<<

RUSSIAN GEOGRAPHICAL SOCIETY

FACULTY OF GEOGRAPHY, LOMONOSOV MOSCOW STATE UNIVERSITY

INSTITUTE OF GEOGRAPHY, RUSSIAN ACADEMY OF SCIENCES

No. 01 [v. 07] 2014 GEOGRAPHY ENVIRONMENT SUSTAINABILITY 2 GES 01|2014 Russia University, Faculty ofGeography, Lomonosov State Moscow Kasimov Nikolay S. Faculty ofScience, Czech Republic University, Masaryk Konečný Milan ofGeography,Institute Russia Russian Academy ofSciences, A. Kolosov Vladimir Geology, Sweden Physical Geography andQuaternary of University,Stockholm Department Jarsjö Jerker China ofRemote SensingApplications,Institute Chinese Academy ofSciences, Guo Hua Tong ofOceanology,Institute Russia Russian Academy ofSciences, Gulev Sergey K. ofSocialSciences, UK Department Oxford BrookesUniversity, Haigh Martin Faculty ofGeography, Russia Lomonosov State University, Moscow Dobrolubov Sergey A. ofGeography,Department Belgium Ghent University, De Maeyer Philippe ofPlymouth,University UK Brian Chalkley Faculty ofGeography, Russia Lomonosov State University, Moscow Chubarova Natalya E. Pacific ofGeography, Institute Russia Russian Academy ofSciences, PetrBaklanov Ya. Denmark Danish Meteorological Institute, AlexanderBaklanov Faculty ofGeography, Russia Lomonosov State University, Moscow S. Tikunov Vladimir EDITORSINCHIEF: EDITORIAL BOARD

(Secretary-General) Russia ofGeography,Institute Russian Academy ofSciences KotlyakovM. Vladimir Finland Finnish Meteorological Institute, Zilitinkevich Sergey S. Natural Resources Research, China ofGeographical Sciencesand Institute Chinese Academy ofSciences, Wuyi Wang of Geography,Institute Russia Russian Academy ofSciences, Tishkov A. Arkady of Geography,Institute Russia Russian Academy ofSciences, OlgaN. Solomina Serbia Geographical Institute “Jovan Cvijić”, AcademySerbian ofSciencesandArts, Radovanovic Milan The Netherlands Wageningen University, Pedroli Bas ofBehavioral Sciences,Institute USA ofColoradoUniversity atBoulder, O’Loughlin John ofGeography,Institute Russia Russian Academy ofSciences, Nefedova TatyanaG. South of Environmental andGeographical Sciences ofCape University Town, Department Meadows E. Michael Faculty ofGeography, Russia Lomonosov State University, Moscow Malkhazova Svetlana M. Sciences,Atmospheric Finland Divisionof ofHelsinki, University Kulmala Markku The Netherlands Sciences, ofAppliedEarth Department of University Delft Technology Kroonenberg Salomon Belgium Universitй Libre deBruxelles, Vandermotten Christian Mariya E. Kladovschikova Ekaterina V. Lebedeva, V. Dmitry Mikhalev, JosйE. Novoa Jerez, OlgaMaximova,Olga Solomina, Edward Cook Nikolay G.Rybalsky, VladimirS.Tikunov Merged Lkhagvasuren Choijinjav B.Anar Myrzagaliyeva, ChenXi,Nyamdavaa Gendenjav, Irina N.Rotanova, VladimirS.Tikunov, GuldzhanM.Dzhanaleeva, Nikolay S.Kasimov, V. Dmitry Vlasov Vladimir Klimenko, VladimirMatskovsky, DittmarDahlmann Pavel G.Talalay Andrey A.Lukashov,Andrey StepanV. Maznev Alba Fuga ENVIRONMENT GEOGRAPHY NEWS AND REVIEWS SUSTAINABILITY CONTENTS EDITORAL ...... GEOMORPHOLOGIC HAZARD AND DISASTERS IN . THE SOUTH AMERICAN. ANDES . 80. INFORMATION ...... LIMITS . IN THE TIEN SHAN MTS KYRGYZ REPUBLIC AS A SOURCE OF PALEOCLIMATIC PICEA SCHRENKIANA FORUM “ARCTIC THEDIALOGUE” TERRITORYOF ...... 109 ...... DEVELOPMENT ...... NATURE, HISTORY, CULTURE” AS THE FOUNDATION FOR MODELS OF SUSTAINABLE INTERNATIONAL MAPPING PROJECT ATLAS“THE OF GREATER ALTAI: . . . .ELEMENTS ...... GLOBAL AND REGIONAL OF GEOCHEMICAL CHEMICAL INDEXES OF PRODUCTION PASTFOR THE MILLENNIA TWO ...... MULTIARCHIVE . TEMPERATURE OF RECONSTRUCTION THE RUSSIAN ARCTIC FUTURE NEARFOR THEPLANS .AND BACKGROUND ...... 5 ...... EXPLORATION SUBGLACIAL OF GAMBURTSEV MOUNTAINS EAST : ZONE . . . .ZONE .RIFT ...... OF MORPHOSTRUCTURE THE OF KODARUDOKAN SECTION THE BAIKAL AUTOMATICOF DATA COMPARISON ...... AUTOMATIQUE ...... DE DONNEES GEOGRAPHIC INTERFACE AREAS AND METHODS ZONES D’INTERFAÇAGE DE COMPARAISON METHODE GEOGRAPHIQUE ET RING WIDTH AT AND DENSITY THE UPPER AND LOWER TREE 4 ...... 39 ...... 52 ...... 66 ...... 99 ...... 16 . . 30 .

3 GES 01|2014 4 GES 01|2014 does not undermine theachievementsdoes notundermine of theinformation revolution, though it lifeof everyday have created thefoundation and theirimplementationin different areas Specifically creation ofdigital spatialmodels began to advanceto theleadingposition. systems have emerged andgeoinformatics sensing methodsandgeoinformation sciences andsociety. Onlyrecently, remote tool ofmodelingandanalysisintheEarth For centuries, mapshave beenthemain development ofnature andsociety. encountered onthepathofsustainable to overcome thedifficulties opportunities on spatialfeatures of future changesand isto providejournal aforum for discussion environment. Therefore, thetaskofGES adaptation to arapidlychanging ofeconomicandecologicalof aperiod processes. isonthethreshold Society natural-anthropogeniccaused byvarious isfacingenvironmental changes Mankind indevelopment, etc.innovation aspects ofself-limitation,traditionaland moral aspects humanity, increase inconsumptionand of humans, scientific-technical progress and of theirstocks, biological andsocialaspects protection, useofresources andpreservation on theenvironment andtheneed for its are associatedSuch conflicts withimpacts compromises inthe “nature-society” system. only through reconcilingandfinding conflicts Achieving sustainable development ispossible becomes theissueofparamountimportance. phic problems. Sustainabledevelopment stand outamongtheurgent globalgeogra- management, andenvironmental protection food andresource security, naturalresource from thenewpositions. Population growth, approaches to explore thechanging emergence ofnewideas, methods, and isthe epochof of geographical science. It an impact mation ageisthetimeofdeeptrans Modern for- range oftheirdiverse applications. the titleofjournal, aswell asofawide areas reflected ofinterdisciplinary in aspects theoretical, methodological, andpractical isto provideJournal) indepthdiscussionof RONMENT, SUSTAINABILITY” (GES journal The maingoalof “GEOGRAPHY, ENVI- EDITORIAL of nature andsociety, whichmakes on thefundamentalprinciples environmental practitioners. education for sustainabledevelopment, and technologies, geographic mapping, and management ofnaturalresources, GIS- the fieldsofenvironmental protection, geographers, in ecologists, andexperts targetsThe journal Russianandinternational organizations.international of languagesofthemajority i.e., working areof thejournal English andFrench, BoardEditorial ofthejournal. The languages for publicationuponthedecisionof papers withpositive reviews are accepted the undergo independentdouble-review; material. Allpaperssubmitted byauthors information andillustrationsupporting background, methodology, and ofinformation andstatisticsand quality i.e., globalorregional levels ofresearch andpractice,development oftheory for publicationistheirrelevance to the for ofpapersThe maincriteria selection and fruitfulexchange ofviews. for anopenscientificdiscussion opportunities provides allitsauthorswithawide range of to publishtheirresearch results. The journal well asyoung scientistswhohave justbegun science andrelated scientificdisciplines, as indifferent fieldsofgeographic experts known areAmong theauthorsofjournal well- and educationfor sustainabledevelopment. healthandtheenvironment; of biodiversity; preservation sector; problems oftheoil-gas environmental mapping;environmental geoinformatics and geography andecology; regional of development; appliedaspects the environment andclimate; sustainable resources; globalandregional changesof natural resource management;natural ecology, andsustainabledevelopment; ofgeography, cover theory of thejournal the focus oninnovation. The mainsections complexity, ofproblems covered, avariety and advantage ofitsintegration capabilities, to take issues, butwillhave anopportunity rentcur willnotonlyfind Readers ofGESjournal processthe modern ofsocialdevelopment. are theiconicmomentsof of socialaspects relevancy, andinvolvement inawiderange established sciences. Mobility, agility, andotherof traditionalcartography information ontheaforementioned team ofthe3 wereAntarctica, discovered bytheSoviet (GSM),located inthecentralEast Mountains Province, China, 130021, Tel/Fax [email protected] +8643188502797,e-mail: Polar Research Center, JilinUniversity, No. 938Ximinzhustr., ChangchunCity, Jilin Pavel G. Talalay be finished during next two seasons. two next be finishedduring to thebedrock2015–2016, anddrilling would outnearAntarctic coastinseason to carry equipmentarefield tests ofthedrilling planned to thechosensite with crawler-tractor. The first shelter thatcanbetransported movable drilling technology and drilling use cable-suspended isproposed to inChina.It has beenstarted GSM already thedevelopment activity to penetrate into subglacialbedrock inthe order oficesheetbedbydrilling. In observation the GSMexplorationfocuses onthedirect and beginning ofglaciation. step of The next manyduring millionsyears uplifting inbetween cannot explainlackoferosion process theory and protected itfrom erosion. However, this IceSheetcoveredon theAntarctic therange andtheisostaticresponse.buoyancy Later root uplift, to thecombinationofrift-flank (roughly ago)due 250–100Ma GSM were formed Permian during and latest interpretation suggested thatthe a matter ofconsiderablespeculation. The structure, theorigin oftheGSMhasbeen the topography, geology, andlithospheric With onlylimited constraints available on Shieldisunknown. of theoldEastAntarctic oftheyoung-shaped GSMinthemiddle uplift elevations of3000m. The mechanismdriving Alpine topography reaching maximum in 1958–1959. The GSMhashighlydissected ,Antarctic bedrock drilling ABSTRACT. KEY WORDS: AND PLANS FOR THE NEAR FUTURE (): BACKGROUND SUBGLACIAL MOUNTAINS EXPLORATION OF GAMBURTSEV

