A Subgeneric Classification of Selaginella (Selaginellaceae)

Total Page:16

File Type:pdf, Size:1020Kb

A Subgeneric Classification of Selaginella (Selaginellaceae) RESEARCH ARTICLE AMERICAN JOURNAL OF BOTANY A subgeneric classifi cation of Selaginella (Selaginellaceae)1 Stina Weststrand and Petra Korall2 PREMISE OF THE STUDY: The lycophyte family Selaginellaceae includes approximately 750 herbaceous species worldwide, with the main species richness in the tropics and subtropics. We recently presented a phylogenetic analysis of Selaginellaceae based on DNA sequence data and, with the phylogeny as a framework, the study discussed the character evolution of the group focusing on gross morphology. Here we translate these fi ndings into a new classifi cation. METHODS: To present a robust and useful classifi cation, we identifi ed well-supported monophyletic groups from our previous phylogenetic analysis of 223 species, which together represent the diversity of the family with respect to morphology, taxonomy, and geographical distribution. Care was taken to choose groups with supporting morphology. KEY RESULTS: In this classifi cation, we recognize a single genus Selaginella and seven subgenera: Selaginella , Rupestrae , Lepidophyllae , Gymnogynum , Exal- tatae , Ericetorum , and Stachygynandrum . The subgenera are all well supported based on analysis of DNA sequence data and morphology. A key to the subgenera is presented. CONCLUSIONS: Our new classifi cation is based on a well-founded hypothesis of the evolutionary relationships of Selaginella , and each subgenus can be identifi ed by a suite of morphological features, most of them possible to study in the fi eld. Our intention is that the classifi cation will be useful not only to experts in the fi eld, but also to a broader audience. KEY WORDS classifi cation; key; lycophytes; morphology; phylogeny; Selaginellaceae; subgenera Th e phylogeny of Selaginellaceae Willk., one of three lycophyte Jermy, 1986 ), divided the species into two to several genera (e.g., families, was addressed in a companion article in this issue Palisot de Beauvois, 1804 ; Rothmaler, 1944 ; Soják, 1993 ; Tzvelev, ( Weststrand and Korall, 2016 ) and has been the subject of much 2004 ), or even included all species as subgenera under Lycopodium attention in the last 15 years (e.g., Korall et al., 1999 ; Korall and L. ( Reichenbach, 1828 ), see Zhou and Zhang (2015) for a historical Kenrick, 2002 , 2004 ; Arrigo et al., 2013 ; Zhou et al., 2015c ). In that review. Th e classifi cation most oft en referred to during the last de- large-scale study, we analyzed plastid and single-copy nuclear cades is the one published by Jermy (1986) . He recognized a single data from approximately one-third of the 750 species ( Jermy, genus Selaginella with fi ve subgenera: Selaginella (2 species), 1990 ) and discussed the morphological evolution of the group. Tetragonostachys Jermy (ca. 50 species), Ericetorum Jermy (3 spe- Here we present a new classifi cation of Selaginellaceae, based on cies), Heterostachys Baker (ca. 60 species), and Stachygynandrum these results. (P.Beauv. ex Mirb.) Baker (ca. 600 species). Morphological features Th e genus Selaginella was fi rst described by Palisot de Beauvois used to distinguish groups in classifi cations were, e.g., isophylly vs. in 1804 . Since then, a number of classifi cations have been proposed anisophylly, phyllotaxy, habit, stelar arrangement, and spore orna- that either recognized a single genus Selaginella P.Beauv. (e.g., mentation. Phylogenetic studies of the group have shown that these Spring, 1840 , 1849 ; Braun, 1858 ; Baker, 1883 ; Hieronymus and characters (as they have been defi ned) oft en are homoplastic, in- Sadebeck, 1901 ; Walton and Alston, 1938 ; Tryon and Tryon, 1982 ; volving reversals and/or parallelisms, and that none of these mor- phology-based classifi cations properly refl ect the phylogeny of the 1 Manuscript received 8 April 2016; revision accepted 30 September 2016. group ( Korall and Kenrick, 2002 ; Zhou et al., 2015c ; Weststrand Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden and Korall, 2016 ). In 2015, Zhou and Zhang published the fi rst clas- 2 Author for correspondence (e-mail: [email protected]) sifi cation based on a phylogenetic analysis of the group ( Zhou et al., doi:10.3732/ajb.1600288 2015c ). On the basis of this study, in