophyta Kingdom: Plantae Kingdom: Plantae Polytrichum 86 W4360 Leafy Liverwort 86 W4300 Species: commune Species: trilobata Genus: Polytrichum Genus: Bazzania Family: Polytrichaceae Family: Lepidoziaceae Order: Polytrichales Order: Jungermanniales Class: Bryopsida (Musci) Woodland Ferns 86 W 5500 Equisetum 86 W5300 Class: Hepaticae Phylum: Bryophyta Genus and species vary with Species: hiemale may vary Phylum: Bryophyta Kingdom: Plantae availability depending on availability Kingdom: Plantae Family: Dryopteridaceae Genus: Equisetum Order: Polypodiales Family: Equisetaceae Marchantia 86 W4200 Woodland Moss 86 W 4250 Class: Polypodiopsida Order: Equisetales Species: polymorpha (contains two species) (Pteridopsida) Class: Equisetopsida Genus: Marchantia Species: schreberi Phylum: Pterophyta Phylum: Pterophyta Family: Marchantiaceae Genus: Pleurozium Kingdom: Plantae Kingdom: Plantae Order: Marchantiales Family: Entodontaceae Class: Hepaticae Order: Hypnobryales Boston Fern 86 W5550 Selaginella Phylum: Bryophyta Class: Bryopsida (Musci) Species: exalta Species: apoda Kingdom: Plantae Phylum: Bryophyta Genus: Nephrolepis Genus: Selaginella Kingdom: Plantae Family: Nephrolepidaceae Family: Selaginellaceae Conocephalum 86 W4050 Order: Polypodiales
    [Show full text]
  • Hormonal Regulation of Moss Protonema Development and the Possible Origin of Plant Hormonal Responses in Bryophytes
    Indian Journal of Biotechnology Vol 2, 1anuary 2003, pp 9-16 Hormonal Regulation of Moss Protonema Development and the Possible Origin of Plant Hormonal Responses in Bryophytes M M Johri* and Jacinta S D'Souza Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India The protonema of mosses is a far simpler paradigm to understand the mechanism of hormonal action and tolerance to abiotic stresses in plants. Its developmental biology, responses to hormones and the similarity of signaling mechanisms with higher plants are reviewed. There is strong evidence for second messenger role of calcium ions in the action of cytokinin. Multiple calcium-dependent protein kinases (CDPKs) are present in the protonema. The Funaria hygrometrica CDPK gene (FhCDPK) shows the characteristic catalytic and autoinhibitory domains, the four EF hands and the highest homology to CDPKs from higher plants but far lower to liverwort or other moss CDPK genes. A 38 kDa myelin basic protein kinase (MBP kinase) is activated within minutes by abscisic acid (ABA) and salinity. As ABA also confers tolerance against desiccation and freezing and the wheat ABA-inducible promoter is fully functional in mosses, the ABA signaling mechanism seems to be highly conserved. In plants, the CDPKs are involved not only in hormonal signaling but also in the acclimation response against abiotic stresses. The manipulation of signal transduction components such as transcription factors, CDPKs and calcineurin have emerged as viable strategies to genetically engineer the stress tolerant plants. There is increasing evidence to support the origin of plant hormonal responses at the level of bryophytes.
    [Show full text]