Chapter 4 the Shoulder Girdle

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 the Shoulder Girdle Bones • Key bony landmarks – Manubrium – Clavicle Chapter 4 – Coracoid process The Shoulder Girdle – Acromion process – Glenoid fossa – Lateral border – Inferior angle – Medial border © McGraw-Hill Higher Education. All rights reserved. 4-1 © McGraw-Hill Higher Education. All rights reserved. 4-2 Bones Joints • Key bony landmarks • Shoulder girdle (scapulothoracic) – Acromion process – scapula moves on the rib cage – Glenoid fossa – joint motion occurs at sternoclavicular joint – Lateral border & to a lesser amount at the – Inferior angle acromioclavicular joint – Medial border – Superior angle – Spine of the scapula From Seeley RR, Stephens TD, Tate P; anatomy and physiology , ed 7, New York, 2006, McGraw-Hill © McGraw-Hill Higher Education. All rights reserved. 4-3 © McGraw-Hill Higher Education. All rights reserved. 4-4 Joints Joints • Sternoclavicular (SC) • Sternoclavicular (SC) – (multiaxial) arthrodial classification – Ligamentous support – Movements • anteriorly by the anterior SC ligament • anteriorly 15 degrees with protraction • posteriorly by the posterior SC ligament • posteriorly 15 degrees with retraction • costoclavicular & interclavicular • superiorly 45 degrees with elevation ligaments provide stability against • inferiorly 5 degrees with depression superior displacement © McGraw-Hill Higher Education. All rights reserved. 4-5 © McGraw-Hill Higher Education. All rights reserved. 4-6 1 Joints Joints • Acromioclavicular (AC) • Scapulothoracic – arthrodial classification – not a true synovial joint – 20- to 30-degree total gliding & rotational motion – does not have regular synovial features accompanying other shoulder girdle & shoulder – movement depends on SC & AC joints joint motions which allows the scapula to move – supported by • 25-degrees abduction-adduction • Coracoclavicular ligaments • 60-degrees upward-downward rotation • Superior acromioclavicular ligament • Inferior acromioclavicular ligament • 55-degrees elevation-depression – often injured – supported dynamically by its muscles – no ligamentous support © McGraw-Hill Higher Education. All rights reserved. 4-7 © McGraw-Hill Higher Education. All rights reserved. 4-8 Movements Movements • Focus on specific • Abduction bony landmarks (protraction) – inferior angle – scapula moves – glenoid fossa laterally away from – acromion process spinal column • Shoulder girdle • Adduction (retraction) movements = scapula – scapula moves movements medially toward spinal column © McGraw-Hill Higher Education. All rights reserved. 4-9 © McGraw-Hill Higher Education. All rights reserved. 4-10 Movements Movements • Downward rotation • Depression – returning inferior angle – downward or inferior inferomedially toward movement, as in spinal column & glenoid returning to normal fossa to normal position position • Upward rotation • Elevation – turning glenoid fossa upward & moving inferior – upward or superior angle superolaterally movement, as in away from spinal column shrugging shoulders © McGraw-Hill Higher Education. All rights reserved. 4-11 © McGraw-Hill Higher Education. All rights reserved. 4-12 2 Movements Movements • Shoulder joint & shoulder girdle work • Shoulder girdle muscles together in carrying out upper extremity – Stabilize scapula so the shoulder joint activities muscles will have a stable base from which to exert force for moving the humerus • Shoulder girdle movement is not – Contract to maintain scapula in a relatively dependent upon the shoulder joint & its static position during shoulder joint actions muscles – Contract to move shoulder girdle & to enhance movement of upper extremity when shoulder goes through extreme ranges of motion © McGraw-Hill Higher Education. All rights reserved. 4-13 © McGraw-Hill Higher Education. All rights reserved. 