combination with morphological 2160 • AMERICAN JOURNAL OF BOTANY 103 (12): 2160 – 2169 , 2016; http://www.amjbot.org/ © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0). DECEMBER 2016 , VOLUME 103 • WESTSTRAND AND KORALL—SUBGENERIC CLASSIFICATION OF SELAGINELLA • 2161 and chromosome data ( Zhou et al., 2015c ), Zhou and Zhang (2015) 1901 ; Steel, 1923 ). However, rhizophore development is complex recognized six subgenera and 18 sections within the single genus and variable, and this division into rhizophore positions does not Selaginella . fully refl ect the variation observed. More comparative studies are Selaginellaceae, with the single genus Selaginella , is widely dis- needed for a full understanding (but see, e.g., Webster and Steeves, tributed throughout the world, from arctic and alpine regions to 1964 ; Lu and Jernstedt, 1996 ; and references therein). Th e stems of the tropics and subtropics, where the main species diversity is some species have articulations below stem dichotomies; these are found ( Jermy, 1990 ). Th e species are herbaceous and range from swellings that in dried specimens oft en are seen as dark constricted creeping, sometimes mat-forming, to erect, and occasionally long segments ( Jermy, 1990 ). Th e stem stele is a protostele, which in and scandent. Approximately 50 species, most of them found in most species is a simple, circular to elliptic monostele, but bistelic, temperate and dry areas of the world, have vegetative leaves that are tristelic, or polystelic arrangements are also relatively common monomorphic ( Jermy, 1990 ). Th ese have helically arranged leaves, (e.g., Harvey-Gibson, 1894 ; Hieronymus and Sadebeck, 1901 ). except for three species where the leaves are decussately arranged Lobed protostelic forms (actinostele or actino-plectostele) are [ Selaginella gracillima (Kunze) Spring ex Salomon, S. pygmaea found in a few species (e.g., Wardlaw, 1925 ; Mickel and Hellwig, (Kaulf.) Alston, and S. uliginosa (Labill.) Spring] ( Jermy, 1986 ). 1969 ; Weststrand and Korall, 2016 ). A few species also have a sole- However, the majority of Selaginella species, most of them found in nostelic rhizome (e.g., Harvey-Gibson, 1894 ; Steel, 1923 ). warm and humid regions, have dimorphic vegetative leaves. Th e Our knowledge of the phylogenetic relationships of Selaginella- anisophyllous shoots have leaves in four rows with two rows of ceae has increased signifi cantly since the fi rst phylogenetic analysis smaller leaves on the upper, dorsal side of the shoot, and two rows was published in 1999 ( Korall et al., 1999 ). Our study in this issue of larger leaves on the lower, ventral side ( Jermy, 1990 ; see fi g. 3 of ( Weststrand and Korall, 2016 ) showed, based on 223 species, an Korall and Kenrick, 2002 ). overall well-resolved and well-supported phylogeny. Th e resulting Selaginellaceae is heterosporous, a synapomorphy shared with topology is in concordance with previously published phylogenetic the sister lineage Isoëtaceae Dumort. ( Jermy, 1990 ; Wikström and analyses of the group ( Korall et al., 1999 ; Korall and Kenrick, 2002 , Kenrick, 1997 ; Korall et al., 1999 ). Th e mega- and microsporangia, 2004 ; Arrigo et al., 2013 ; Zhou et al., 2015c ). Together, the diff erent enclosing mega- and microspores, respectively, are subtended by studies show that Selaginellaceae is supported as monophyletic and sporophylls and arranged in strobili at branch tips ( Jermy, 1990 ; with that a clade of two species (the isophyllous S. selaginoides and S. a few exceptions, see, e.g., Valdespino et al., 2015 ). Th e strobili are, defl exa ) is sister to the rhizophoric clade, including all other taxa like the vegetative shoots, either isophyllous or anisophyllous. Iso- ( Fig. 1 ) . Th e rhizophoric clade is supported by two morphological phyllous strobili are most common and found in all species with iso- synapomorphies: presence of rhizophores and tetrastichous stro- phyllous vegetative shoots, as well as in the majority of species with bili. Th e fi rst divergence in the rhizophoric clade gives rise to clades anisophyllous vegetative shoots ( Jermy, 1990 ). Th e sporophylls are in A and B. Clade B and fi ve major subclades within clade A can each tetrastichous strobili in all but two species, the type S. selaginoides be identifi ed based on a suite of morphological features ( Weststrand (L.) P.Beauv. ex