Spisula Solidissima) Populations

Total Page:16

File Type:pdf, Size:1020Kb

Spisula Solidissima) Populations FISHERIES OCEANOGRAPHY Fish. Oceanogr. 22:3, 220–233, 2013 Underestimation of primary productivity on continental shelves: evidence from maximum size of extant surfclam (Spisula solidissima) populations D.M. MUNROE,1,* E.N. POWELL,1 R. MANN,2 change on benthic secondary production and fishery J.M. KLINCK3 AND E.E. HOFMANN3 yield on the continental shelf. 1 Haskin Shellfish Research Laboratory, Rutgers University, 6959 Key words: benthic production, chlorophyll, clam Miller Ave, Port Norris, NJ, 08349, U.S.A feeding, filter feeder, individual-based model, spisula 2Virginia Institute of Marine Sciences, The College of William and Mary, Rt. 1208 Greate Road, Gloucester Point, VA, 23062-1346, U.S.A 3Department of Ocean, Earth and Atmospheric Sciences, Center INTRODUCTION for Coastal Physical Oceanography, Old Dominion University, 4111 Monarch Way, 3rd Floor, Norfolk, VA, 23529, U.S.A Atlantic surfclams (Spisula solidissima) are among the largest extant non-symbiotic clam species in the world and the largest mactrid bivalves living on continental ABSTRACT shelves. They are long-lived (maximum age >30 yr) and form dense aggregations along the extensive con- Atlantic surfclams (Spisula solidissima), among the larg- tinental shelf in the northwestern Atlantic Ocean in est extant non-symbiotic clam species in the world, sandy bottoms from southern Virginia to Georges live in dense aggregations along the Middle Atlantic Bank (Jacobson and Weinberg, 2006; NEFSC North- Bight (MAB) continental shelf. The food resources east Fisheries Science Center, 2010). With a biomass that support these populations are poorly understood. in this region greater than 850 9 103 metric tons, this An individual-based model that simulates the growth species is the basis of a major commercial fishery in the of post-settlement surfclams was used to investigate western North Atlantic Ocean (NEFSC Northeast the quantity of food needed to maintain existing surf- Fisheries Science Center, 2010). Maintenance of bio- clam populations along the MAB continental shelf. mass on this scale requires substantial food resources. Food inputs to the model were based on measured Distinct and rapid changes in climate are leading to near-bottom water-column chlorophyll concentra- shifts in primary production that have community- tions. Simulations showed that these water-column level effects (Keller et al., 2001; Prasad et al., 2010), food sources supported only 65% of the observed body making an understanding of food resources on the con- mass of a standard large surfclam (160-mm shell tinental shelf critical to management of fishery length). Additional simulations using benthic food resources and stability of large-scale ecosystems. sources to supplement water-column food sources by Since 1997, populations from southern inshore 20% generated surfclams that grew to observed size regions of the surfclam range have experienced signifi- and biomass and exhibited spawn timing consistent cant mortality events coincident with warm bottom with the known surfclam spawning season. The simu- water temperatures, reaching 21–24°C in September lation results suggest that measured water-column (Kim and Powell, 2004; Weinberg, 2005). Hence, surf- chlorophyll concentrations may underestimate the clams are potentially indicative of the influence of glo- food available to the continental shelf benthos. Large bal warming on secondary production and benthic continental shelf bivalves are an essential resource for community dynamics in this region. The resulting con- fisheries and higher trophic level consumers. Under- traction in population distribution has major implica- standing available and utilized food resources is impor- tions for the clam fishery. An effort is currently tant for predicting long-term impacts of climate underway that uses biological models in a cohesive framework with oceanographic and socio-economic *Correspondence. e-mail: [email protected] models to understand causes of declines in surfclam Received 2 March 2012 populations over the southern part of their range and Revised version accepted 14 November 2012 to make predictive management