4-14 Movements Movements • For some shoulder girdle movements, • Anterior tilt (upward tilt) scapula must rotate or tilt on its axis – rotational movement of scapula about frontal axis • Lateral tilt (outward tilt) occurring during glenohumeral hyperextension – during abduction – superior border moving anteroinferiorly & inferior – scapula rotates about its vertical axis resulting in posterior movement of medial border & anterior angle moving posterosuperiorly movement of lateral border • Posterior tilt (downward tilt) • Medial tilt (return from lateral tilt, inward tilt) – rotational movement of scapula about frontal axis – during extreme adduction occurring during glenohumeral hyperflexion – scapula rotates about its vertical axis resulting in anterior movement of medial border & posterior – superior border moving posteroinferiorly & inferior movement of lateral border angle moving anterosuperiorly © McGraw-Hill Higher Education. All rights reserved. 4-15 © McGraw-Hill Higher Education. All rights reserved. 4-16 Movements Movements • Synergy with muscles of glenohumeral joint • Synergy with muscles of glenohumeral joint – As shoulder joint goes through more extreme – This works through the appropriate muscles of ranges of motion, scapular muscles contract to both joints working in synergy to accomplish the move shoulder girdle so that its glenoid fossa will desired action of the entire upper extremity be in a more appropriate position from which the – Ex. to raise our hand out to the side laterally as humerus can move high as possible, the serratus anterior & trapezius (middle & lower fibers) muscles upwardly rotate – Without the accompanying scapula movement scapula as supraspinatus & deltoid initiate humerus can only be raised into approximately 90 glenohumeral abduction degrees of total shoulder abduction & flexion – This synergy between scapula & shoulder joint muscles enhances movement of entire upper extremity © McGraw-Hill Higher Education. All rights reserved. 4-17 © McGraw-Hill Higher Education. All rights reserved. 4-18 3 Elevation Shoulder Muscles Girdle • 5 muscles primarily involved in shoulder Movements girdle movements – All originate on axial skeleton & insert on scapula and/or clavicle Abduction Adduction – Do not attach to humerus & do not cause shoulder joint actions D ard – Essential in providing dynamic stability of ow pw n the scapula so it can serve as a relative R n U tio o w ota base of support for shoulder joint activities ta a R ti rd such as throwing, batting, & blocking on Depression © McGraw-Hill Higher Education. All rights reserved. 4-19 © McGraw-Hill Higher Education. All rights reserved. 4-20 Shoulder Girdle Muscles Shoulder Girdle Muscles • 5 muscles primarily • Location & action involved in shoulder – Anterior girdle movements • Pectoralis minor – abduction, downward rotation, & – Trapezius - upper, depression middle, lower • Subclavius – depression – Rhomboid - deep – Posterior & laterally – Levator scapula • Serratus anterior – abduction & upward rotation – Serratus anterior – Pectoralis minor - deep © McGraw-Hill Higher Education. All rights reserved. 4-21 © McGraw-Hill Higher Education. All rights reserved. 4-22 Shoulder Girdle Muscles Trapezius muscle Upper fibers: elevation • Location & action of scapula, extension – Posterior & rotation of head • Trapezius • Upper fibers – elevation & extension of the head Middle fibers: elevation, • Middle fibers – elevation, adduction, & upper upward rotation, & rotation adduction • Lower fibers – adduction, depression, & upper rotation Lower fibers: • Rhomboid – adduction, downward rotation, & depression, elevation adduction, & • Levator scapulae – elevation upward rotation © McGraw-Hill Higher Education. All rights reserved. 4-23 © McGraw-Hill Higher Education. All rights reserved. 4-24 4 Levator scapulae muscle Rhomboid muscles - major & minor Elevates the medial Rhomboid major & minor muscles margin of the work together scapula Adduction (retraction): draw scapula toward spinal column Downward rotation: from upward rotated position they draw scapula in downward rotation Elevation: slight upward movement accompanying adduction © McGraw-Hill Higher Education. All rights reserved. 