rd The Gamburtsev Subglacial The Gamburtsev Complex AntarcticExpedition subglacial environment, is also below sea level partly because is alsobelow sealevel partly ofmost of bedrock surface liebelow sealevel.of EastAntarctica The largetwo subglacial basinsin Land Wilkes belowsealevel (Fig.actually 2).For example, ofEastand of someparts West Antarcticais The present elevationofthe bedrock surface [Stonehouse, 2002]. at4901m a.s.l.the highestpeakinAntarctica includes the Vinson Massif, whichcontains in Mountains the Ellsworth West Antarctica places in Land.Wilkes of The SentinelRange Land, andinafewLand, inMac. Robertson sheet inDronning Land, Maud inEnderby ranges projectthrough theEastAntarcticice Land (Fig. addition, smallmountain 1).In Byrd volcanoes ofMarie and intheextinct of Mountains the Ellsworth West Antarctica, to overlength thatrises 4500minheight, in a majormountainbeltsome3000km Transantarctic ofEastAntarctica, Mountains ontheAntarcticPeninsula,primarily inthe The rocks crustare oftheAntarctic exposed severecontinent andextremely conditions. thick icesheetcovered about98%ofthe andMars, obviouslybecauseofthe Moon thanthetopographyis lesswell known of subglacial topography andgeology, which frontiers ofAntarcticexplorationisstudy scientific research. Oneofthemostimportant this region for offers many opportunities to live environment, inthisextreme andwork ontheEarth. While itischallenging highest,andwindiest is thecoldest,driest, Covering 14millionkm nearly INTRODUCTION 2 , Antarctica

5 GEOGRAPHY 6 GEOGRAPHY relative to the Greenwich meridian [http://geology.com/world/antarctica-satellite-image.shtml] hemispheres western and eastern the to roughly correspond Antarctica East and Antarctica West parts: two in Antarctica divide Mountains Transantarctic topography. surface 1.Fig. Antarctic Fig. 2. Antarctic bedrock topography. Bedmap2 bed elevation grid is based on data from a variety of of avariety from data on based is grid elevation bed Bedmap2 topography. bedrock Antarctic 2. Fig. sources, including many substantial surveys undertaken over the past 50 years [Fretwell et al., 2013] al., et [Fretwell years 50 past the over undertaken surveys substantial many including sources, in 1956); later, the expeditions were referred to as Soviet Antarc- (RAE). Soviet Expeditions as to Antarctic Russian and (SAE) Expeditions tic referred were expeditions the later, 1956); in 1 of the3 The GSMwere discovered bythe Sovietteam andoftheplanetinpast. Antarctica understanding ofthechanging climate of toof theformation the oftheGSMislinked Understanding themechanismsandtiming wouldAntarctica have beenquite different. glaciation thesubglacialmountainsof quite different. Without thecontinental icesheetwouldthe Antarctic have been Without itshigh topography, of thehistory are[Zapol,Antarctica tightlylinked 2011]. 2003]. of The tectonic andglacialhistories roughly ago[DeConto andPollard, 34Ma astheEarth’sin Antarctica climate cooled ice sheetthatformed large-scale as anucleationpointfor thefirst 2012]. The GSMmay have served [Talalay andMarkov,unknown Shieldis of theoldEastAntarctic young-shaped GSMinthemiddle ofthe uplift mechanism driving scientific interest becausethe ofgreathas becomethesubject features ontheEarth. The range GSM are oneofthemostenigmatic the Among othersubglacialobjects [Ferraccioli etal., 2011]. 1400 minthenorth–south-trending and amedianelevationofabout maximum elevationsof3000m Alpine topography reaching hashighlydissected East Antarctica, (GSM),located incentral Mountains sheet. Subglacial The Gamburtsev iceof themassoverlying ice sheetahugesubglacialmountain range and intheregion of thehighestpointof IceSheethasbeenbuilt(Fig.East Antarctic 4), thefirstprofile ofthe and gravimetric surveys (Fig.about 4300km 3).As aresult ofseismic 88days andovercome during underway station to thePole was ofInaccessibility 1958–1959. The uniquetraverse from Mirny DISCOVERY Complex Antarctic Expedition, USSR (the 1 USSR (the Expedition, Antarctic Complex rd Complex AntarcticExpedition st CAE was formed formed was CAE 1 in Fig. 3. Traverse route of the 3 the of route Traverse 3. Fig. Antarctica’s Province (AGAP) Gamburtsev time multi-national andmulti-disciplinary PolarInternational Year (2007–2009).Atthat goalsoftheFourth GSM were theprimary structure of the ice sheetandlithospheric oftheEastAntarctic thehistory Exploring of theGSM[Drewry, 1983]. 1983 containedaquite detaileddescription bedtopographymap ofAntarctic issuedin presence oftheGSMwasconfirmed, andthe in thisregion et al., 2008]. [Turchetti The yieldedmultiplebedrock profilesDenmark Foundation andthe Technical of University U.S. NationalScience(Cambridge, UK), out bytheScottPolar Research Institute soundingcarried radio-echo of theairborne appeared here onlyin1974. The jointproject first geophysics theGSMdiscovery After in 1975. feature SubglacialMountains’‘Gamburtsev English interpretation ofthisgeographical Antarctic Names(ACAN) accepted the seismology. Committee onThe Advisory (1903–1955), oneofthecreators ofmodern Gamburtsev for Sovietgeophysicist Grigory named as Podlyednye‘Gory Gamburtseva’, was was discovered etal., [Sorokhtin 1960].It Expedition (23.10.1958–18.01.1959) rd Complex Antarctic Antarctic Complex

7 GEOGRAPHY 8 GEOGRAPHY from ofhowthe thetectonic perspective alladdsto themystery ago).It 65 to 2,6Ma Paleogene (i.e., andNeogene periods about thetectonic plates during anduplifted the collisionofEuropean andAfrican noted thatAlpswere formed asaresult of similar to shouldbe theAlpsthemselves. It peaksandvalleysare sharp remarkably very the samesize astheEuropean Alps, and wasfound thattheGSMhaveIt about landscape oftheGSM(Fig. 5). jagged revealed avery and 3D-modelling technology remote-sensing modern-day inputs into icesheetandclimate models. The enigmatic mountainsto provide crucial new understanding thetectonic origin ofthese core drilling. were targetedThe surveys at andshallowice passive seismicexperiments included aerogeophysics, traverse programs, attend thisproject. The AGAP partnership scientists, discoverers oftheGSM,didnot States [Bell, 2008].Unfortunately, Russian andtheUnitedthe United Kingdom, , Canada,China,Germany, Japan, wasfoundedproject by7countries: 1960] al., et [Sorokhtin survey gravity the to according built was profile the which between observations, gravimetric and seismic joint of points the indicate lines vertical Antarctica: East of profile First 4. Fig. Observatory of ColumbiaObservatory University, USA) (Credit:with results of AGAP geophysical survey according up built GSM the of 5.3D-modell Fig. T. Creyts, Lamont-Doherty the East assembly ofinterior 2011] proposed thattheroot formed during The latest conception [Ferraccioli etal., 1994]. [Veevers, Permian thelate –early during associated withthe formation ofPangaea have resulted from far-field compression 2000, 2003].Alternatively, theGSMmay with theassemblyofGondwana[Fitzsimons, Paleozoicearly orogenic events associated developed through multipleProterozoic or studieshave suggested thattheGSM Other [Sleep,the HoggarmassifinAfrica 2006]. dome, similarto forming avolcano-capped the GSMwere byamantleplume, uplifted 2010]. Somestudieshave suggested that of considerablespeculation[Hansenetal., the origin oftheGSMhasbeenamatter structurearelithospheric stillavailable, and constraints onthetopography, geology, and outwithinAGAP project,onlylimitedcarried Even theintensive research oftheGSMwas in themiddleofEastAntarctica. no goodreason for amajormountainrange be insideanEgyptianpyramidjustasthere is There isnogoodreason for anastronaut to pyramid andfindinganastronaut inside”. openingthedoorofanEgyptian islike “It oneofthescientistsjoked: thisconnection In years. do notoccur, atleastinthelast100million ,East Antarctic where suchprocesses GSM were of created inthecentralpart ORIGIN weathering. With norock samples available, glaciation that protected mountains from andbeginning of theGSMuplift in between of erosion process many during millionsyears such standpointisthatitcannot explainlack they mustbequite old. The mainproblem of look young, theevidencewould suggest interpretations whilethemountains may So, according to themostof the least 14millionyears (Fig. 6,d). the ruggedtopography oftheGSMfor at Ice Sheethaspreserved The EastAntarctic high-relief Alpinetopography oftheGSM. thepeaks,uplifted creating themodern 6, c).Fluvial andglacialerosion inthevalleys help produce thebroad (Fig. GSMrift-flank the root andreleased itslatent buoyancy, to or depressurization, reducedof thedensity and,uplift through possibleheatingand/ drove ago)rifting flexural250–100 Ma (Fig. 6,b).Permian andCretaceous (roughly in the Trans-Hudson orogen andtheUrals anddenserootthat like adry preserving didnotoccur, re-equilibration major Moho orogenic collapseandpost-collisional as insomeoldorogens (Fig. 6,a),and ago)waspreserved (about1Ga Antarctica Fig. 6. Schematic of the elements contributing to the GSM uplift – explanations are given in the text text the in given are explanations uplift – GSM the to contributing elements the of Schematic 6. Fig. [Ferraccioli et al., 2011] conditions, many componentssuchas To intheseheavy usecommercial rigs drill andapplicablescopes.limits, performance, technologiesdrilling have different concepts, with near-bottom fluidcirculation. These drilling electromechanical cable-suspended core barrel,wire-line orcoiledtubing, and (2) withconventional rigs drill core barrel, or considered [Talalay, 2013]:(1)commercial technologiessubglacial drilling mightbe subglacial bedrock of samples, types two obtained atinlandofAntarctica. To recover present moment bedrock cores were never All thoseare thereasons thatupto the infrastructures, storms, winds, snowfalls, etc. by iceflow, theabsenceofroads and andwithinicesheet, at thesurface complicated lowtemperature byextremely operationsinAntarcticaareDrilling drilling. oficesheetbedby observation is direct one way to clearuptheGSMageandorigin the GSMhave notbeenacquired. The only geochronologic constraintsontheageof PLANS FOR THE NEAR FUTURE