decisions regarding 220 doi:10.1111/fog.12016 © 2013 Blackwell Publishing Ltd. Gaps in understanding food resources of surfclams 221 biological and sociological goals of the fishery as both Figure 1. Individual surfclam model schematic. Schematic the clam and the fishery respond to climate change of processes included in the individual surfclam model, (McCay et al., 2011). A critical component to manag- adapted from Hofmann et al. (2006). Net production ing these biological responses is understanding food depends on temperature, clam weight and clam condition. resources and growth of individual clams in this region. Positive net production produces reproductive and somatic tissue, whereas negative net production causes resorption of A mathematical model is a useful tool for investi- reproductive tissue. gating the quantity of food needed to maintain existing surfclam populations along the Mid-Atlantic Bight (MAB) continental shelf. In this study, an individual-based model that simulates the growth of post-settlement surfclams was used to perform a series of simulations to compare growth of clams under vari- ous filtration, assimilation, and respiration rates, using three probable food sources. These simulations demon- strate that either the clam biological and energetic relationships used in the model are misunderstood, or the species is sustained by more abundant food than is documented by measurements of water-column plank- tonic food resources. Supplementation of pelagic food with benthic sources has been documented previously for many shallow water and intertidal filter-feeding macrobenthic bivalves (Coe, 1948; Sasaki, 1989; Emerson, 1990; De Jonge and Van Beuselom, 1992; Kamermans, 1994; Page and Lastra, 2003 Kang et al., oceanographic model, the Regional Ocean Modeling 2006; Yokoyama et al., 2009) and epibenthic bivalves System (ROMS; Shchepetkin and McWilliams, 2005; (Rhoads, 1973; Kiørboe et al., 1981; Winter, 1978; Haidvogel et al., 2008). Direct measurements of respi- Pernet et al., 2012). Fewer studies have shown evi- ration and filtration rates are not available for surfcl- dence for the inclusion of benthic food sources in diets ams. Consequently, we used a range of general of suspension-feeding benthos from deeper continental relationships covering the physiological capabilities of shelf habitats (Fry, 1988; Hobson et al., 1995). In the most bivalves: 10°C and 20°C respiration curves of following, we describe the simulation results and Powell and Stanton (1985) with a Q10 temperature discuss food sources that could potentially sustain response of 2 (Rueda and Smaal, 2004), and the high-gear surfclams, a high-biomass suspension-feeder, on the and low-gear filtration rate curves (we use high-gear scale of biomass that is currently observed on the and low-gear in reference to the pace of functioning of continental shelf of the Mid-Atlantic Bight. the two filtration rate curves described by Powell et al, 1992; the high-gear curve predicts filtration rates approximately three times that of the low-gear curve METHODS for a given shell length), with a modal temperature A series of simulations was performed using an individ- relationship well described for bivalves (Hofmann ual-based model, adapted from the model for hard et al., 2006; Flye-Sainte-Marie et al., 2007; Fulford clams, Mercenaria mercenaria, described by Hofmann et al., 2010) that has a temperature optimum at 18°C et al. (2006) to simulate growth of a surfclam (Spisula and cessation near 0°C and 24°C, consistent with solidissima). A schematic of the processes included in observed physiological responses (Marzec et al., 2010). the model is provided in Figure 1, the equations used Biological processes such as reproduction, growth rate are provided in Table 1, and a summary of simulation and maximum size integrate all physiological functions inputs is listed in Table 2. Simulations used a maximal specified in the model. Thus, in the absence of direct bivalve assimilation efficiency of 0.77 (Møhlenberg measurements for respiration and filtration, simulated and Kiørboe, 1981; Laing et al., 1987; Powell and Stan- reproductive behaviour, growth rates, and maximum ton, 1985; Reid et al., 2010; Ren et al., 2006) and an shell lengths, when verified against field-based observa- annual time series of bottom water temperatures from tions, offer strong support that the process rates, weight an area supporting growth of large (>160 mm) surfcl- dependencies, and temperature dependencies are ams (20–40 m depth off New Jersey in 2007). The tem- properly parameterized. In our study, spawning and perature time series was provided by a physical reproduction were verified against Ropes (1968) and © 2013 Blackwell Publishing Ltd., Fish. Oceanogr., 22:3, 220–233. 