4-25 © McGraw-Hill Higher Education. All rights reserved. 4-26 Serratus anterior muscle Pectoralis minor muscle Abduction (protraction): draws medial Abduction (protraction): draws border of scapula away from vertebrae scapula forward & tends to tilt Upward rotation: lower border away from ribs longer, lower Downward rotation: as it fibers tend to abducts, it draws draw inferior scapula downward angle of scapula farther Depression: when away from scapula is rotated vertebrae, thus upward, it assists rotating in depression scapula upward slightly © McGraw-Hill Higher Education. All rights reserved. 4-27 © McGraw-Hill Higher Education. All rights reserved. 4-28 Subclavius muscle Scapula Abduction Stabilization & protection of • Scapula move laterally away from sternoclavicular joint spinous processes without rotation Depression • EX. Push-up & bench press Abduction • Agonists – Pectoralis minor – Serratus anterior © McGraw-Hill Higher Education. All rights reserved. 4-29 © McGraw-Hill Higher Education. All rights reserved. 4-30 5 Scapula Adduction Scapula Upward Rotation • Return from • Lateral & abduction upward • Occurs with movement retractions • Agonists • Agonists – Middle Trapezius – Middle Trapezius – Lower – Rhomboids Trapezius – Serratus anterior © McGraw-Hill Higher Education. All rights reserved. 4-31 © McGraw-Hill Higher Education. All rights reserved. 4-32 Scapula Downward Rotation Scapula Elevation • Downward & Medial Movement • Lifting scapula without rotation in anatomic position • Glenoid Fossa is rotated downward when downward • Shoulder Shrug movement of shoulder joint occurs • Agonists • EX. Lat Pulls - – Levator pulling wt. down Scapula • Agonists – Upper – Pectoralis Minor Trapezius – Rhomboid – Rhomboid © McGraw-Hill Higher Education. All rights reserved. 4-33 © McGraw-Hill Higher Education. All rights reserved. 4-34 Scapula Depression • EX. Dip • Agonists – Lower Trapezius – Pectoralis Minor © McGraw-Hill Higher Education. All rights reserved. 4-35 6.
Recommended publications
  • Considered a Bone of Both Shoulder Girdle and Shoulder Joint. the Shoulder Girdle Is Comprised of the Clavicle and the Scapula
    Considered a bone of both shoulder girdle and shoulder joint. The shoulder girdle is comprised of the clavicle and the scapula. The shoulder joint consists of the scapula and the humerus. The primary function of the shoulder girdle is to position itself to accommodate movements of the shoulder joint. 1 Superior angle—top point Inferior angle—bottom point Vertebral border—side closest to vertebral column Axillary border—side closest to arm Subscapular fossa—anterior fossa Glenoid fossa, glenoid labrum, glenoid cavity --The glenoid fossa is the shallow cavity where the humeral head goes. The glenoid labrum is the cartilage that goes around the glenoid fossa. So the glenoid fossa and glenoid labrum together comprise the glenoid cavity. Supraspinous fossa—posterior, fossa above the spine Spine of the scapula—the back projection Infraspinous fossa—posterior depression/fossa below spine Coracoid process—anterior projection head Acromion process—posterior projection head above spine 2 Scapulothoracic “joint” = NOT a true joint; there are no ligaments or articular capsule. The scapula just rests on the muscle over top the rib cage, which allows for passive movements. Sternoclavicular joint=where the clavicle (collarbone) and the sternum (breastbone) articulate; movement is slight in all directions and of a gliding, rotational type Acromioclavicular joint = where the clavicle and scapula (acromion process) articulate; AKA: AC Joint; movement is a slight gliding when elevation and depression take place. Glenohumeral joint = the shoulder joint 3 4 All 3 true joints: Sternoclavicular, AC and glenohumeral (GH) all work together to move arm in all directions. The GH allows the arm to go out to the side and be abducted, then the AC and Sternoclavicular joints kick in to allow the arm to go above shoulder level by allowing the shoulderblade to move up to increase the range of motion (ROM).