9 GEOGRAPHY 10 GEOGRAPHY observed if thickness of ice sheet is more than 2000 m, and over the mountain ridge the bed should be frozen be should bed the ridge mountain the over and m, 2000 than more is sheet ice of thickness if observed Fig. 7. Schematic layering inside and beneath ice du sheet: cable withawinchisusedinstead ofapipe- isthatanarmored drills cable-suspended The mainfeature oftheelectromechanical 1).Russian specialistsinthepast(Table outbyU.S. carried successful projects and technology. byfiveThis wasconfirmed drilling electromechanical cable-suspended to penetrate subglacialbedrocks is ouropinion,themosteffective method In but alsoinsomecasesimpossible. using inAntarcticanotonlydisadvantageously sothat logistical loadto move andsupport, and power consuming. They require alarge heavy areaddition, commercial rigs stillvery drill temperatures windsinAntarctica.In andstorm shelters thatare low notenoughatextremely as outdoor machines, usetents, orprimitive temperatures. Commercial operate rigs drill designed astheyare notableto atlow- work re- and someothersshouldbeprincipally hydraulic system, fluidprocessing system Years 9454m(, )Tyo oe naciaSteig etal., 2000 GowandMeese, 1996 Taylor Dome, Antarctica Ak UedaandGarfield, 1968 Vasiliev and Talalay, 2010 722–724m(2.0m) Summit(GISP2),Greenland Vavilov Glacier, Severnaya Zemlya 554m(0,1m) 2001 3051.5–3053m(1.5m) 1994 CampCentury, Greenland 457–461.6m(4.6m) 1994 1387.5–1391m(3.5m) 1988 1966 Table 1. Subglacial drilling experience with electromechanical cable-suspended drills cable-suspended electromechanical with experience drilling Table 1. Subglacial Till &bedrock interval (core length) ademiya NaukGlacier, Severnaya Z oainReferences Location installed inside a movable sledge-mounted installed insideamovablesledge-mounted generators, etc.) winch,control willbe desk, 50-kWdiesel equipment(two All drilling than 25m/day. wouldproduction oficedrilling benotless meters (Fig. into themountainslopeto adepthoffew of 1000m(ideally600–800m)andto pierce atmost site withtheicethickness the drill University, isassumed to choose China.It inJilin already hasbeenstarted activity Ice SheetintheGSMregion thedevelopment order toIn penetrate through theAntarctic the cleaningofholefrom thecuttings. round-trip operations, andasimplificationin consumption, adecrease inthetimeof significant inpower reduction andmaterial unit. The useofarmored cableallowsa motor system andto retrieve thedown-hole to providestring power to thedown-hole e to modelling, water on the base of the ice sheet is 7). The my V emlya expected averageexpected daily asiliev and asiliev Talalay, 2010 includes five following steps (Fig. 9): Proposed borehole construction to thesite.upon arrival immediately drilling is ready to start with crawler-tractor, andallequipment to thechosensite shelter istransported fluid)isnear20tons.drilling Drilling weight equipment(without ofdrilling 12 mfrom thefloorofshelter. Total position(Fig.working heightis 8).Mast andvertical horizontal for transportation positions: hastwo 7,5×4,0×3,0 m.Mast shelter thathasdimensionsof drilling andwind-protectingwarm-keeping shouldsledges be notFig. 8. Movable is drilling shelter: chosen the more design of the than so that 200 the ground g/cm pressure (3D-model by M.A. Sysoev) byM.A. (3D-model snow soft the on even shelter the move to Fig. 9. Proposed borehole construction and drilling technology 2 allowing

11 GEOGRAPHY 12 GEOGRAPHY reverse circulation; (5)bedrock core drilling. ofglacialicewithbottom-fluiddrilling casingshoe; (4)fluidcorewith thermal circulation; (2)reaming; (3)casinginstallation layersnow-firn withbottom-air reverse core ofupperpermeable drilling (1) dry 1 – drill bit; 2 – core catcher; 3 – core barrel; 4 – chips chamber; 5 – air pump; 6 – fluid pump; 7, fluid airpump; 6 – 5 – core chamber; catcher; reducer; chips gear core 2 – drill bit; barrel; 4 – 8 – 3 – 1 – 9 – electric motor; 10 – dead weight; 11 – pressure chamber; 12 – antitorque section; 13 – bearing assembly; 14 – slip rings; 15 – load sensor; 16 – cable termination; 17 – spring; 18 – armored cable Fig. 10. General schematic of electromechanical IBED drill: drill: IBED electromechanical of schematic 10. General Fig. (1) modulus A + B + E for dry core with drilling (1) modulusA+BEfor dry to solve three different tasks(Fig. 10): designed withmodulusstructure inorder Bedrock Drill Electromechanical ‘IBED’ is Iceand cable-suspended multipurpose To through drill iceandbedrock anew inner diameters ofthe diamondbitare bit. load onthediamond drill The outer/ weights (appr. for 200kg) increasing ofthe gravity separationofrock cuttings anddead string,diamond drill chip chamberfor core barrel borrowed from conventional bit andcontainsstandard 2-mlength bedrockcoring usingspecialteeth diamond ofthebedrock isadapted for variant part mm. Length ofthecore barrel is 2,5m.Lower diameter oftheicecore bitis134/110 drill core bit. barrel withthedrill The outer/inner chips, fluidandcollecting of drilling chipchamberfor filtration from parts: two for iniceconsists drilling IBED lower part of 0,2MPa. 41 L/minwithmaximalpumpingpressure idler gear. ofthepumpis38– The capacity pumpwithaninternalCD33EM-3U332 of thepump. The pumpistheRotan bit,andanotheroneforand drill driving reduces: onefor rotation ofthecore barrel from gear- withtwo themotor connects modulesfor withliquidtheshaftIn drilling pump isincreased bythegearto 6000rpm. variants. The rotation speedofair-driven driven pumpthatisinstalledinto othertwo air reverse circulation instead ofliquid- contains vacuumpumpfor nearbottom core drilling addition,modulefor In dry rpm. bitrotationlowers thedrill speedto 500 gearreducer100 rpm; for subglacialdrilling bitrotationice lowers thedrill speedto up to 15MPa. Gear-reducer for in drilling outer pressure andcankeep pre-lubricated of Grundfos MS4000type. The motor is contain 3kWAC3×380 V submersiblemotor ofthegear-reducer.shaft Allmodulus are differed byrotation speedoftheoutput pressure chamber. sections The motor-gear antitorque section, system,rings electronic includes four slip cabletermination, sections: isthesamefor it allvariants; The upperpart of themhave thesamebayonet joint. are ofthedrill easily replacedsections asall A +DFfor bedrock core drilling. Different + CEfor fluidicecore (3)modulus drilling; bottom-air reverse circulation; (2)modulusA seasons. the bedrock would two be finishedduring site intheGSMregion,drilling to anddrilling to the chosen planned to betransported shelter is 2016–2017 themovabledrilling season coast inseason2015–2016. Next outside ZhongshanStation near Antarctic outjust field tests are plannedto carry According to approved schedule, thefirst bedrock. for inglacialiceandsubglacial drilling and canbeconsiderasaviablealternative properties,have suitabledensity-viscosity dimethyl siloxane oilsorester type. They toxic fluids, drilling e.g. low-molecular utilization ofenvironmental friendly, low- technology aredrilling with connected The newapproaches ofsubglacialbedrock load (3kN)andtorque (28,8Nm). withaverage rate of3,18m/hatlow bitcouldpenetrate intodiamond drill the tests showed thatteethThe preliminary can simulate borehole conditions(Fig. 11). thespecialstandhasbeenbuiltthat drill 57/41 mm. To version ofIBED test shortened Fig. 11. Stand for testing electromechanical IBED IBED electromechanical 11.Fig. testing for Stand drill (Chungchun-city, China, 2013)

