Leah Mcaleer Biology 1306/1406 – Modern Concepts in Bioscience II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollen Tube Guidance by Pistils Ensures Successful Double Fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto
Advanced Review Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube’s journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube–pistil interactions. 2011 Wiley Periodicals, Inc. -
Ap09 Biology Form B Q2
AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. -
Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany. -
Conifer Reproductive Biology Claire G
Conifer Reproductive Biology Claire G. Williams Conifer Reproductive Biology Claire G. Williams USA ISBN: 978-1-4020-9601-3 e-ISBN: 978-1-4020-9602-0 DOI: 10.1007/978-1-4020-9602-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927085 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover Image: Snow and pendant cones on spruce tree (reproduced with permission of Photos.com). Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword When it comes to reproduction, gymnosperms are deeply weird. Cycads and coni- fers have drawn out reproduction: at least 13 genera take over a year from pollina- tion to fertilization. Since they don’t apparently have any selection mechanism by which to discriminate among pollen tubes prior to fertilization, it is natural to won- der why such a delay in reproduction is necessary. Claire Williams’ book celebrates such oddities of conifer reproduction. She has written a book that turns the context of many of these reproductive quirks into deeper questions concerning evolution. The origins of some of these questions can be traced back Wilhelm Hofmeister’s 1851 book, which detailed the revolutionary idea of alternation of generations. -
The MADS-Domain Protein PPM2 Preferentially Occurs in Gametangia
Gene 400 (2007) 25–34 www.elsevier.com/locate/gene The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens ⁎ Vanessa Quodt, Wolfram Faigl, Heinz Saedler, Thomas Münster Max Planck Institute for Plant Breeding Research, Department of Molecular Plant Genetics, Cologne, Germany Received 4 April 2007; received in revised form 23 May 2007; accepted 24 May 2007 Available online 5 June 2007 Received by W. Martin Abstract To date, the function of MADS-domain transcription factors in non-seed plants remains largely elusive, although a number of genes have been isolated and characterized from a variety of species. In our study we analyzed PPM2, a classical MIKC-type MADS-box gene from the moss Physcomitrella patens, taking advantage of the unique technical properties Physcomitrella offers in terms of efficient homologous recombination. We determined mRNA and protein distribution and performed targeted disruption of the genomic locus for functional analysis of PPM2. Despite weak ubiquitous expression, PPM2 protein is mostly found in male and female gametangia and basal parts of developing sporophytes. Therefore, PPM2 seems to function in both the haploid and the diploid phase of the moss life cycle. This situation reflects an evolutionary transition state of gene recruitment from an ancestral gametophytic generation into a derived sporophytic generation which became dominating in tracheophytes. However, a knock-out of the PPM2 gene did not cause visible phenotypical changes in the respective structures. The implications of our findings for the understanding of the evolutionary history of MADS-box transcription factors in plants are discussed. © 2007 Elsevier B.V. -
Seed Fertilization, Development, and Germination in Hydatellaceae (Nymphaeales): Implications for Endosperm Evolution in Early A
American Journal of Botany 96(9): 1581–1593. 2009. S EED FERTILIZATION, DEVELOPMENT, AND GERMINATION IN HYDATELLACEAE (NYMPHAEALES): IMPLICATIONS FOR ENDOSPERM EVOLUTION IN EARLY ANGIOSPERMS 1 Paula J. Rudall, 2,6 Tilly Eldridge, 2 Julia Tratt, 2 Margaret M. Ramsay, 2 Renee E. Tuckett, 3 Selena Y. Smith, 4,7 Margaret E. Collinson, 4 Margarita V. Remizowa, 5 and Dmitry D. Sokoloff 5 2 Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; 3 The University of Western Australia, Crawley, WA 6009, Australia; 4 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK; and 5 Department of Higher Plants, Biological Faculty, Moscow State University 119991, Moscow, Russia New data on endosperm development in the early-divergent angiosperm Trithuria (Hydatellaceae) indicate that double fertiliza- tion results in formation of cellularized micropylar and unicellular chalazal domains with contrasting ontogenetic trajectories, as in waterlilies. The micropylar domain ultimately forms the cellular endosperm in the dispersed seed. The chalazal domain forms a single-celled haustorium with a large nucleus; this haustorium ultimately degenerates to form a space in