    [Show full text]
  • Body Mechanics As the Rotator Cuff Gether in a Cuff-Shape Across the Greater and Lesser Tubercles the on Head of the Humerus
    EXPerT CONTENT Body Mechanics by Joseph E. Muscolino | Artwork Giovanni Rimasti | Photography Yanik Chauvin Rotator Cuff Injury www.amtamassage.org/mtj WORKING WITH CLieNTS AFFecTED BY THIS COmmON CONDITION ROTATOR CUFF GROUP as the rotator cuff group because their distal tendons blend and attach to- The four rotator cuff muscles are gether in a cuff-shape across the greater and lesser tubercles on the head of the supraspinatus, infraspinatus, the humerus. Although all four rotator cuff muscles have specific concen- teres minor, and subscapularis (Fig- tric mover actions at the glenohumeral (GH) joint, their primary functional ure 1). These muscles are described importance is to contract isometrically for GH joint stabilization. Because 17 Before practicing any new modality or technique, check with your state’s or province’s massage therapy regulatory authority to ensure that it is within the defined scope of practice for massage therapy. the rotator cuff group has both mover and stabilization roles, it is extremely functionally active and therefore often physically stressed and injured. In fact, after neck and low back conditions, the shoulder is the most com- Supraspinatus monly injured joint of the human body. ROTATOR CUFF PATHOLOGY The three most common types of rotator cuff pathology are tendinitis, tendinosus, and tearing. Excessive physi- cal stress placed on the rotator cuff tendon can cause ir- ritation and inflammation of the tendon, in other words, tendinitis. If the physical stress is chronic, the inflam- matory process often subsides and degeneration of the fascial tendinous tissue occurs; this is referred to as tendinosus. The degeneration of tendinosus results in weakness of the tendon’s structure, and with continued Teres minor physical stress, whether it is overuse microtrauma or a macrotrauma, a rotator cuff tendon tear might occur.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Scapular Winging Is a Rare Disorder Often Caused by Neuromuscular Imbalance in the Scapulothoracic Stabilizer Muscles
    SCAPULAR WINGING Scapular winging is a rare disorder often caused by neuromuscular imbalance in the scapulothoracic stabilizer muscles. Lesions of the long thoracic nerve and spinal accessory nerves are the most common cause. Patients report diffuse neck, shoulder girdle, and upper back pain, which may be debilitating, associated with abduction and overhead activities. Accurate diagnosis and detection depend on appreciation on comprehensive physical examination. Although most cases resolve nonsurgically, surgical treatment of scapular winging has been met with success. True incidence is largely unknown because of under diagnosis. Most commonly it is categorized anatomically as medial or lateral shift of the inferior angle of the scapula. Primary winging occurs when muscular weakness disrupts the normal balance of the scapulothoracic complex. Secondary winging occurs when pathology of the shoulder joint pathology. Delay in diagnosis may lead to traction brachial plexopathy, periscapular muscle spasm, frozen shoulder, subacromial impingement, and thoracic outlet syndrome. Anatomy and Biomechanics Scapula is rotated 30° anterior on the chest wall; 20° forward in the sagittal plane; the inferior angle is tilted 3° upward. It serves as the attachment site for 17 muscles. The trapezius muscle accomplishes elevation of the scapula in the cranio-caudal axis and upward rotation. The serratus anterior and pectoralis major and minor muscles produce anterior and lateral motion, described as scapular protraction. Normal Scapulothoracic abduction: As the limb is elevated, the effect is an upward and lateral rotation of the inferior pole of scapula. Periscapular weakness resulting from overuse may manifest as scapular dysfunction (ie, winging). Serratus Anterior Muscle Origin From the first 9 ribs Insert The medial border of the scapula.
    [Show full text]
  • Thoracic Outlet and Pectoralis Minor Syndromes
    S EMINARS IN V ASCULAR S URGERY 27 (2014) 86– 117 Available online at www.sciencedirect.com www.elsevier.com/locate/semvascsurg Thoracic outlet and pectoralis minor syndromes n Richard J. Sanders, MD , and Stephen J. Annest, MD Presbyterian/St. Luke's Medical Center, 1719 Gilpin, Denver, CO 80218 article info abstract Compression of the neurovascular bundle to the upper extremity can occur above or below the clavicle; thoracic outlet syndrome (TOS) is above the clavicle and pectoralis minor syndrome is below. More than 90% of cases involve the brachial plexus, 5% involve venous obstruction, and 1% are associate with arterial obstruction. The clinical presentation, including symptoms, physical examination, pathology, etiology, and treatment differences among neurogenic, venous, and arterial TOS syndromes. This review details the diagnostic testing required to differentiate among the associated conditions and recommends appropriate medical or surgical treatment for each compression syndrome. The long- term outcomes of patients with TOS and pectoralis minor syndrome also vary and depend on duration of symptoms before initiation of physical therapy and surgical intervention. Overall, it can be expected that 480% of patients with these compression syndromes can experience functional improvement of their upper extremity; higher for arterial and venous TOS than for neurogenic compression. & 2015 Published by Elsevier Inc. 1. Introduction compression giving rise to neurogenic TOS (NTOS) and/or neurogenic PMS (NPMS). Much less common is subclavian Compression of the neurovascular bundle of the upper and axillary vein obstruction giving rise to venous TOS (VTOS) extremity can occur above or below the clavicle. Above the or venous PMS (VPMS).