Schrank & Mart. and S. defl exa Brack., where they and Korall, 2016 ). are helically arranged ( Jermy, 1986 ). Approximately 60 species have Based on our molecular and morphological work ( Weststrand bilateral strobili ( Jermy, 1990 ). A few of these have smaller sporo- and Korall, 2016 ), we here propose a revised subgeneric classifi ca- phylls arranged in the same plane as smaller vegetative leaves, a so- tion of Selaginella refl ecting our current knowledge of the evolu- called nonresupinate strobilus, but most species have resupinate tionary relationships of the group. For the classifi cation to be useful strobili, with smaller sporophylls in the same plane as larger vegeta- for future work on Selaginella with respect to research and curation tive leaves
Recommended publications
  • RI Equisetopsida and Lycopodiopsida.Indd
    IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants.
    [Show full text]
  • WRA Species Report
    Family: Selaginellaceae Taxon: Selaginella braunii Synonym: Lycopodioides braunii (Baker) Kuntze Common Name: arborvitae fern Selaginella braunii fo. hieronymi Alderw. Braun's spike-moss Selaginella hieronymi Alderw. Chinese lace-fern spike-moss Selaginella vogelii Mett. treelet spike-moss Questionaire : current 20090513 Assessor: Assessor Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Assessor WRA Score 7 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- Low substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or
    [Show full text]
  • Download Document
    African countries and neighbouring islands covered by the Synopsis. S T R E L I T Z I A 23 Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands by J.P. Roux Pretoria 2009 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens which SANBI inherited from its predecessor organisations. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arborescent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of the South African National Biodiversity Institute is based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It sym- bolises the commitment of the Institute to champion the exploration, conservation, sustain- able use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. J.P. Roux South African National Biodiversity Institute, Compton Herbarium, Cape Town SCIENTIFIC EDITOR: Gerrit Germishuizen TECHNICAL EDITOR: Emsie du Plessis DESIGN & LAYOUT: Elizma Fouché COVER DESIGN: Elizma Fouché, incorporating Blechnum palmiforme on Gough Island PHOTOGRAPHS J.P. Roux Citing this publication ROUX, J.P. 2009. Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands. Strelitzia 23. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-48-8 © Published by: South African National Biodiversity Institute. Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa.
    [Show full text]
  • General View of a Small Patch of Phylloglossum Plants. As Is Normal
    . Fig. 1- General view of a small patch of Phylloglossum plants. As is normal in most populations there are many more sterile plants than fertile and a great range of sizes of plants are found. The 5-cent coin is about 2 cm in diameter and provides a convenient scale. 28 Phylloglossum Miniature Denizen of the North /. E. Braggins, Auckland Phylloglossum drummondii, first described by Kunze, a German botanist, in 1843, is a very small plant related to the lycopodiums or club mosses. In addition to New Zealand it is found in Western Australia, Tasmania, and Victoria. There is only one species of Phylloglossum, and because of its small size and habit of growing in low sedge and scrub it is not often detected. Furthermore it has a short growing season when it is above ground (May-June till September-October), and few botanists know it in the field. The description in Allan's Flora of New Zealand tells us that it is "... a plant up to 5 cm long, rarely more; leaves linear, acute, usually few, seldom more than 10, about 2 cm long". The stalk or peduncle of the fruiting part is described as 3-4 cm long, with a strobilus (sport-bearing part) about 7 mm long. The generic description having already said that the strobilus was terminal and roots scanty, we have some idea what the plant may look like, though words cannot convey adequately the appearance of this unusual little plant (Fig. 1). In New Zealand Phylloglossum is often regarded as a typical kauri and burnt-over scrubland plant.
