Trapezius Palsy (Spinal Accessory Nerve Palsy)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Structure and Function of Breathing
CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation. -
Exä|Xã Tüà|Väx the Accessory Nerve Rezigalla AA*, EL Ghazaly A*, Ibrahim AA*, Hag Elltayeb MK*
exä|xã TÜà|vÄx The Accessory Nerve Rezigalla AA*, EL Ghazaly A*, Ibrahim AA*, Hag Elltayeb MK* The radical neck dissection (RND) in the management of head and neck cancers may be done in the expense of the spinal accessory nerve (SAN) 1. De-innervations of the muscles supplied by SAN and integrated in the movements of the shoulder joint, often result in shoulder dysfunction. Usually the result is shoulder syndrome which subsequently affects the quality of life1. The modified radical neck dissections (MRND) and selective neck dissection (SND) intend to minimize the dysfunction of the shoulder by preserving the SAN, especially in supra-hyoid neck dissection (Level I-III±IV) and lateral neck dissection (level II-IV)2, 3. This article aims to focus on the SAN to increase the awareness during MRND and SND. Keywords: Spinal accessory, Sternocleidomastoid, Trapezius, Cervical plexus. he accessory nerve is a motor nerve The Cranial Root: but it is considered as containing some The cranial root is the smaller, attached to the sensory fibres. It is formed in the post-olivary sulcus of the medulla oblongata T 8,10 posterior cranial fossa by the union of its (Fig.1) and arises forms the caudal pole of 4, 7, 9 cranial and spinal roots 4-8 (i.e. the internal the nucleus ambiguus (SVE) and possibly 11, 14 and external branches respectively9,10) but also of the dorsal vagal nucleus , although 11 these pass for a short distance only11. The both of them are connected . cranial root joins the vagus nerve and The nucleus ambiguus is the column of large considered as a part of the vagus nerve, being motor neurons that is deeply isolated in the branchial or special visceral efferent reticular formation of the medulla 11 nerve4,5,9,11. -
Active Release Techniques Spine Level 2
Active Release Techniques Spine Level 2 Dates of program- Montvale, NJ February 18-21, 2021 Colorado Springs, CO March 4-7, 2021 Orlando, FL June 10-13, 2021 Chicago, IL September 30 – October 3, 2021 Total Hours: 24 Summary: Active Release Techniques® Spine Level 2 offers intense training in 75 manual treatment protocols of the cervical, thoracic, and lumbar spine. ART® treatment utilizes manual techniques to move tissues and joints while under tension. The system allows for relative motion between the tissues and articulations. This seminar emphasizes the manipulation of the neuromusculoskeletal system to diagnose and correct alterations in tissue texture, tension, movement, and function between tissues. Evaluation and treatment occur simultaneously. Learning Outcomes: 1. By the end of the seminar, learners will be able to correctly identify (palpate) 75 facial seams of soft-tissue structures within the spine. 2. By the end of the seminars, learners will be able to correctly state the muscle actions of two adjacent spinal muscles. 3. By the end of the seminar, learners will be able to effectively recognize common symptom patterns of spinal neuromuscular injuries and disorders. 4. By the end of the seminar, learners will correctly identify the structure treated and associated concentric and eccentric muscle actions via video presentations. 5. By the end of the seminar, the learner will correctly move the muscle from its shortened position to elongated position using two-hand placement techniques. 6. By the end of the seminar, the learner can successfully differentiate between healthy and unhealthy tissue utilizing hands-on palpation techniques. 7. By the end of the seminar, the learner will proficiently palpate 75 anatomical soft-tissue structures within the spine, using an appropriate tension, depth, and motion to properly perform the treatment protocol. -
Surgical Outcomes of 156 Spinal Accessory Nerve Injuries Caused by Lymph Node Biopsy Procedures