222 Table 1. Summary of governing equations for calculation of changes in weight, condition and length and parameterizations used to represent the physiological processes determining growth and reproduction used in the individual model. Equation Name Equation Definitions Reference D.M. Munroe dW ¼ ðÞÀ ð ; Þ = = Weight dt A R W T WWweight (mg dry wt.) A Assimilation Hofmann et al. (2006) R(W,T) = Respiration À ðÞ Condition CLðÞ¼; W WðÞt W0 L C(L,W) = condition index Hofmann et al. (2006) WmðÞÀL W0ðÞL index W(t) = current weight defined by weight et al. equation W0(L) = standard weight at length L Wm(L) = maximum weight at length L b Standard W0ðÞ¼L
Recommended publications
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Spisula Subtruncata (Da Costa, 1778)
    Spisula subtruncata (da Costa, 1778) AphiaID: 140302 AMEIJOA Animalia (Reino) > Mollusca (Filo) > Bivalvia (Classe) > Autobranchia (Subclasse) > Heteroconchia (Infraclasse) > Imparidentia (Superordem) > Venerida (Ordem) > Mactroidea (Superfamilia) > Mactridae (Familia) Rainer Borcherding - Schutzstation Wattenmeer, via beachexplorer.org Kirsten Thiemann, via beachexplorer.org Principais ameaças Sinónimos Mactra deltoides Lamarck, 1818 Mactra euxinica Krynicki, 1837 Mactra lactea Poli, 1791 Mactra striata T. Brown, 1827 Mactra subtruncata (da Costa, 1778) 1 Mactra subtruncata var. conemenosi Bucquoy, Dautzenberg & Dollfus, 1896 Mactra subtruncata var. inaequalis Jeffreys, 1864 Mactra subtruncata var. tenuis Jeffreys, 1864 Mactra subtruncata var. transversa Pallary, 1902 Mactra triangula Brocchi, 1814 Spisula triangula (Brocchi, 1814) Trigonella subtruncata da Costa, 1778 Referências additional source Howson, C. M.; Picton, B. E. (1997). The species directory of the marine fauna and flora of the British Isles and surrounding seas. Ulster Museum Publication, 276. The Ulster Museum: Belfast, UK. ISBN 0-948150-06-8. vi, 508 (+ cd-rom) pp. [details] basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] additional source Huber, M. (2010). Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A status on Bivalvia after 250 years of research. Hackenheim: ConchBooks. 901 pp., 1 CD-ROM. [details] context source (Schelde) Maris, T.; Beauchard, O.; Van Damme, S.; Van den Bergh, E.; Wijnhoven, S.; Meire, P. (2013). Referentiematrices en Ecotoopoppervlaktes Annex bij de Evaluatiemethodiek Schelde-estuarium Studie naar “Ecotoopoppervlaktes en intactness index”.
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Zhang Et Al., 2015
    Estuarine, Coastal and Shelf Science 153 (2015) 38e53 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity * Xinzhong Zhang a, , Dale Haidvogel a, Daphne Munroe b, Eric N. Powell c, John Klinck d, Roger Mann e, Frederic S. Castruccio a, 1 a Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA b Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349, USA c Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564, USA d Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA e Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062, USA article info abstract Article history: To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic Received 19 February 2014 surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Accepted 30 November 2014 Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based Available online 10 December 2014 surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and Keywords: recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The surfclam (Spisula solidissima) model results show a typical along-shore connectivity pattern from the northeast to the southwest individual-based model larval transport among the surfclam populations distributed from Georges Bank west and south along the MAB shelf.