    [Show full text]
  • The Erector Spinae Plane Block a Novel Analgesic Technique in Thoracic Neuropathic Pain
    CHRONIC AND INTERVENTIONAL PAIN BRIEF TECHNICAL REPORT The Erector Spinae Plane Block A Novel Analgesic Technique in Thoracic Neuropathic Pain Mauricio Forero, MD, FIPP,*Sanjib D. Adhikary, MD,† Hector Lopez, MD,‡ Calvin Tsui, BMSc,§ and Ki Jinn Chin, MBBS (Hons), MMed, FRCPC|| Case 1 Abstract: Thoracic neuropathic pain is a debilitating condition that is often poorly responsive to oral and topical pharmacotherapy. The benefit A 67-year-old man, weight 116 kg and height 188 cm [body of interventional nerve block procedures is unclear due to a paucity of ev- mass index (BMI), 32.8 kg/m2] with a history of heavy smoking idence and the invasiveness of the described techniques. In this report, we and paroxysmal supraventricular tachycardia controlled on ateno- describe a novel interfascial plane block, the erector spinae plane (ESP) lol, was referred to the chronic pain clinic with a 4-month history block, and its successful application in 2 cases of severe neuropathic pain of severe left-sided chest pain. A magnetic resonance imaging (the first resulting from metastatic disease of the ribs, and the second from scan of his thorax at initial presentation had been reported as nor- malunion of multiple rib fractures). In both cases, the ESP block also pro- mal, and the working diagnosis at the time of referral was post- duced an extensive multidermatomal sensory block. Anatomical and radio- herpetic neuralgia. He reported constant burning and stabbing logical investigation in fresh cadavers indicates that its likely site of action neuropathic pain of 10/10 severity on the numerical rating score is at the dorsal and ventral rami of the thoracic spinal nerves.
    [Show full text]
  • Scapular Motion Tracking Using Acromion Skin Marker Cluster: in Vitro Accuracy Assessment
    Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment Andrea Cereatti, Claudio Rosso, Ara Nazarian, Joseph P. DeAngelis, Arun J. Ramappa & Ugo Della Croce Journal of Medical and Biological Engineering ISSN 1609-0985 J. Med. Biol. Eng. DOI 10.1007/s40846-015-0010-2 1 23 Your article is protected by copyright and all rights are held exclusively by Taiwanese Society of Biomedical Engineering. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J. Med. Biol. Eng. DOI 10.1007/s40846-015-0010-2 ORIGINAL ARTICLE Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment Andrea Cereatti • Claudio Rosso • Ara Nazarian • Joseph P. DeAngelis • Arun J. Ramappa • Ugo Della Croce Received: 11 October 2013 / Accepted: 20 March 2014 Ó Taiwanese Society of Biomedical Engineering 2015 Abstract Several studies have recently investigated how estimated using an AMC combined with a single anatom- the implementations of acromion marker clusters (AMCs) ical calibration, the accuracy was highly dependent on the method and stereo-photogrammetry affect the estimates of specimen and the type of motion (maximum errors between scapula kinematics.