SPINE CLINICAL ARTICLE J Neurosurg Spine 23:518–525, 2015 Surgical outcomes of 156 spinal accessory nerve injuries caused by lymph node biopsy procedures Sang Hyun Park, MD, PhD,1 Yoshua Esquenazi, MD,2 David G. Kline, MD,3 and Daniel H. Kim, MD2 1Department of Anesthesiology and Pain Medicine, Jeju National University Medical School, Jeju, Korea; 2Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas; and 3Department of Neurosurgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana OBJECT Iatrogenic injuries to the spinal accessory nerve (SAN) are not uncommon during lymph node biopsy of the posterior cervical triangle (PCT). In this study, the authors review the operative techniques and surgical outcomes of 156 surgical repairs of the SAN following iatrogenic injury during lymph node biopsy procedures. METHODs This retrospective study examines the authors’ clinical and surgical experience with 156 patients with SAN injury between 1980 and 2012. All patients suffered iatrogenic SAN injuries during lymph node biopsy, with the vast majority (154/156, 98.7%) occurring in Zone I of the PCT. Surgery was performed on the basis of anatomical and electro- physiological findings at the time of the operation. The mean follow-up period was 24 months (range 8–44 months). RESULTs Of the 123 patients who underwent graft or suture repair, 107 patients (87%) improved to Grade 3 functional- ity or higher using the Louisiana State University Health Science Center (LSUHSC) grading system. Neurolysis was performed in 29 patients (19%) when the nerve was found in continuity with recordable nerve action potential (NAP) across the lesion. -
Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action: -
Cranial Nerves - Iii (Cn Ix, X, Xi & Xii)
CRANIAL NERVES - III (CN IX, X, XI & XII) DR. SANGEETA KOTRANNAVAR ASSISTANT PROFESSOR DEPT. OF ANATOMY USM KLE IMP BELAGAVI OBJECTIVES • Describe the functional component, nuclei of origin, course, distribution and functional significance of cranial nerves IX, X, XI and XII • Describe the applied anatomy of cranial nerves IX, X, XI and XII overview Relationship of the last four cranial nerves at the base of the skull The last four cranial nerves arise from medulla & leave the skull close together, the glossopharyngeal, vagus & accessory through jugular foramen, and the hypoglossal nerve through the hypoglossal canal Functional components OF CN Afferent Efferent General General somatic afferent fibers General somatic efferent fibers Somatic (GSA): transmit exteroceptive & (GSE): innervate skeletal muscles proprioceptive impulses from skin of somatic origin & muscles to somatic sensory nuclei General General visceral afferent General visceral efferent(GVE): transmit visceral fibers (GVA): transmit motor impulses from general visceral interoceptive impulses motor nuclei &relayed in parasympathetic from the viscera to the ganglions. Postganglionic fibers supply visceral sensory nuclei glands, smooth muscles, vessels & viscera Special Special somatic afferent fibers (SSA): ------------ Somatic transmit sensory impulses from special sense organs eye , nose & ear to brain Special Special visceral afferent fibers Special visceral efferent fibers (SVE): visceral (SVA): transmit sensory transmit motor impulses from the impulses from special sense brain to skeletal muscles derived from taste (tounge) to the brain pharyngeal arches : include muscles of mastication, face, pharynx & larynx Cranial Nerve Nuclei in Brainstem: Schematic picture Functional components OF CN GLOSSOPHARYNGEAL NERVE • Glossopharyngeal nerve is the 9th cranial nerve. • It is a mixed nerve, i.e., composed of both the motor and sensory fibres, but predominantly it is sensory. -
Painful Polio Our Fight Against Polio—A Vaccine- Preventable Infectious Disease—Is at Its Peak
Feature Article UNMET HEALTH NEEDS Painful Polio Our fight against polio—a vaccine- preventable infectious disease—is at its peak. Ensuring complete immunization of every child is the key to oust the deadly polio virus from our planet.. P. CHEENA CHAWLA HILDREN are beautiful gifts of Nature. Sheer neglect of hygiene in the early days of life can play havoc in the Cinfant body, letting germs of a wide Although polio was well the capsid. Besides protecting the variety make home in the tiny organs recognized as a human affliction for genetic material of poliovirus, the playing a dangerous game of life and long, it was only in 1908 that the culprit capsid proteins enable this virus to death. The aftermath of an infectious bug for this disease, the polio virus, infect certain types of cells. childhood illness is most appalling if was identified by Karl Landsteiner. Three different serotypes of polio survival is at the cost of living with a Polio spread widely in Europe and the virus are known to cause the disease — crippled body for whole life. This United States in late 1880s and as the poliovirus type 1 (PV1), type 2 (PV2), exactly happens when the deadly virus, virus circulated rampantly around the and type 3 (PV3) — each having a known to cause polio, strikes! globe, polio cases dramatically slightly different capsid protein. One of the most dreaded childhood increased. It was in the face of such Although all these viral serotypes are diseases, polio mostly strikes children epidemics in early 1900s, paralyzing extremely dangerous and result in the under five years of age. -