    [Show full text]
  • Venerupis Philippinarum)
    INVESTIGATING THE COLLECTIVE EFFECT OF TWO OCEAN ACIDIFICATION ADAPTATION STRATEGIES ON JUVENILE CLAMS (VENERUPIS PHILIPPINARUM) Courtney M. Greiner A Swinomish Indian Tribal Community Contribution SWIN-CR-2017-01 September 2017 La Conner, WA 98257 Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Marine Affairs University of Washington 2017 Committee: Terrie Klinger Jennifer Ruesink Program Authorized to Offer Degree: School of Marine and Environmental Affairs ©Copyright 2017 Courtney M. Greiner University of Washington Abstract Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner Chair of Supervisory Committee: Dr. Terrie Klinger School of Marine and Environmental Affairs Anthropogenic CO2 emissions have altered Earth’s climate system at an unprecedented rate, causing global climate change and ocean acidification. Surface ocean pH has increased by 26% since the industrial era and is predicted to increase another 100% by 2100. Additional stress from abrupt changes in carbonate chemistry in conjunction with other natural and anthropogenic impacts may push populations over critical thresholds. Bivalves are particularly vulnerable to the impacts of acidification during early life-history stages. Two substrate additives, shell hash and macrophytes, have been proposed as potential ocean acidification adaptation strategies for bivalves but there is limited research into their effectiveness. This study uses a split plot design to examine four different combinations of the two substratum treatments on juvenile Venerupis philippinarum settlement, survival, and growth and on local water chemistry at Fidalgo Bay and Skokomish Delta, Washington.
    [Show full text]
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Sclerochronological Records of Arctica Islandica from the Inner German Bight Vale´Rie M
    The Holocene 16,5 (2006) pp. 763Á 769 Sclerochronological records of Arctica islandica from the inner German Bight Vale´rie M. Epple´,1* Thomas Brey,2 Rob Witbaard,3 Henning Kuhnert4 and Ju¨rgen Pa¨tzold1,4 (1Research Center for Ocean Margins (RCOM), P.O. Box 330440, 28334 Bremen, Germany; 2Alfred Wegener Institute for Polar- and Marine Research, Bremerhaven, Germany; 3Netherlands Institute for Sea Research, Texel, The Netherlands; 4Department of Geosciences, University of Bremen, Bremen, Germany) Received 12 July 2004; revised manuscript accepted 16 December 2005 Abstract: Sclerochronological records of interannual shell growth variability were established for eight modern shells (26 to 163 years of age) of the bivalve Arctica islandica, which were sampled at one site in the inner German Bight. The records indicate generally low synchrony between individuals. Spectral analysis of the whole 163-yr masterchronology indicated a cyclic pattern with a period of 5 and 7 years. The masterchronology correlated poorly to time series of environmental parameters over the last 90 years. High environmental variability in time and space of the dynamic and complex German Bight hydrographic system results in an extraordinarily high ‘noise’ level in the shell growth pattern of Arctica islandica. Key words: Arctica islandica, German Bight, sclerochronology, time series, environmental variability, spectral analysis, masterchronology. Introduction (Jones, 1983; Weidmann et al., 1994; Marchitto et al., 2000) and later in the Baltic (Brey et al., 1990; Zettler et al., 2001) Holocene palaeoclimatic reconstructions for the North Atlan- and North Sea (Witbaard et al., 1996; Scho¨ne et al., 2003). In tic have been predominantly carried out using annually banded the North Atlantic, as well as in the North Sea Arctica deposits terrestrial proxies, such as tree-rings or ice-cores (Cook and annual growth bands (Jones, 1983), which show similar growth Kariukstis, 1990; Luterbacher et al., 2002; Davies and Tipping, patterns within a population (Witbaard and Duineveld, 1990; 2004).
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Spatial Variability in Recruitment of an Infaunal Bivalve
    Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F.