    [Show full text]
  • Selaginellaceae: Traditional Use, Phytochemistry and Pharmacology
    MS Editions BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 19 (3): 247 - 288 (2020) © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión | Review Selaginellaceae: traditional use, phytochemistry and pharmacology [Selaginellaceae: uso tradicional, fitoquímica y farmacología] Fernanda Priscila Santos Reginaldo, Isabelly Cristina de Matos Costa & Raquel Brandt Giordani College of Pharmacy, Pharmacy Department. University of Rio Grande do Norte, Natal, RN, Brazil. Contactos | Contacts: Raquel Brandt GIORDANI - E-mail address: [email protected] Abstract: Selaginella is the only genus from Selaginellaceae, and it is considered a key factor in studying evolution. The family managed to survive the many biotic and abiotic pressures during the last 400 million years. The purpose of this review is to provide an up-to-date overview of Selaginella in order to recognize their potential and evaluate future research opportunities. Carbohydrates, pigments, steroids, phenolic derivatives, mainly flavonoids, and alkaloids are the main natural products in Selaginella. A wide spectrum of in vitro and in vivo pharmacological activities, some of them pointed out by folk medicine, has been reported. Future studies should afford valuable new data on better explore the biological potential of the flavonoid amentoflavone and their derivatives as chemical bioactive entities; develop studies about toxicity and, finally, concentrate efforts on elucidate mechanisms of action for biological properties already reported. Keywords: Selaginella; Natural Products; Overview. Resumen: Selaginella es el único género de Selaginellaceae, y se considera un factor clave en el estudio de la evolución. La familia logró sobrevivir a las muchas presiones bióticas y abióticas durante los últimos 400 millones de años.
    [Show full text]
  • A Preliminary Treatment of the Genus Campylopus (Musci: Dicranaceae) in Central America Bruce H
    63 Tropical Bryology 1: 63-94, 1989 A preliminary treatment of the genus Campylopus (Musci: Dicranaceae) in Central America Bruce H. Allen Missouri Botanical Garden P.O. Box 299 St. Louis, Missouri 63166-0299, U.S.A. Abstract. There are 26 species of Campylopus in Central America. They are divided into three groups on the basis of two characters: the presence or absence in the costa of a ventral layer of enlarged, hyaline cells and the presence or absence in the stem of an outer hylodermis. Dicranum costaricensis Bartr. is transferred to Campylopus as C. valerioi nom. nov. Campylopus hoffmanii and C. standleyi are recognized as distinct species. Six new synonyms are proposed: C. straminifolius = C. densicoma; C. costaricensis = C. surinamensis; C. roellii = C. tallulensis; C. donnellii = C. zygodonticarpus; C. tuerckheimii = C. zygodonticarpus; C. sargii = C. zygodonticarpus. The genus Campylopus is a large and taxono- are occupied by groups of species whose characters mically complex group of world-wide distribu- exhibit shades of variation in reticulate tion. Frahm (1988) considers the genus to have combinations. As presently understood, the only originated in the subantarctic region of the world; features common to all species of the genus are: in terms of species numbers the group is most 1. dioicous sexual condition, 2. broad, single, diversified in Central and South America. excurrent costae, 3. estomatate capsules and 4. There is a remarkable amount of variation setae sinuose when moist. found in nearly all characters of Campylopus, and A consideration of the genera near Campylo- as a result the generic limits of the genus are pus makes it apparent that the above character diffuse.