Neuromuscular Ultrasound of Cranial Nerves
JCN Open Access REVIEW pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2015;11(2):109-121 / http://dx.doi.org/10.3988/jcn.2015.11.2.109 Neuromuscular Ultrasound of Cranial Nerves Eman A. Tawfika b Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) Francis O. Walker b which may provide additional value in the assessment of cranial nerves in different neuro- Michael S. Cartwright muscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial a Department of Physical Medicine nerves is considered in its initial stage of research, thus, there is a need to summarize the re- and Rehabilitation, search results achieved to date. Detailed scanning protocols, which assist in mastery of the Faculty of Medicine, techniques, are briefly mentioned in the few reference textbooks available in the field. This re- Ain Shams University, view article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: op- Cairo, Egypt bDepartment of Neurology, tic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future ap- Medical Center Boulevard, plications are discussed. Wake Forest University School of Medicine, Key Wordszz neuromuscular ultrasound, cranial nerve, optic, facial, vagus, spinal accessory. Winston-Salem, NC, USA INTRODUCTION Neuromuscular ultrasound (NMUS) refers to the use of high resolution ultrasound of nerve and muscle to assess primary neuromuscular disorders. Beginning with a few small studies in the 1980s, it has evolved into a growing subspecialty area of clinical and re- search investigation. Over the last decade, electrodiagnostic laboratories throughout the world have adopted the technique because of its value in peripheral entrapment and trau- matic neuropathies. -
EMG Analysis of Latissimus Dorsi, Erector Spinae and Middle Trapezius Muscle Activity During Spinal Rotation: a Pilot Study Jamie Flint University of North Dakota
University of North Dakota UND Scholarly Commons Physical Therapy Scholarly Projects Department of Physical Therapy 2015 EMG Analysis of Latissimus Dorsi, Erector Spinae and Middle Trapezius Muscle Activity during Spinal Rotation: A Pilot Study Jamie Flint University of North Dakota Toni Linneman University of North Dakota Rachel Pederson University of North Dakota Megan Storstad University of North Dakota Follow this and additional works at: https://commons.und.edu/pt-grad Part of the Physical Therapy Commons Recommended Citation Flint, Jamie; Linneman, Toni; Pederson, Rachel; and Storstad, Megan, "EMG Analysis of Latissimus Dorsi, Erector Spinae and Middle Trapezius Muscle Activity during Spinal Rotation: A Pilot Study" (2015). Physical Therapy Scholarly Projects. 571. https://commons.und.edu/pt-grad/571 This Scholarly Project is brought to you for free and open access by the Department of Physical Therapy at UND Scholarly Commons. It has been accepted for inclusion in Physical Therapy Scholarly Projects by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ------- ---- ------------------------------- EMG ANALYSIS OF LATISSIMUS DORSI, ERECTOR SPINAE AND MIDDLE TRAPEZIUS MUSCLE ACTIVITY DURING SPINAL ROTATION: A PILOT STUDY by Jamie Flint, SPT Toni Linneman, SPT Rachel Pederson, SPT Megan Storstad, SPT Bachelor of Science in Physical Education, Exercise Science and Wellness University of North Dakota, 2013 A Scholarly Project Submitted to the Graduate Faculty of the -
Landmark for Identifying Spinal Accessory Nerve in Anterior Triangle of Neck-Surgeon’S Perspective