13 GEOGRAPHY 14 GEOGRAPHY 1. Bell, R.E. (2008). Antarctic Earth System Science in the International Polar System ScienceintheInternational Bell, R.E.(2008).Antarctic Earth Year 2007–2008.An- 1. ofChina(project and Geological Survey Foundation ofChina(projectNo. 41327804) of GSMisfundedbyNationalScience project in theregionSubglacial drilling 2 DeConto, R.M.,Pollard, D. Cenozoic (2003).Rapid inducedby glaciationofAntarctica 2. 1 . Steig, E.J., Morse, D.L., Waddington, E.D., Stuiver, M.,Grootes, P.M.,12. P.M., Mayewski, Whitlow, O.G., Sorokhtin, Avsyuk, Yu.N., Kondratyev, O.K. (1960). The methodology andthemain 11. Sleep, plumesfrom Sci.Rev., N.H.(2006).Mantle top to bottom. Earth Vol. 77,pp. 231–271. 10. A.A.,Heeszel, Hansen,S.E.,Nyblade, D.S., Wiens, D.A., Shore, P.,9. M.(2010). andKanao, Gow, A.J., Meese, D.A. (1996).Nature inthe GISP2 andByrd icecores ofbasaldebris and 8. Fretwell, P. and59others. andthickness (2013).Bedmap2:improved icebed,7. surface Fitzsimons, I.C.W. (2003).Proterozoic basementprovinces andsouthwestern ofsouthern 6. Fitzsimons, I.C.W. basementprovinces (2000).Grenville-age inEastAntarctica:evidence 5. Ferraccioli, F., Finn, C.A.,Jordan, T.A.,4. Bell, D. R.A.,Anderson,L.M.,andDamaske, (2011). Drewry, D.J. (ed.) (1983).Antarctica: Glaciological andGeophysical Folio, ScottPolar Re- 3. REFERENCES ACKNOWLEDGMENT and the10 Cooper, Science. Eds.: A.K. on Antarctic Earth P.J. Barrett, H.Stagg, B. Storey, E.Stump, W. Wise, tarctica: A Keystone inaChanging tarctica: AKeystone World. Proceedings ofthe10 declining atmospheric COdeclining atmospheric pp. 213–235. at Taylor Annaler, Dome, western Ross Embayment, Antarctica. Geografiska Vol. 82A, S.I., and Twickler, M.S.(2000). fromWisconsinan anicecore andHoloceneclimate history the Academy ofSciencestheUSSR,Geophysical Series, Vol. 3, pp. Russian]. 396–401. [In results ofseismicandgravity studies ofthestructureEastAntarctica.Proceedings of 300, pp. 395–401. ScienceLetters. wave and Planetary andRayleigh phasevelocities. functions Earth Vol. Mountains, East Antarctica, from S-waveCrustal structure oftheGamburtsev receiver its relevance to bedprocesses. AnnalsofGlaciology, Vol. 22,pp. 134–140. datasets for Antarctica. The Cryosphere, Vol. 7,pp. 375–393. Australia, andtheircorrelation withAntarctica. Geol. Soc. Spec. Pub. 206,pp. 93–130. for three separate collisionalorogens. Geology, Vol. 28,pp. 879–882. 388–392. Mountains. Nature, oftheGamburtsev uplift triggers Vol.East Antarctic rifting 479,pp. search ofCambridge. Institute, University th ISAES editorial team. ISAESeditorial Washington, DC: The NationalAcademies Press, pp. 7–18. 2 . Nature, Vol. 421,pp. 245–249. subglacial exploration. equipmentforand testing ofnewdrilling for onthedesigningUniversity hard working members ofPolar Research Center, Jilin No. 3R212W324424).Author thanksallteam th International Symposium Symposium International  Zapol, W.M. (chair)(2011).Future inAntarctica andtheSouthern ScienceOpportunities 20. Veevers, J.J. ofEastAntarctica ori- SubglacialMountains (1994).Casefor theGamburtsev 19. Vasiliev, N.I., Talalay,18. P.G. onSevernaya (2010).Subglacialdrilling Zemlya archipelago. Ueda,H.T., D.E. through Garfield, (1968).Drilling theGreenland IceSheet.Hanover, USA. 17. Turchetti, Naylor, a K., M.(2008).Accidents S.,Dean, andopportunities: S.,andSiegert, 16. Talalay, P.G. (2013).Subglacialtillandbedrock drilling. Cold Scienceand Techno-15. Talalay, P.G., –therange, Mountains whichnobodyseen. A.N.(2012).Gamburtsev Markov 14. Stonehouse B. Ocean. ofAntarctica andtheSouthern (ed.) (2002).Encyclopedia Wiley, 13. in ice (2011, with co-authors); Subglacialtill andbedrock (2013). drilling in ice(2011,with co-authors); ice. (2007, withco-author); Achronological history Twenty yearsthedeepesthole ofdrilling inPolar publications:FiftyMain yearsactivity andNon-Polar ofSovietand Russiandrilling Regions, especiallyonglaciersandicesheets. Heistheauthorofabout150 publications. researchHis interests are associated withdifferent technology inPolar ofdrilling aspects Polar2010 hebecameadirector ofthejust-established Research Center atJilinUniversity. asProfessorthe JilinUniversity oftheCollege Engineering. of Construction SinceDecember Ocean. Ocean. The NationalAcademies Press, Washington D.C., USA,195p. 593–596. ofanintracratonic basin.Geology,ginating bymid-Carboniferous shortening Vol. 22,pp. Russian]. 27–31. [In development ofPolar Regions: Problems andSolving”. 7–9Apr., 2010, Vorkuta, Russia,pp. Transactions ofthe8 CRREL Spec. Rep. 126,7p. of Science, Vol. 41(3),pp. 417–444. for Journal ofAntarctica,1958–79.British theHistory oftheradioecho-sounding history logy, Vol. 86,pp. 142–166. Nature, Vol. 2,pp. Russian]. 29–38.[In Chichester, England. 391p. th Pavel G. Talalay International Research-to-Practice Conference International resources“Mineral and sinceSeptember 2010hehasbeenengagedinresearch at Coordination Committee ontheRecruitmentof Talents, China, from Thousand “The Talents Program” organized bytheCentral of Doctor Technical 2010hehas gotagrant Sciencesin2007. In received degrees ofCandidate of Technical Sciencesin1994,and (since1991St.PetersburgInstitute He Institute). State Mining professor, attheLeningrad Mining headofthedepartment engineer, seniorengineer, researcher, associate professor, from as theperiod 1984to1984. During 2010heworked Engineer in andobtainedDiplomaofMining Institute Mining graduated withhonorfrom theLeningrad

15 GEOGRAPHY 16 GEOGRAPHY 1 human inhabitance, areas suchasarid strong inmarginal areasis particularly of climaticandculturalchanges A linkbetween climatology reconstruction, multi-proxy, historical tic, palaeogeography, temperature reconstructions.hemispheric ascompared to Panarcticof variability and shows muchhigherdegreereconstruction than average inAD1951–1980. The new lowest inAD 1811–1820were 1,3°Ccolder in AD981–990were and 1,0°Cwarmer meanannualtemperaturespre-industrial signature level. on thehemispheric Highest differ considerablyfrom theoverall climate climatic events onaregional level may and itsseparate regions. Less significant Hemisphere both inthewholeNorthern shows thatlarger climaticevents were visible those for larger regions andtheHemisphere with forreconstruction Northeastern ofmeandecadaltemperaturecomparison and verificationapproaches were used. A in thestudyregion. Five different calibration chronology events ofclimaticandhistorical to buildupacomparativeprimarily data. wasdevelopedThis reconstruction pollen,andhistorical based ontree-ring, millennia ofthepasttwo theperiod covering Europe forreconstruction Northeastern mean annualquantitative temperature 3 * 2 Vladimir Klimenko e-mail: [email protected] e-mail: ABSTRACT. INTRODUCTION KEY WORDS: ARCTIC FOR ARCTIC THE PAST MILLENNIA TWO RECONSTRUCTION OF THE RUSSIAN MULTI-ARCHIVE TEMPERATURE