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant.
    [Show full text]
  • An Approach to the Problem of Taxonomy and Classification in the Study of Sporae Dispersae
    AN APPROACH TO THE PROBLEM OF TAXONOMY AND CLASSIFICATION IN THE STUDY OF SPORAE DISPERSAE D. C. BHARDWAJ Birbal~i Institute of Palaeobotany, Lucknow ABSTRACT ( 1950 ) system, the American workers prefer The present state of disagreement among spore that of Schopf, Wilson and Bentall's ( 1944), workers with regard to the taxonomy and classi• in Germany, an amplification of Ibrahim's fication of Sporae dispersae has been reviewed. ( 1933) system is mostly in vogue and the The taxonomic categories for Sporae dispersae have Russian workers classify according to Nau• been defined and practicability of organ-genus concept over the form-genus concept for the circum• mova's (1937) system. This tendency to scription of spore taxa has been discussed. stick to one or the other of these systems, none of which excels the others, has uncons• ciously led to thwart the evolution of one such INTRODUCTION system of classification for the Sporae dis• persae which may be universally followed. Of late, in view of the greater applied use of DETAILEDand pollen,studyrecoveredof the dispersedfrom sedimen•spores Sporae dispersae in coal and oil prospecting, tary strata, dates back to Reinsch the need for a universally accepted standard ( 1881) when he described some of them from system of classification for these is being coals of the Carboniferous age. Thereafter, increasingly felt so that assimilation of data for several decades, these dispersed micro• from all over the world can be more easily remains attracted occasional attention of achieved. palaeobotanists
    [Show full text]
  • (Lycopodiaceae) in the State of Veracruz, Mexico
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.8 (1): 114-137, 2015 Research article Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico Samaria Armenta-Montero1, César I. Carvajal-Hernández1, Edward A. Ellis1 and Thorsten Krömer1* 1Centro de Investigaciones Tropicales, Universidad Veracruzana, Casco de la Ex Hacienda Lucas Martín, Privada de Araucarias S/N. Col. Periodistas, C.P. 91019, Xalapa, Veracruz, Mexico *Corresponding author. Email: [email protected] Abstract The fern and lycophyte flora of Mexico contains 13 species in the genus Phlegmariurus (Lycopodiaceae; club moss family), of which nine are found in the state of Veracruz (P. cuernavacensis, P. dichotomus, P. linifolius, P. myrsinites, P. orizabae, P. pithyoides, P. pringlei, P. reflexus , P. taxifolius). They are located primarily in undisturbed areas of humid montane, pine-oak and tropical humid forests, which are all ecosystems threatened by deforestation and fragmentation. The objective of this study was to evaluate and understand the distribution and conservation status of species of this genus in the state of Veracruz, Mexico. Using Maxent, probability distributions were modeled based on 173 herbarium specimens (25% from recent collections by the authors and/or collaborators), considering factors such as climate, elevation and vegetation cover. Additionally, anthropogenic impacts on the original habitat of each species were analyzed in order to assign threatened categories based on IUCN classifications at regional levels. Results show that potential distributions are located in the montane regions of the central and southern parts of the state. All nine Phlegmariurus species in Veracruz were found to be in some category of risk, with P.