the dispersed seed, simi- lar to the chalazal endosperm haustorium of waterlilies. The endosperm condition in Trithuria and waterlilies resembles the helo- bial condition that characterizes some monocots, but contrasts with Amborella and Illicium , in which most of the mature endosperm is formed from the chalazal domain. The precise location of the primary endosperm nucleus governs the relative sizes of the cha- lazal and micropylar domains, but not their subsequent developmental trajectories. The unusual tissue layer surrounding the bi- lobed cotyledonary sheath in seedlings of some species of Trithuria is a belt of persistent endosperm, comparable with that of some other early-divergent angiosperms with a well-developed perisperm, such as Saururaceae and Piperaceae. -
Regulatory Mechanisms of Double Fertilization
REVIEW ARTICLE published: 11 September 2014 doi: 10.3389/fpls.2014.00452 The beginning of a seed: regulatory mechanisms of double fertilization Andrea Bleckmann 1, Svenja Alter 2 and Thomas Dresselhaus 1* 1 Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany 2 Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany Edited by: The launch of seed development in flowering plants (angiosperms) is initiated by the Paolo Sabelli, University of Arizona, process of double fertilization: two male gametes (sperm cells) fuse with two female USA gametes (egg and central cell) to form the precursor cells of the two major seed Reviewed by: components, the embryo and endosperm, respectively. The immobile sperm cells are Yanhai Yin, Iowa State University, USA delivered by the pollen tube toward the ovule harboring the female gametophyte by Meng-Xiang Sun, Wuhan University, species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst China inside the female gametophyte, the two sperm cells fuse with the egg and central cell *Correspondence: initiating seed development. The fertilized central cell forms the endosperm while the Thomas Dresselhaus, Cell Biology fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter and Plant Biochemistry, Biochemie-Zentrum Regensburg, structure connects the embryo with the sporophytic maternal tissues of the developing University of Regensburg, seed. -
Gametophore Buds
Glime, J. M. 2017. Ecophysiology of Development: Gametophore Buds. Chapt. 5-4. In: Glime, J. M. Bryophyte Ecology. Volume 1. 5-4-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 5-4 ECOPHYSIOLOGY OF DEVELOPMENT: GAMETOPHORE BUDS TABLE OF CONTENTS Establishment Success ........................................................................................................................................ 5-4-2 Light and Photoperiod ......................................................................................................................................... 5-4-3 Growth Regulators .............................................................................................................................................. 5-4-4 Cytokinins .................................................................................................................................................... 5-4-4 Auxin-Cytokinin Interaction ........................................................................................................................ 5-4-6 Ethylene ....................................................................................................................................................... 5-4-8 Interactions with Other Organisms..................................................................................................................... -
Bryopsida- Sphagnum
Bryopsida- Sphagnum Dr. Pallavi J.N.L. College Khagaul • Distribution: • Classification • Sphagnum is commonly known as “Peat moss” and Division: Bryophyta is represented by around 336 species which are Class: Sphagnopsida found all around the world and under different environmental condition. Order: Sphagnales These species are aquatic and grow in dense masses Family: Sphagnaceae forming cushion like condition in swamps, ponds Genus: Sphagnum and lake margins. External morphology • Plant body is gametophytic and consists of two stages, Juvenile stage and leafy gametophore stage respectively. • Juvenile stage: It is also called protonema and is formed by the germination of the spores. It is irregularly lobed thallus like structure and one cell in thickness. It is attached to the substratum by multicellular rhizoids with oblique septa. From the protonema arises the erect leafy gametophyte called the gametophore Leafy Gametophore: • It represents the adult form. The adult gametophyte (gametophore) is perennial and can be differentiated into axis or ‘stem’ and ‘leaves’. Stem: • It is erect and may be a foot or more in length with a diameter up to 1.2 mm. The stem is well branched, the branching being usually lateral. Near the apex of the stem the branches are short and of limited growth and are clustered together closely to form a compact head due to shortened nodes at the end and are called comal tuft or coma. • (b) Leaf: • Leaves are borne on the main stem as well as on the branches. On the stem they are little apart while on the branches they are overlapping. Mid rib is lacking. -