Global Journal of Otolaryngology ISSN 2474-7556 Short Communication Glob J Otolaryngol - Volume 10 Issue 3 September 2017 Copyright © All rights are reserved by Ameya Bihani DOI: 10.19080/GJO.2017.10.555787 Landmark for Identifying Spinal Accessory Nerve in Anterior Triangle of Neck-Surgeon’s Perspective Ameya Bihani* Tata Memorial Hospital, India Submission: September 06, 2017; Published: September 13, 2017 *Corresponding author: Ameya Bihani, Fellowship in head and neck oncosurgey, Tata Memorial Hospital, Mumbai, India, Tel: Email: Abstract There have been multiple studies on defining landmarks for spinal accessory nerve but most of them have stressed upon the identification of nerve in the posterior triangle of the neck. I have highlighted few landmarks that are less known for identification of spinal accessory nerve and their importance. The five landmarks which were analysed are posterior belly of digastric, transverse process of atlas, internal jugular vein, sternocleidomastoidKeywords: Spinal accessory muscle andnerve; small Posterior calibre belly veins of present digastrics; superficial Transverse to spinal process accessory of atlas nerve. Introduction nerve passing within 1 cm distance. In 40 cases out of 50, the nerve Identifying the spinal accessory nerve is of utmost importance went on the anterior surface of the process and rest 10 cases it went lateral to it. With surgery point of view, the nerve went deeper to shoulder dysfunction with limited overhead abduction and in neck dissection. The injury to the nerve results in significant the posterior belly of digastric in all 50 cases and in 48 cases out of progressive winging of scapula. There have been multiple studies 50 , it crossed the posterior belly of digastric at its midpoint. -
Clinical Weekly - 148Th Edition
11thAugust 2017 Clinical Weekly - 148th Edition #JournalTuesday - by Abi Peck Article: Femoral neck stress fracture: the importance of clinical suspicion and early review. Download here 1. What is a stress fracture? 2. What are the symptoms? 3. What are the risk factors? 4. Why should stress fractures be treated/ managed appropriately? 5. How should a stress fracture be managed? 6. What would be the imaging of choice? #ClinicalSkillsFriday - by Josh Featherstone Cranial nerve 11 – Accessory Nerve General anatomy and function It provides motor function for the sternocleidomastoid (SCM) and trapezius muscles. The spinal accessory nerve originates in the upper spinal cord to the level of about C6. The accessory nerve enters the skull through the foramen magnum and travels along the inner wall of the skull towards the jugular foramen. Leaving the skull, the nerve travels through the jugular foramen with cranial nerves 9 and 10. The spinal accessory nerve is the only cranial nerve to enter and exit the skull. After leaving the skull, the cranial component detaches from the spinal component. The spinal accessory nerve continues alone and heads backwards and downwards. In the neck and innervates both the SCM and trapezius muscles. Diseases of accessory nerve function: -Trauma -Injury can cause wasting of the shoulder muscles, winging of the scapula, and weakness of shoulder abduction and external rotation -RTA Testing of accessory nerve function for clinicians -Strength testing of these muscles can be measured during a neurological examination to assess function of the spinal accessory nerve. -Upper trapezius muscles can be tested by resisting shrugging -SCM can be tested by asking the patient to rotate the neck and resist neck flexion. -
Dry Needling in the Pediatric Population
Dry Needling in the Pediatric Population Dr. Mellony Mann, PT, DPT, CMTPT Dr. Nick Wedel, PT, DPT, ATC The official health care provider of Sporting Kansas City © The Children’s Mercy Hospital, 2017 Objectives Following the presentation you will be able to: – Define dry needling (DN) and describe the benefits, risks, indications, and contraindications. – Describe the mechanism of trigger point dry needling and supporting literature. – Describe clinical application and supplementary treatment options. 2 About Us Dr. Mellony Mann, PT, DPT, CMTPT Dr. Nick Wedel, PT, DPT, ATC • Associate of Science Physical Therapist • Bachelor of Science Athletic Training - Assistant – Washburn University 2008 Kansas State University 2010 • Bachelor Health Services Administration – • Doctor of Physical Therapy - University Washburn University 2008 of Kansas Medical Center 2015 • Doctor of Physical Therapy – Rockhurst • Dry Needling Certification through University 2014 Benchmark Rehab Partners • Dry Needling Certification (CMTPT) through Myopain Seminars Disclosure: We have no financial or relationships to disclose in relation to today’s presentation. 3 Dry Needling is NOT Acupuncture 4 What is Trigger Point Dry Needling? • "Rapid, short term needling to altered or dysfunctional tissue in order to improve or restore function." -PAANZ, 2014 • "Dry needling is a skilled intervention that uses a thin filiform needle to penetrate the skin and stimulate underlying myofascial trigger points, muscular, and connective tissues for the management of neuromusculoskeletal