    [Show full text]
  • Maine's Endangered and Threatened Plants
    University of Southern Maine USM Digital Commons Maine Collection 1990 Maine's Endangered and Threatened Plants Maine State Planning Office Follow this and additional works at: https://digitalcommons.usm.maine.edu/me_collection Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, Plant Biology Commons, and the Weed Science Commons Recommended Citation Maine State Planning Office, "Maine's Endangered and Threatened Plants" (1990). Maine Collection. 49. https://digitalcommons.usm.maine.edu/me_collection/49 This Book is brought to you for free and open access by USM Digital Commons. It has been accepted for inclusion in Maine Collection by an authorized administrator of USM Digital Commons. For more information, please contact [email protected]. BACKGROUND and PURPOSE In an effort to encourage the protection of native Maine plants that are naturally reduced or low in number, the State Planning Office has compiled a list of endangered and threatened plants. Of Maine's approximately 1500 native vascular plant species, 155, or about 10%, are included on the Official List of Maine's Plants that are Endangered or Threatened. Of the species on the list, three are also listed at the federal level. The U.S. Fish and Wildlife Service. has des·ignated the Furbish's Lousewort (Pedicularis furbishiae) and Small Whorled Pogonia (lsotria medeoloides) as Endangered species and the Prairie White-fringed Orchid (Platanthera leucophaea) as Threatened. Listing rare plants of a particular state or region is a process rather than an isolated and finite event.
    [Show full text]
  • Chapter 23: the Early Tracheophytes
    Chapter 23 The Early Tracheophytes THE LYCOPHYTES Lycopodium Has a Homosporous Life Cycle Selaginella Has a Heterosporous Life Cycle Heterospory Allows for Greater Parental Investment Isoetes May Be the Only Living Member of the Lepidodendrid Group THE MONILOPHYTES Whisk Ferns Ophioglossalean Ferns Horsetails Marattialean Ferns True Ferns True Fern Sporophytes Typically Have Underground Stems Sexual Reproduction Usually Is Homosporous Fern Have a Variety of Alternative Means of Reproduction Ferns Have Ecological and Economic Importance SUMMARY PLANTS, PEOPLE, AND THE ENVIRONMENT: Sporophyte Prominence and Survival on Land PLANTS, PEOPLE, AND THE ENVIRONMENT: Coal, Smog, and Forest Decline THE OCCUPATION OF THE LAND PLANTS, PEOPLE, AND THE The First Tracheophytes Were ENVIRONMENT: Diversity Among the Ferns Rhyniophytes Tracheophytes Became Increasingly Better PLANTS, PEOPLE, AND THE Adapted to the Terrestrial Environment ENVIRONMENT: Fern Spores Relationships among Early Tracheophytes 1 KEY CONCEPTS 1. Tracheophytes, also called vascular plants, possess lignified water-conducting tissue (xylem). Approximately 14,000 species of tracheophytes reproduce by releasing spores and do not make seeds. These are sometimes called seedless vascular plants. Tracheophytes differ from bryophytes in possessing branched sporophytes that are dominant in the life cycle. These sporophytes are more tolerant of life on dry land than those of bryophytes because water movement is controlled by strongly lignified vascular tissue, stomata, and an extensive cuticle. The gametophytes, however still require a seasonally wet habitat, and water outside the plant is essential for the movement of sperm from antheridia to archegonia. 2. The rhyniophytes were the first tracheophytes. They consisted of dichotomously branching axes, lacking roots and leaves. They are all extinct.
    [Show full text]
  • Spore Dispersal of Selaginella Denticulata, S. Helvetica, and S
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Spore dispersal of Selaginella denticulata, S. helvetica, and S. selaginoides, and the significance of heterospory in Selaginellacae Schneller, Jakob ; Kessler, Michael DOI: https://doi.org/10.1640/0002-8444-110.2.58 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-187856 Journal Article Published Version Originally published at: Schneller, Jakob; Kessler, Michael (2020). Spore dispersal of Selaginella denticulata, S. helvetica, and S. selaginoides, and the significance of heterospory in Selaginellacae. American Fern Journal, 110(2):58-65. DOI: https://doi.org/10.1640/0002-8444-110.2.58 Spore dispersal of Selaginella denticulata, S. helvetica, and S. selaginoides, and the significance of heterospory in Selaginellacae Authors: Schneller, Jakob, and Kessler, Michael Source: American Fern Journal, 110(2) : 58-65 Published By: The American Fern Society URL: https://doi.org/10.1640/0002-8444-110.2.58 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
    [Show full text]