Corresponding author Rhenish Friedrich-WilhelmRhenish University, [email protected] e-mail: Bonn,Germany; ofGeography,Institute RussianAcademy ofSciences, Moscow, Russia; Moscow Power Engineering Institute, Moscow, [email protected] Russia;e-mail: We present amulti-archival climate change, Arc- 1 , Vladimir Matskovsky, Vladimir twelfth century –itwasthetimewhen they century twelfth toNovgorodians master intheearly started bytheterritory, whichis determined ofthe studyarea The western boundary the south(Fig. 1). east (104°E),andthe60°Nlatitudinal linein Cape(Taimyr Peninsula)Chelyuskin to the Peninsulaby theKola inthewest (40°E), The studyarea aregion comprises limited the last2000years. fordecadal annualtemperature variability this studyisreconstructionoftheregional period.whole historical The maingoalof climatic evidencefor agiven region for the to obtainahigh-resolution it isnecessary can cometo thewell-grounded conclusions itsfirststeps.makes However, before one Europe processhistorical intheNortheastern ofclimate changeonthe a possibleimpact Hodell, 2011;Bьntgen etal., 2011].Astudyof states [see, e.g. 2009;Aimers, Klimenko, the role ofclimate inthefate ofthevarious resulted innumerous papersconcerning ofthepastclimates. knowledge This has sciencesand, inparticular,in thefieldofearth withamassive breakthroughin connection havestudies ofthissubject gainedinscope Hipparchus. therecent During decades, to ofAristotle, theworks Theophrastus, and ascendingto Antiquity,subject, inparticular, There isavastbodyofliterature onthis Europe.latitude regions Northeastern like andhigh- (steppes, andsemideserts) deserts, STUDY AREA 2* , DittmarDahlmann 3 high-resolution paleoclimaticevidence in Moreover, ofthe becauseofthe paucity eventually reconstructed. is the represent meanannual air temperature, it exploited proxy data(pollenandhistorical) all available proxy data.As themostof millenniabasedon spanning thepasttwo development ofaclimate reconstruction ofthisstudywasthe purpose The principal information. contain important hand, withtheuniquenessofthesedatathat remote temperature fieldsand, ontheother withasufficientcorrelation of it isconnected beyond thestudyregion. Ontheonehand, proxy climate datafor theadjacentarea just thisstudy,this time. In we alsousedsome which couldnotbecrossed through all specifically Taimyr wasthatnaturalboundary seventeenth century. On thisscene, throughfrom thelate themid-eleventh spanning sceneinaperiod main historical bythe isdetermined boundary An eastern colonization. territories the northeastern theonsetof whichmeant,infact, Dvina bankoftheSevernayafirst settledontheright Yeniseysk (12) (11) Tomsk; Turukhansk; (10) Syktyvkar; (9) (8) Tobolsk; (7)Salekhard; Karmakuly; (6) Malye (4) (5) Kem; Petrozavodsk; (3) Arkhangelsk; (2) (1) Vardш; (triangles): Haparanda; area study the around and within stations meteorological long-term the of locations The evidence. (black) historical major and (green), tree-ring (yellow), Lake-sediment chronologies. climatic proxy of locations showing area study the of 1. map Fig. The mean annual temperature thatwas rarely achieve resolution better, than time resolution. For instance, pollen data Various proxy datamay have different data Proxy evidence,historical asproxy climaticdata. data,aswell aspollen and used tree-ring in thestudyarea. Thus, inthispaper, we have annual andsummertemperatures, atleast, correlationmean between well-established doesn’t decrease theirvaluebecause ofthe seasontemperatures.warm it Nevertheless, datarepresentemployed onlythe tree-ring into accountthattheone shouldtake human generation(20–22yr).However, ofacomparable to thelife expectancy times stable excursions withcharacteristic interannual climate variations, butto more as arule, notto aseparate albeitsignificant responds,The matter isthathumansociety chronology events. ofclimaticandhistorical ofbuilding-upacomparativepurpose corresponds quite wellfact, to theprincipal decadal the studyregion we focus onthe MATERIALS, METHODS, AND RESULTS temperature reconstructionthat,in mean

17 GEOGRAPHY 18 GEOGRAPHY c) Averaged proxy climatic data: pollen (green), tree-ring (red), historical (black) [Klimenko, 2010]. Here Here 2010]. [Klimenko, (black) 1951–1980 historical period the to (red), reference with expressed are departures tree-ring temperature elsewhere, and (green), pollen data: climatic proxy Averaged c) Velichko et al., 1997; Andreev, Klimanov, 1995; al., 2000]. et [Klimanov data pollen on based anomalies temperature annual mean b) Estimated 2012]. al., et [Gurskaya (red) Urals Polar and 2002] al, et [Naurzbaev (green) Taymyr 2002], Shiyatov, [Hantemirov, Yamal(blue) for width tree-ring of a) Variations Historical Northeastern Europe Тг 50–80 65–80 1495 1995 Klimenko, 2010 Klimenko, 1995 1495 65–80 Velichko etal., 1997 Velichko etal., 1997 1555 1555 Andreev, Klimanov, 2000; 50–80 0 1555 etal., 1995 Klimanov 0 Velichko etal., 1997 1555 0 1555 Тг 370 64 545 67 68 57 Europe Northeastern 64 43 Historical 66 60 width 38 Tree-ring 72 Тг Тг width Tree-ring Тг Тг Тг width Tree-ring Guba Khaypudyrskaya Arkhangelsk Pollen Salekhard Pollen Melikhovo Pollen Nadym Pollen Pollen of data Type Taymyr Тл 64 65 1605 1995 Gurskaya etal., 2012 Gurskaya 1995 etal., Naurzbaev 2002 1605 1995 Hantemirov, Shiyatov, 1995 65 0 0 72 64 67 102 Тл 70 Тл Тл Taymyr Taymyr Yamal Table 1. Proxy data used to reconstruct climate of northeastern Europe northeastern of climate toreconstruct used Table data 1. Proxy Location structed structed Recon- value ogtd Latitude Longitude Fig. 2. 2. Fig. Start Start year year End End 2002 2002 Velichko etal., 1997 Source 1829, Tomsk – 1837, Haparanda–1860, –1817, VardшSyktyvkar – 1829, Tobolsk – PetrozavodskArkhangelsk–1813, –1817, the following years (inchronological order): in atthese stationsstarted Observations and around thestudyarea (seeFig. 1). meteorological stationslocated within averaged datafrom twelve long-term we have employed part its contemporary To calibrate thereconstructionandverify Instrumental data proxy usedinthisstudy. timeseries years. See Table 1for ofall thedescription information butspanningjustover 500 accurate anddetailedsource ofclimatic data–potentially themost 3. Historical amplitude. climaticsignala long-term andrefine its 2. Pollen sediment) data–to reconstruct (lake climatic events. for adetailedreconstruction ofshort-term 1. Tree-ring width– dataonannualring following proxy data(Fig. 2): weWith employed thatsaid, the inthiswork, 2005; Jonesetal, 2009]. Sleptsov,[Klimenko, 2003;Moberg etal, the substantialclimaticevents amplitude latter allowfor of reconstruction acorrect following strong volcanic eruptionsandthe events astemperatureshort-lived drops former allowfor ofsuch areconstruction both high-andlow-resolution data. The onemustemploy reconstruction, quality opinion thatinorder to develop ahigh- Today, shares scientific community an many methodsto solve itwere proposed. et al, 2009]and data[Jones for tree-ring decreases. This problem iswell known climaticvariationsreconstruct long-term resolutionof proxyrising datato anability a day andeven afew hours. However, with datamayhistorical have aresolution within to ayear andeven aseason.Eventually, witharesolutionreconstruction down 50 years, whereas tree-ring dataallowa whereas tree-ring demonstrate centennial-scale variations of a demonstrate ofa centennial-scale variations the datafrom othersites (non-interpolated) temperatures through 0–545AD, whereas and theinterpolated valuesshowreduced sample from thissite isover 1,000years older, to AD 545,becausethepreviousprior dated 2009]. We have alsorejected theNadymdata even to different [Reimeretal, centuries inaccurate andmayframe arecorrespond very datingswithinthistime because radiocarbon particular, thelast450years the datacovering because oftheirlowreliability. They include, in ofthepollendatawasrejected portion A data.See of various Table 2for datacorrections. deviation dueto abasicallydifferent resolution intoand alsoto account apossiblepeaks take larger variance, thanthedendrochronological, that have oneto orders two ofmagnitude datings allowed theradiocarbon usto correct with a30-yr runningmean. This procedure the dendroclimatic smoothing after extremes pollen datawere brought into accord with et al, 2009]. Therefore, themajorpeaksof [Reimer (0–2000 AD)may exceed acentury method, whichinthetimespanofthisstudy oftheradiocarbon relatively lowaccuracy from datingsarises a original radiocarbon dendroclimatic the data.Aneedto correct useoftheaveraged corrected making before averaging were slightly chronologically presented atFig. 2c. data The lake-sediment dataare averageddata. Decadally tree-ring averaginghad conducted of ofeachtype Before proxy composingvarious data,we a generalized reconstruction dataProxy assimilation inorder to develop refersdecadal timeseries to AD1895). 1886, wasused(therefore, thefirstvaluein AD ofthem,after onlyaportion purposes data,butfor calibration available observational in AD1886. That iswhy, althoughwe usedall commenced later, thanontheothers, only – Karmakuly andMalye stations –Salekhard atthecentralfor thestudyarea observations [Peterson, Vose, shouldbenoted that 1997]).It Climatology Network; GlobalHistorical (after –1886 Karmakuly andMalye 1881, Salekhard –1862, Kem Yeniseysk –1871, Turukhansk –