    [Show full text]
  • Spisula Solidissima) Using a Spatially Northeastern Continental Shelf of the United States
    300 Abstract—The commercially valu- able Atlantic surfclam (Spisula so- Management strategy evaluation for the Atlantic lidissima) is harvested along the surfclam (Spisula solidissima) using a spatially northeastern continental shelf of the United States. Its range has con- explicit, vessel-based fisheries model tracted and shifted north, driven by warmer bottom water temperatures. 1 Declining landings per unit of effort Kelsey M. Kuykendall (contact author) (LPUE) in the Mid-Atlantic Bight Eric N. Powell1 (MAB) is one result. Declining stock John M. Klinck2 abundance and LPUE suggest that 1 overfishing may be occurring off Paula T. Moreno New Jersey. A management strategy Robert T. Leaf1 evaluation (MSE) for the Atlantic surfclam is implemented to evalu- Email address for contact author: [email protected] ate rotating closures to enhance At- lantic surfclam productivity and in- 1 Gulf Coast Research Laboratory crease fishery viability in the MAB. The University of Southern Mississippi Active agents of the MSE model 703 East Beach Drive are individual fishing vessels with Ocean Springs, Mississippi 39564 performance and quota constraints 2 Center for Coastal Physical Oceanography influenced by captains’ behavior Department of Ocean, Earth, and Atmospheric Sciences over a spatially varying population. 4111 Monarch Way, 3rd Floor Management alternatives include Old Dominion University 2 rules regarding closure locations Norfolk, Virginia 23529 and 3 rules regarding closure du- rations. Simulations showed that stock biomass increased, up to 17%, under most alternative strategies in relation to estimated stock biomass under present-day management, and The Atlantic surfclam (Spisula solid- ally not found where average bottom LPUE increased under most alterna- issima) is an economically valuable temperatures exceed 25°C (Cargnelli tive strategies, by up to 21%.
    [Show full text]
  • Pierce County Nearshore Species List Compiled from the Pt
    Pierce County Nearshore Species List Compiled from the Pt. Defiance Park Bioblitz 2011 ID COMMON NAME √ ID COMMON NAME √ 31 Acorn barnacle X 34 Hermit crab sp. X 43 Aggregate green anemone X 35 Isopod sp. X 30 Amphipod sp. X 36 Jellyfish sp. X 95 Anemone sp. 73 Large leaf worm X 60 Barnacle nudibranch X 12 Leafy hornmouth X 48 Barnacle sp. X 74 Leather limpet 68 Bent-nose macoma 13 Leather star X 69 Black and white brittle star 14 Lewis's moonsnail X 92 Black turban X 37 Limpet sp. 63 Blood star X 75 Lined chiton X 56 Butter clam X 76 Lined ribbon worm 65 Calcareous tube worm X 108 Mask limpet X 103 California mussel X 67 Moon jellyfish X 1 California sea cucumber 32 Mossy chiton X 53 Checkered periwinkle X 61 Mottled star X 32 Chiton sp. 38 Mussel sp. X 33 Clam sp. X 77 Northern feather duster w X 70 Coonstripe shrimp 15 Northern kelp crab 59 Crab sp. X 39 Nudibranch sp. X 96 Dog welk sp. X 78 Nuttall's cockle 93 Dogwinkle sp. X 62 Ochre star X 3 Dungeness crab X 16 Opalescent (aeolid) nudib X 57 Eccentric sand dollar X 17 Orange sea cucumber X 112 Fat gaper X 18 Orange sea pen 4 Feathery shipworm X 19 Oregon triton 5 Fish-eating anemone 40 Oyster sp. 101 Flat porcelain crab 79 Pacific blue mussel X 6 Fringed tube worm 110 Pacific gaper 8 Giant (nudibranch) dendronotid 99 Pacific geoduck clam X 7 Giant barnacle X 80 Pacific oyster 9 Giant pacific octopus 97 Periwinkle sp.
    [Show full text]