    [Show full text]
  • Spontaneous Fracture of the Scapula Spines in Association with Severe Rotator Cuff Disease and Osteoporosis
    Central Annals of Musculoskeletal Disorders Case Report *Corresponding author Hans Van der Wall, CNI Molecular Imaging & University of Notre Dame, Sydney, Australia, Tel: +61 2 9736 1040; Spontaneous Fracture of the FAX: +61 2 9736 2095; Email: [email protected] Submitted: 25 March 2020 Scapula Spines in Association Accepted: 07 April 2020 Published: 10 April 2020 ISSN: 2578-3599 with Severe Rotator Cuff Copyright © 2020 Robert B, et al. Disease and Osteoporosis OPEN ACCESS 1 2 3 Breit Robert , Strokon Andrew , Burton Leticia , Van der Wall Keywords H3* and Bruce Warwick3 • Scapular fracture • Rotator cuff arthropathy 1CNI Molecular Imaging, Australia • Osteoporosis 2Sydney Private Hospital, Australia • Scintigraphy 3CNI Molecular Imaging & University of Notre Dame, Sydney, Australia • SPECT/ CT 4Concord Hospital, Australia Abstract We present the case of a 74 year-old woman with diabetes mellitus and established osteoporosis who initially presented with increasing pain and disability of the shoulders. Investigations showed severe rotator cuff disease. This was treated conservatively with physiotherapy and corticosteroid injection into both joints with good pain relief but no improvement in function. She subsequently presented with increasing posterior thoracic pain with plain films reporting no evidence of rib fracture. Bone scintigraphy showed severe rotator cuff disease and degenerative joint disease at multiple sites. The single photon emission computed tomography (SPECT)/ x-ray Computed Tomography (CT) showed bilateral scapula spine fractures of long standing with a probable non-union on the left side. These fractures are rare and difficult to treat when associated with rotator cuff disease. INTRODUCTION Fractures of the scapula spine are rare, with a reported level of dysfunction remained significant with marked restriction frequency of less than twenty cases in the literature [1-8].
    [Show full text]
  • Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients with Insidious Onset Neck Pain and Whiplash- Associated Disorder
    Journal of Applied Biomechanics, 2011, 27, 181-191 © 2011 Human Kinetics, Inc. Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients With Insidious Onset Neck Pain and Whiplash- Associated Disorder Harpa Helgadottir, Eythor Kristjansson, Sarah Mottram, Andrew Karduna, and Halldor Jonsson, Jr. Clinical theory suggests that altered alignment of the shoulder girdle has the potential to create or sustain symptomatic mechanical dysfunction in the cervical and thoracic spine. The alignment of the shoulder girdle is described by two clavicle rotations, i.e, elevation and retraction, and by three scapular rotations, i.e., upward rotation, internal rotation, and anterior tilt. Elevation and retraction have until now been assessed only in patients with neck pain. The aim of the study was to determine whether there is a pattern of altered alignment of the shoulder girdle and the cervical and thoracic spine in patients with neck pain. A three-dimensional device measured clavicle and scapular orientation, and cervical and thoracic alignment in patients with insidious onset neck pain (IONP) and whiplash-associated disorder (WAD). An asymptomatic control group was selected for baseline measurements. The symptomatic groups revealed a significantly reduced clavicle retraction and scapular upward rotation as well as decreased cranial angle. A difference was found between the symptomatic groups on the left side, whereas the WAD group revealed an increased scapular anterior tilt and the IONP group a decreased clavicle elevation. These changes may be an important mechanism for maintenance and recurrence or exacerbation of symptoms in patients with neck pain. Keywords: neck pain, whiplash, scapula, posture Clinical theory suggests that altered alignment of of Biomechanics.
    [Show full text]
  • Relationship Between Shoulder Muscle Strength and Functional Independence Measure (FIM) Score Among C6 Tetraplegics
    Spinal Cord (1999) 37, 58 ± 61 ã 1999 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/99 $12.00 http://www.stockton-press.co.uk/sc Relationship between shoulder muscle strength and functional independence measure (FIM) score among C6 tetraplegics Toshiyuki Fujiwara1, Yukihiro Hara2, Kazuto Akaboshi2 and Naoichi Chino2 1Keio University Tsukigase Rehabilitation Center, 380-2 Tsukigase, Amagiyugashima, Tagata, Shizuoka, 410-3215; 2Department of Rehablitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-0016, Japan The degree of disability varies widely among C6 tetraplegic patients in comparison with that at other neurological levels. Shoulder muscle strength is thought to be one factor that aects functional outcome. The aim of this study was to examine the relationship between shoulder muscle strength and the Functional Independence Measure (FIM) motor score among 14 complete C6 tetraplegic patients. The FIM motor score and American Spinal Injury Association (ASIA) motor score of these patients were assessed upon discharge. We evaluated muscle strength of bilateral scapular abduction and upward rotation, shoulder vertical adduction and shoulder extension by manual muscle testing (MMT). The total shoulder strength score was calculated from the summation of those six MMT scores. The relationships among ASIA motor score, total shoulder strength score and FIM motor score were analyzed. The total shoulder strength score was signi®cantly correlated with the FIM motor score and the score of the transfer item in the FIM. In the transfer item of the FIM, the total shoulder strength score showed a statistically signi®cant dierence between the Independent and Dependent Group.