19 GEOGRAPHY 20 GEOGRAPHY effect andminimum values early deduced from effect with reconstruction the of linearregression, confidenc the instrumental Versions with99% period, weighting. and correction dating with calibration:different 2) 3) calibration onthe instrumental pe weighting; no and correction dating no 1) more interpolated, andnotmeasured values. Gubaand, therefore,Khaypudyrskaya contain and lesser detailcompared to theMelikhovo weights (0.5)becausetheyare represented in and Nadymsites were assigned lower Salekhard, The datasetsfrom theArkhangelsk, data were weighted andaveraged. different sign. thisscreening, After allpollen C 14 Fig. 3. Different versions of the reconstruction with various modifications of pollen data: data: pollen of modifications various with reconstruction the of versions Different 3. Fig. 4110 h iteAci piu + – + OnsetoftheArcticcooling + optimum TheLittleArctic – – Kuwaevolcano eruption 1555 maximum Grandsolaractivity 1505 + minimum) minimum(Wolf Grandsolaractivity 1455 optimum SecondpeakoftheMedieval 1365 optimum oftheMedieval Cool interval 1295 1491 First climaticoptimum peakoftheMedieval 1185 1441 1125 1429 1000 1356 1290 1213 1108 1023 dating 2 1 al iigAecoig– + + – Early Age cooling Viking Ages peak warming Middle Early 1stmillenniumA.D. maximumcooling 815 Romanoptimumpeak 735 545 265 820 734 580 241 Table 2. The lake-sediment radiocarbon dating correction using the tree-ring data tree-ring the using correction dating radiocarbon lake-sediment The Table 2. dating correction Tree-ring instrumental data. 1951–1980 Reference period: at Fig. 3anddiscussedbelow. of pollendataassimilationare presented useofdifferent developed making variants with equalweights). The reconstructions no dataweighting assimilation with we alsoconsidered ofpollendata variants Fig. 2c. thedatacompilingprocess, During The averaged pollendataare presented at riod with the same mean andvariation; mean withthesame riod 4) calibration on e level; 5) calibration based onthe arctic amplification Event no datingscorrection (i.e. alldataaveraging Anomaly sign and and ** Calibrationbased ontheeff * Pollen andwithweighting. data withdatingcorrection Arctic amplificationof3,8,whichisquite close 2009; Moberg etal, 2005],itgives avalue of temperature reconstructions[Klimenko, withasetofrecent comparison hemispheric theMedieval during Warm Epochis1,1°C;in value ofthemaximumtemperature rise coupled climaticmodels. Ourreconstructed than theglobalmeanbasedonasetof warming, ontheaverage, 1,9 timesgreater Winton [2006]found themeanannualArctic etal,the past3millionyears 2010] ). [Miller to 3,4(relative to thepalaeodatathrough etal, 2010]) [Bekryaev one andahalfcenturies (relative to theinstrumentaldataofpast withintherangefroma whole)varies 1,72 Hemisphere ortheglobeas for theNorthern in theArcticascompared to thevariability amplification (larger temperature variability the pastdecaderesearch showthatArctic ofthestudyarea. Resultsof characteristics climateaccording to theknown variance Then we scaledthetimeseries were equal. taken (1495–1995AD)data. historical The weights averaged withpollen(1–1555AD)and were (1–1995 AD) the wholestudyperiod dataspanning thetree-ring following manner: werefrom ournetwork assimilated inthe etal, proxy 2009].Allselected records[Jones Composite Plus Scaling(CPS)approach For thefinalreconstruction,we usedthe Description ofaveraging andcalibration and withoutweighting ** Pollen datawithoutdatingcorrection without weighting ** Pollen and datawithdatingcorrection * mean andvariance Calibration ontheinstrumentalperiod, linear regression* Calibration ontheinstrumentalperiod, the instrumentaldata* amplification andminimalvaluesfrom Calibration basedontheeff Table 3.Statistics ofvarious reconstruction in°C) versions (departures ect ofArctic ect ect of Arcticamplifiect cation andtheminimalvaluesof theinstrumentaldata. instrumental R period 2 .41–.80102 023 0.4085 0.4003 –0.2031 0.4524 –0.1681 1.0426 0.3270 –1.2800 –0.2509 1.1230 –1.2800 0.6461 –0.1770 0.4192 1.1623 –1.4584 0.6543 0.8778 –0.1611 –1.0858 0.5851 1.1484 0.5410 –1.2800 0.6311 onthe with various calibrationsand with various Table 3for the Fig. 3for all three reconstructionversions was demonstrated in[Lee etal, 2007].See preferable linearregression to anordinary as data. This calibrationapproach seemsto be are setequalto thoseoftheinstrumental andmeanofreconstructed values variation alternative calibrationapproach when the former. We have alsoemployed an ofdata withthesubsequentcorrection reconstructed againsttheinstrumental of thelinearregression coefficientsofthe This procedure acalculation comprises instrumentaltimeseries. contemporary a standard calibrationagainstthetarget instrumentaldata.Besides,early we used against boththepalaeoclimaticand Thus, we calibrated ourreconstruction Petrozavodsk [Peterson, Vose, 1997]. and stations: Haparanda,Arkhangelsk, instrumental datafrom three meteorological were setat–1,3°Caccording to theearly Finally, theminimumvaluesin1810s theminimumvalues.expense oflowering baselines, we atthe have variance preserved by about1°Cabove thereference 1951–1980 (inthe980sand the 1940s)werewarmings Because thetemperatures atthemaximum in theMedieval Warm Epochto 1,0°C. and adjustthepeaktemperature anomaly with theavailable palaeoclimaticevidence reconstructed datato afullcorrespondence weNevertheless, found our itusefulto bring to theupper boundoftheindicated range. Lowest value Highest Highest value Mean over the recon- struction deviation Standard

21 GEOGRAPHY 22 GEOGRAPHY coefficient of determination (R coefficient ofdetermination but itreaches 0,91ifwe usetheinstrumental whole instrumentalrecord sinceAD1815, correlation coefficientequals0,81for the their goodcorrespondence (Fig. 4). The with theinstrumentalrecord reveals ofthefinalreconstruction A comparison and its characteristics Temperature reconstruction instrumental data(blacklineinFig. 3). minimum valuesdeducedfrom theearly based ontheArcticamplificationeffect and variant studiesareconstruction historical to recommend for comparative climatic/ data presented inthispaper, we are inclined the Arctic climate change including the concerning the wholebodyofknowledge time spanofthestudy. However, basedon thewhole andcoldepisodesduring warm and doesnotatallchangeasequenceof onthescaleoftemperature impact variations preprocessing strong doesnothave avery well asdifferent ofpollendata variants ofreconstruction calibration asvariants Fig. 3showsthatemployingdifferent reconstruction models. Fig. 4. The final reconstruction of the mean decadal temperature departures for northeastern Europe (blue) (blue) Europe northeastern for departures temperature decadal mean the of reconstruction final The 4. Fig. and instrumental data (red). The inset denotes the instrumental period. Reference period: 1951–1980 period: Reference period. instrumental the denotes inset The (red). data instrumental and 2 ) for these of theregion are available from meteorological allthelong-term stations record sinceAD1895,whentheobservations Norway andBarents to Seasconnected the Norway water inflowintoand pulsationofwarm the Oscillation(NAO) astheNorth-Atlantic known andoceaniccirculationatmospheric to be changesof toattributed quasiperiodic to be islikely 2011], a70-yr periodicity As wasshowninourrecent study[Klimenko, indicators [Fyodorov etal., 1996]. ofdifferentfound solar intime-series Cycles are withtheseperiods persistently 1997]. [Klimenko, variation the solaractivity 200 years, whichare apparently global, is aroundoscillations withtheperiods 500and (Fig. 5). We argue thatthesource ofthe of499,195,73,48,and24yearsperiods modes oftheregional temperature with revealed statisticallysignificant oscillation by themaximumentropy method(MEM).It analysis ofthereconstructionwasperformed and centennial timescales. The spectral degree onthemultidecadal ofthevariability The developed showsahigh reconstruction Europe isshownatFig. 4. ofNortheastern version ofclimate history (see Fig. 1). T he final fact thatinthestudyregion, fact thecorrelation of of 22yrs. bythe This assumption issupported peak (SO), whoseindexhasaweak spectral Oscillation in thedynamicsofSouthern circumstance urges usto search itsorigin rather Hemisphere 2011]. Southern [Klimenko, This is well pronounced onlyintheoceansof against somedifficulties, becausethiscycle solar forcing, butthis explanation canrun to isusuallyattributed the A bidecadalcycle NAO for thelast600years [Cook etal., 2002]. of simulationsandreconstructionsthe –itfollows50-yr from periodicity theresults AMO). toThe samesource explaina islikely NAO (theAtlantic MultidecadalOscillation, afa ta. 091000.298 0.299 1.000 0.612 0.307 1.000 0.535 0.701 0.407 0.354 0.115 0.306 1.000 0.492 0.270 0.545 0.288 0.509 0.627 1.000 0.457 0.593 0.222 0.437 Sleptsov,Klimenko, 2003 1.000 0.648 etal., 2009 Kaufman 1.000 Ljunqvist, 2010 Esper etal., 2002 2009 Klimenko, Moberg etal., 2005 This work Fig. 5. The power spectral analysis of the final temperature reconstruction. reconstruction. temperature final the of analysis spectral power 5.The Fig. Periods (yr) corresponding to the spectral peaks are shown are peaks spectral the to corresponding (yr) Periods Table 4. Cross-correlations between various reconstructions various between Table Cross-correlations 4. work This This et al., 2005 Moberg Moberg Klimenko, 2009 2010] (Table 4,Fig.2010] (Table 6). regionsextratropical (30°–90°N)[Ljungqvist, Hemisphereal., 2002],andfor the Northern [Moberg etal., 2009;Esperet 2005,Klimenko, Hemisphere reconstructions for theNorthern etal., 2009],aswell asArctic [Kaufman a recent regional reconstructionfor the other reconstructions. To dothis, we used annual temperature chronology withsome isinteresting toIt compare thenewmean 1976]. Hemisphere [Trenberth, the Northern is thestrongest for zone alltheextratropical of meteorological parameters withENSOevents DISCUSSION et al., 2002 Esper Esper Ljunqvist, Ljunqvist, 2010 Kaufman Kaufman et al., et al., 2009 Klimenko, Sleptsov, 1.000 2003