AS Flower Reproduction
2/11/19 AMOEBA SISTERS: VIDEO RECAP ANGIOSPERM REPRODUCTION Amoeba Sisters Video Recap of Plant Reproduction in Angiosperms 1. What characteristics are common in angiosperms? 2. A topic emphasized in this clip is that not all fruits are sweet. Or even edible! Every plant that forms a flower must have a fruit. How would you define a “fruit?” How can fruits be • Flowering plants helpful in seed dispersal? • Bear fruit Fruit is something that has flesh AMOEBA SISTERS: VIDEO RECAP around ANGIOSPERMseeds. REPRODUCTION Amoeba Sisters Video Recap of Plant ReproductionWhen animals in Angiosperms eat them, seeds move away from parent plant. 1. What characteristics are common in angiosperms? 2. A topic emphasized in this clip is that not all fruits are sweet. Or even edible! Every plant that forms a flower must have a fruit. How would you define a “fruit?” How can fruits be helpful in seed dispersal? 3. Flowers can contain one or both genders of flower parts. 4. Flowers can contain one or both genders of flower parts. Label A, B, and C. Label D, E, F, and G. A is the ____________________________________________. D is the ____________________________________________. B is the ____________________________________________. E is the ____________________________________________. C is the ____________________________________________. F is the ____________________________________________. All of these3. Flowers are can contain one or ?both _________________________ genders of flower parts. 4. FlowersG is cathen co ____________________________________________.ntain -
A Mycorrhizae-Like Gene Regulates Stem Cell and Gametophore Development in Mosses
ARTICLE https://doi.org/10.1038/s41467-020-15967-6 OPEN A mycorrhizae-like gene regulates stem cell and gametophore development in mosses Shuanghua Wang1,2, Yanlong Guan1, Qia Wang1, Jinjie Zhao1, Guiling Sun 3, Xiangyang Hu4, Mark P. Running5, ✉ ✉ Hang Sun1 & Jinling Huang 1,3,6 Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae- like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and 1234567890():,; how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings pro- vide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants. 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China. 4 Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China. -
Heterospory and Seed Habit Heterospory in Pteridophytes: Most of the Pteridophytes Produce One Kind of Similar Spore
Heterospory and Seed Habit Heterospory in Pteridophytes: Most of the Pteridophytes produce one kind of similar spore. Such Peridophytes are known as homosporous and this phenomenon is known as homospory. However, there are some Pteridophytes which produce two different types of spores (differing in size, structure and function). Such Pteridophytes are known as heterosporous and the phenomenon is known as heterospory. The two types of spores are microspores and megaspores. Microspores are smaller in size and develop into the male gametophyte while the megaspores are large and develop into female gametophyte. According to Rashid (1976) only 9 genera of Pteridophytes are heterosporous. These are Selaginella, Isoetes, Stylites, Marsilea, Pilularia, Regnellidium, Salvinia, Azoll and Platyzoma. Origin of Heterospory: The origin of heterospory can be better discussed on the basis of evidences from paleobotany, developmental and experimental studies. 1. Palaeobotanical evidences: It has been suggested that heterospory arose due to degeneration of some spores in a few sporangia. As more nutrition becomes available to less number of spores, the surviving spore grow better, hence increase in their size. Palaeobotanical evidences show that the earlier vascular plants wert all homosporous and the heterosporous condition appeared subsequently in the lowermost upper Devonian. Anumber of heterosporous genera belonging to the Lycopsida, Sphenopsida and Pteropsia were known in the late Devonian and early Carboniferous periods. During this period important heterosporous genera were Lepidocarpon, Lepidostrobus, Mazocarpon, Plaeuromeia, Sigillariostrobiis (members of Lycopsid) Calamocarpon, Calamostachys, Palaeostachys (members of Sphenosida). Some of these forms even arrived at the seed stage. According to Williamson and Scot (1894) two species of Calamostachys form the initial stage that might lead to the heterospory.