    [Show full text]
  • Phty 101 – Week 1
    PHTY 101 – WEEK 1 1.7 Classify the shoulder (glenohumeral) joint and identify and/or describe its: • The glenohumeral joint is a multiaxial, synovial, ball and socket joint • Movements: o Flexion and extension- transverse axis o Abduction and adduction- anteroposterior axis o Internal and external rotation- longitudinal axis • Greatest amount of motion and most unstable joint in body • Function: positions and directs humerus, elbow and hand in relation to trunk (radioulnar joint deal with palm and fingers) • Combines with scapulothoracic, acromioclavicular and sternoclavicular joints • Articular surfaces: o Humeral head- ½ sphere, faces medially o Glenoid fossa- very shallow, faces laterally o Only 25-30% contact between articular surfaces o Shallower and smaller surface compared to hip • Glenoid labrum o Glenoid labrum- fibrous structure around glenoid fossa (adheres to edges), central part avascular and edges not greatly vascularised à doesn’t heal well, labrum functions to; - Facilitate mobility - Increase glenoid concavity- increasing mobility - Provide attachment for joint capsule, ligaments and muscles • Joint capsule o Very thin and lax- doesn’t compromise ROM o Attaches to glenoid labrum o Reflected (folded) inferiorly onto medial shaft of humerus o Reinforced by; - Rotator cuff tendons- supraspinatus, infraspinatus, teres minor, subscapularis - Rotator cuff tendons- action: internal or external rotation, function: pull humerus head in against fossa - Glenohumeral and coracohumeral ligaments (capsular) • Synovial membrane o Lines
    [Show full text]
  • Thoracic Outlet Syndrome of Pectoralis Minor Etiology Mimicking Cardiac
    0008-3194/2012/311–315/$2.00/©JCCA 2012 Thoracic outlet syndrome of pectoralis minor etiology mimicking cardiac symptoms on activity: a case report Gary Fitzgerald BSc(NUI), BSc(Hons)(Chiro), MSc(Chiro), ICSSD* Thoracic outlet syndrome is the result of compression Le syndrome de la traversée thoracobrachial est le or irritation of neurovascular bundles as they pass résultat de la compression ou de l’irritation d’un from the lower cervical spine into the arm, via the paquet vasculonerveux au cours de son trajet entre axilla. If the pectoralis minor muscle is involved the la colonne cervicale inférieure et le bras, en passant patient may present with chest pain, along with pain par l’aisselle. Si le muscle petit pectoral est sollicité, and paraesthesia into the arm. These symptoms are also le patient peut subir de la douleur à la poitrine ainsi commonly seen in patients with chest pain of a cardiac que de la douleur et de la paresthésie dans le bras. origin. In this case, a patient presents with a history of On voit souvent ces symptômes aussi chez des patients left sided chest pain with pain and paraesthesia into the souffrant de douleurs thoraciques d’origine cardiaque. left upper limb, which only occurs whilst running. The Dans de tels cas, le patient présente des antécédents de symptoms were reproduced on both digital pressure over douleurs thoraciques du côté gauche, accompagnées the pectoralis minor muscle and on provocative testing de douleur et de paresthésie dans le membre supérieur for thoracic outlet syndrome. The patient’s treatment gauche, qui survient uniquement pendant que le patient therefore focused on the pectoralis minor muscle, with court.
    [Show full text]