23 GEOGRAPHY ggi114.indd 24 i 1 1 4 . i n d d

2 24 GEOGRAPHY 4 is in the range from 1,7 to 3,4 [Bekryaev is intherangefrom 1,7to 3,4[Bekryaev research, theeffect ofArcticamplification Hemisphere). According to therecent regions ascompared to the wholeNorthern of temperature inhighlatitude variations effect ofArcticamplification (anincrease in others. agreesThis fact withtheknown our reconstructionsismuchhigherthan in isobviousthattemperature variability It theRussianof Plain Sleptsov, [Klimenko, [Liungqvist, 2010] latitudes30–90°N (purple),extratropical b) Northeastern for Acomparison thenewchronology of al.[2005] et (blue),Moberg [2009] (red) Klimenko al. [2002] et andEsper (green). a) Northeastern for Acomparison thenewchronology of a b 2003] (orange). 1951–1980 Reference period: Fig. 6. 6. Fig. small region, should alltheclimatic variations reconstruction corresponds to arelatively which canbeeven inantiphase. As our inthe variations Western Arctic, andEastern This isdueto thedifference oftemperature temperature are variations rathermoderate. et al. [2009](Fig. 6b),onecanseethat the Panarctic reconstruction ofKaufman of etal.,et al., 2010].Speaking 2010;Miller Europe (black) withthehemi (black) Europe Pan-Arctic [Kaufman 2009]Pan-Arctic al., et (cyan), andthecentre Europe (black) with regional reconstructions: for the the for reconstructions: withregional (black) Europe spheric reconstructions of 117.03.2014 9:17:40 7 . 0 3 . 2 0 1 4

9 : 1 7 : 4 0 the Medieval the Medieval Warm Period (the10 warmth attheendof14 warmth two millennia:theRomanOptimum(2 two following majorclimaticevents ofthelast All thereconstructionsrepresent the reconstruction. relatively large temperature inour variations be more pronounced. This isrepresented by and, finally, stage(20 warm themodern Migration PeriodMigration (5 are different: thereconstructionof Ljungqvist absolute reconstructions minimaofthetwo the variations. Nevertheless, of long-period shows agoodcorrespondence 6b) (Fig. the reconstructionfor latitudes extratropical ofourreconstructionwithA comparison [Crespin etal, 2009]. measurements, simulation andnumerical different instrumental proxy data,early byrecent studiesbasedon is supported the existence ofthelastthree episodes warm etal.,margins 2012].Interestingly, [Klimenko European colonization oftheNortheastern and with themainimpetusesofpioneering special interest becausetheyare connected values.modern episodesare of These short reached andsometimeseven exceeded the theseperiods, temperatureAD). During has 1370, 1400–1440,1470–1510,1770–1810 theLittleIceAgelike (for examplein1350– long) even prolonged during coldstages events to warm (oftwo four decades short latitudes) leadsto anoccurrence ofrather temperature (ascompared variations to mid for highlatitudes. Alarge amplitudeof andcoldepisodes,warm whichare common chronology displays of quickalternations alltheotherreconstructions,Unlike our Tambora (1815)volcanoes. to large eruptionsofKuwae(1453)and 1810s, etc. The latter events are attributed coldeventscenturies, sharp ofthe1450sand attheendof10 warming in details:allofthemdisplay pronounced thereconstructionscoincide Often, century). Age (the13 notablecoolingoftheLittleIce centuries), and 3 rd centuries), thecoldepoch ofthe centuries), th through the19 th and6 th century, notable th th th centuries), centuries), centuries), and18 th to 12 to nd th th th

6 our reconstruction–inthemiddleof between the14 between inthelate 9thandattheboundary periods decadal timescales–for example, warm and sometimesratherbigdifferences at chronology displays larger variability (Fig. European 6b).ButtheNortheastern Period, LittleIceAge, stage warm and modern climatic events, suchastheMedieval Warm also reveals asimilarinterpretation oflarge for Sleptsov, Central Russia[Klimenko, 2003] Europe withthereconstruction Northeastern ofournewreconstruction forA comparison [Yamanouchi, 2011]. arefactors ofgreater often importance while for theArctic region, circulation probably dominated byradiationfactors, decadal andcentennial climate changeis etal., 2008].Ontheglobalscale, [Wanner bythepresentconfirmed day climatology differ significantly onaregional scaleasis Less pronounced climaticevents can 1912]. AD1883;Katmay, AD AD 1835;Krakatau, Awu, AD1641; Tarumai, AD1739;Coseguina, Mitchell, AD1580;Huaynaputina, AD1600; 639; Ksudach,AD900;Kuwae, AD1453;Billy AD 540;unindentifiedtropical eruption,AD eruptions(Taupo, AD177;Rabaul, powerful significant coldevents alsomatched themost 1815).Other of thelastmillennium(Tambora, volcanic eruption the mostpowerful during in ourreconstructionoccurred inthe1810s thattheabsolute minimum explain thefact [Shindell etal., 2004]. can This observation opposite canbeobserved effect (warming) high latitudeswhileinmidlatitudes, an pronounced in of volcanic eruptionsisvery studied regions. For example, aclimaticeffect as well asto thedifferent geography ofthe toattributed different proxy datasetsused, of climate change episodes in neighboring of climate changeepisodesinneighboring reconstructions butreflectthereal variety ofany of thetwo not theshortcomings We believe thatthesedifferences are coolepisodesinCentral Russia.clearly between the17 between [2010] hasitsminimumattheboundary th and in the early 19 andintheearly th th and18 and15 th th century. It canbe century. It th centuries, whereas centuries during during centuries

25 GEOGRAPHY 26 GEOGRAPHY . Cook E.R., D’Arrigo R.D., M.E.(2002)Awell- verified, Mann multiproxy reconstructionof 5. Bьntgen U., Tegel W., M.,Frank McCormick D., K., Nicolussi Trouet 4. V., J.O., Kaplan F., Herzig R.V., Polyakov Bekryaev I.V., Alexeev V.A. (2010)Roleofpolaramplificationinlong-term 3. Andreev A.A.,Klimanov V.A. (2000)Quantitative Holoceneclimaticreconstruction from 2. AimersJ., HodellD. (2011)Societalcollapse:Drought //Nature. andtheMaya. Vol. 479. 1. of decadalmeanannualtemperature with ofournewreconstruction The comparison as well asonthegeological timescale. period, epoch,historical the contemporary European climate changein Northeastern the concerning accumulates knowledge because it,to amaximumpossibleextent, of themmay beconsidered thebase-case, reconstruction were developed andone Five different versions oftemperature etal, 2012]. in ourrecent [Klimenko work eventshistorical whichhasbeenconducted a comparative chronology ofclimaticand millennia andcanbeusedto elaborate ofthisregion forhistory thelasttwo We represents thinkitcorrectly theclimatic sediment,andhistorical.ring, pollen/lake Europe proxy data:tree- basedonvarious climatic chronology for Northeastern In this study, we presented amulti-archive cool climate stagesinCentral Russia. stableandeven1920–40s took placeduring of theArcticregion inthe1860–70sand –for example, observed abruptwarmings centuries,two whensucheffects were really instrumental meteorological dataofthelast regions. bythe This statement issupported REFERENCES CONCLUSIONS P. 1754–1764. since A.D. AtlanticOscillationIndex 1400//J.the winter North ofClimate. Vol. 15.No. 13. andhuman susceptibility.variability // Science. Vol. 331.No. 6017.P. 578–582. Heussner K.-U., Wanner H.,Luterbacher J., EsperJ. (2011)2500years ofEuropean climate No. 14.P. 3888–3906. airtemperature Arcticwarming. andmodern //J. variations Climate.surface Vol. 23. Arctic Russia.//J. Paleolimnol., Vol. 24.No. 1.P. 81–91. No. 7371.P. 44–45. Russian Federation MK-7354.2013.5. funded bytheGrantofPresident ofthe continuing support. The studywaspartly von HumboldtFoundation (Germany) for We to would thanktheAlexander like the region. not canceleachotherwhenaveraged over are synchronousvariations nearly anddo small size ofthestudyarea, where climatic effect and, ontheother hand, to arelatively on onehand, to theArcticamplification reconstructions. We this feature attribute amplitudecomparedvariance to theother scale. Ourreconstructionreveals alarger whole climaticpictureonthehemispheric regional scalecansubstantiallydiffer from the ona and multidecadalclimaticvariations regional scales. Butlesssignificant decadal are and evidentbothonthehemispheric AD), theLittleIceAge (13–19 and thepresent stage(20 warm Great Period Migration (5–6 3 the Medieval the Medieval Warm Epoch(10–12 climatic events astheRomanOptimum(2 showsthatsuchlarge-scale reconstructions some otherregional andhemispheric ACKNOWLEDGEMENTS rd centuries AD),subsequentcooling ofthe centuries th th centuries AD), centuries centuries AD), centuries th th centuries centuries century) century)  nd – 19. Klimenko Klimenko V.V., SleptsovA.M. (2003)Complex ofclimate reconstruction ofEastEurope over 19. Klimenko V.V., V.V., Matskovsky Pakhomova L.Yu. latitudesclimate variations (2012)High 18. Klimenko V.V. (2011) Why IsGlobal Sciences. Earth Warming //Doklady SlowingDown? 17. Klimenko V.V. (2010)AComposite oftheRussianArctic Climate Backto Reconstruction 16. Klimenko V.V. (2009)Climate: Lost Chapter ofthe MEIPubl (in World Moscow: History. 15. K 14. K 13. D.S.,Kaufman SchneiderD.P.,12. N.P., McKay Mil- K.R., AmmannC.M.,BradleyR.S.,Briffa JonesP.D., Osborn K.R., Briffa T.J., Lough J.M.,11. vanOmmen T.D., Vinther B.M., Luterbacher Hantemirov R.M.,Shiyatov S.G.(2002)Acontinuousmultimillennialring-width chrono- 10. M.,HallingerSinghJ., Agafonov Gurskaya L., M.(2012) Wilmking Temperature recon- 9. Fyodorov M.V., Klimenko V.V. andDovgalyuk V.V. 8. (1996)Sunspotminimadates: Asecular EsperJ., Cook E.R.,Schweingruber F.H. (2002)Low-frequency signals inlongtree-ring 7. Crespin E.,GoosseH.,Fichefet T. M.E.(2009) incou- andMann Arcticwarming The 15thcentury 6. the last 2,000 years. // Izvestia RGO. No.the last2,000years. 6.P. //Izvestia 45–53 (inRussian). No. 2.P. 130–163(inRussian). andModernity. Ages Europe //History intheMiddle of Northeastern and pioneering 2011. Vol. 440.Part 2.P. 1419–1422(inRussian). R.,Majorowicz, J., Springer. M.,Berlin: Brбzdil R.,Kejna Przybylak, Chapter 3.P. 295–326. A.D. 1435.//In: The Polish Eds. Overview. Climate inthe European AnHistorical Context: Russian). ScienceSections. 1997. demy ofSciences/Earth Vol. 357A,No. 9.P. 1339–1342(inRussian). RAN.Ser. //Izvestia geogr.sian Plain period thehistorical during No. 1.P. 89–96(inRussian). P. 1236–1239. (2009) Recent Warming Reverses Long-Term Arctic Cooling. //Science. Vol. 325.No. 5945. J.T., B.L., Overpeck ler G.H.,Otto-Bliesner Vinther B.M.,2k Project ArcticLakes Members status andfuture prospects. // The Holocene. Vol. 19.No. 1.P. 3–49. palaeoclimatologyE. (2009)High-resolution ofthelastmillennium:areview ofcurrent J.T.,Overpeck N.,SchulzM., Riedwyl Tudhope A.W., Villalba R., Wanner H., Wolff E.,Xoplaki Esper J., GoosseH.,GrahamN.,JansenE.,Kiefer T., KullC.,Kьttel M.,Mosley-Thompson E., J., Wahl E.R.,ZwiersF.W., B.M., Cobb K.M., M.E.,SchmidtG.A., AmmannC.M.,Buckley Mann logy in Yamal, // . northwestern The Holocene. Vol. 12.No. 6.P. 717–726. Dendrochronologia. Vol. 30.No. 4.P. 302–309. widthsofthree valleybasedonring intheObRiver coniferousstruction tree species// forecast //SolarPhysics. Vol. 165.No. 1.P. 193–199. 5563. P. 2250–2253. chronologies for reconstructing pasttemperature variability. //Science. Vol. 295.No. pled modelsimulationswithdataassimilation//Climates ofthePast. Vol. 5.No. 3.P. 389–401. limenko limenko V.V. ofHolocene. // (1997)Onmajorclimaticcycles Transactions oftheRussianAca- limanov N.V.V.A., N.A.,Blagoveschenskaya (1995) Khotinsky Variations ofclimate oftheRus-

27 GEOGRAPHY 28 GEOGRAPHY 3 . Yamanouchi T. 20 (2011)Early 32. Winton M.(2006)AmplifiedArcticclimate change: albedofeedback What does surface 31. Wanner H.,BeerJ., Butikofer J., Crowley T.J., Cubasch U., J., Fluckiger GoosseH.,Grosjean 30. Velichko, A.A.,Andreev A.A.,Klimanov V.A. (1997)Climate andvegetation dynamicsinthe 29. Oscillation//Quart. Trenberth oftheSouthern (1976)Spatialandtemporal variations K.E. 28. ShindellD.T., M.E.,Faluvegi SchmidtG.A.,Mann winter climate respon- G.(2004)Dynamic 27. ReimerP.J., BaillieM.G.L.,Bard E.,Bayliss A.,BeckJ.W., P.G., Blackwell 26. C.,Buck Bronk Ramsey Peterson T.C., Climatology Network Vose oftheGlobalHistorical R.S.(1997)Anoverview 25. M.M., Naurzbaev Vaganov E.A.,Sidorova O.V., Schweingruber F.H. (2002)Summertempe- 24. D.M., N.M.,Karlen W. Moberg A.,Sonechkin Datsenko Holmgren K., variable (2005)Highly 23. G.H.,AlleyR.B., J., Brigham-Grette Miller Fitzpatrick J.J., Polyak L.,Serreze M.C., White J.W.C. 22. LjungqvistF.C. intheextra-tro- (2010)Anewreconstructionoftemperature variability 21. Lee T.C.K., ZwiersF.C. and Tsao M.(2008)Evaluationofproxy-based millennialreconstruc- 20. Vol. 5. No. 1.P. 53–71. have to dowithit?//Geophys. Res. Lett. Vol. 33.L03701.doi:10.1029/2005GL025244 ScienceReviews. Quaternary Vol. 27.No. 19–20.P. 1791–1828. P., Wagner M., to LateWidmann Holocene climate M.(2008)Mid- change:anoverview. // M., JoosF., J.O., Kaplan Kuttel M.,MullerS.A.,Prentice I.C.,SolominaO., Stocker T.F., Tarasov P. 71–96. andforest Int. zone theLateVol. GlacialandHolocene. during //Quaternary 41/42. J. Soc. Royal Met. Vol. 102. No. 433.P. 639–653. doi:10.1029/2003JD004151. se to large tropical volcanic eruptionssince1600//J. Geophys. Res. Vol. 109.No. D05104. // Radiocarbon. Vol. 51.No. 4.P. 1111–1150. Age 0-50,000 CalibrationCurves, Radiocarbon andMarine09 (2009) IntCal09 Years calBP. Richards D.A., SouthonJ.R., Talamo S., Turney C.S.M.,vanderPlicht J., Weyhenmeyer C.E. K.F., Kaiser Hogg A.G.,HughenK.A., B., F.G., Kromer McCormac S.W., Manning ReimerR.W., G.S.,EdwardsC.E., Burr R.L.,Friedrich M.,Grootes P.M., Guilderson T.P., HajdasI.,Heaton T.J., P. 2837–2849. temperature Meteorological database//BulletinoftheAmerican Society, Vol. 78.No. 12. floatingseries. // and earlier The Holocene. Vol. 12.No. 6.P. 727–736. ratures ineastern Taimyr inferred chronology from tree-ring a2427-year late-Holocene data. //Nature. Vol. 433.No. 7026.P. 613–617. Hemisphere temperatures reconstructedNorthern from low-andhigh-resolution proxy views. Vol. 29.No. 15–16.P. 1779–1790. ScienceRe- (2010) Arctic amplification:canthepastconstrainfuture? //Quaternary P. 339–351. Hemisphere millennia.//Geogr. thelasttwo during pical Northern Ann. Vol. 92A.No. 3. tion methods//Clim.Dyn. Vol. 31.No. 2–3.P. 263–281. th century warming intheArctic: Areview. warming century //Polar Science. Vladimir Matskovsky Klimenko Vladimir DittmarDahlmann papers and1monograph. research ofmore than20 projectsandtheauthorco-author to differentofRussia.HeisPrincipal Investigator oftwo parts innumerousclimate reconstructions. expeditions Heparticipated dendrochronology, dendroclimatology, andhighresolution paleogeography mainresearch in2011.His interests are with diplomaincomputer scienceandreceived hisPh.D. in Geography, RussianAcademy ofSciences. Hegraduated in2008 Russian ArcticClimate Backto A.D. 1435(2010). the (2009);AComposite ofthe Reconstruction World History Hemisphere (2004);Climate: Lost Epoch intheNorthern Chapter of Hemisphere (2001);Cold Subatlantic Climate oftheEarly Northern Publications:Main Climate oftheMedieval Warm Epochinthe influence onsocialhistory, forces driving process. ofthehistorical globalclimateinteraction, change, palaeoclimatology, climate research interests are associated withenergy andenvironment Ph.D. degree in1975andD.Sc. degree physics. in1985thermal His Power atMoscow Laboratory Engineering Institute. Hereceived his amerikanische amerikanische Tagebuch ausdenJahren 1788–1791(2009,eds). Dassibirisch- Merck. Heinrich (2009);Carl Gegenwart Publications: biszur centuries. Main Sibiren vom 16.Jahrhundert Siberia and in the history ofScienceinthe18 andinthehistory Siberia researchHabilitation in1994.His interests of are inthehistory Universitдt, Bonn.Hereceived hisPh.D. degree in1983andhis Friedrich-Wilhelms- attheRheinische of EastEuropean History isFull Professor andHeadofGlobalEnergy isFull Professor andHeadoftheDepartment isScientificResearcher of attheInstitute th and19 th

29 GEOGRAPHY 30 GEOGRAPHY changement de milieu, tout enqualifiant zones d’interfaçage, defrontière, ou de dedétecter des l’analyse carellepermet résolution représente unélémentcléde comparaison etderegroupement. Cette seuillage pourdéfinirune résolution de critères decomparaisonetunsystème de entre unsystème defiltrageàtamis cette méthodologie l’interaction concerne L’un desmécanismesmisenplacedans Comparaisons). programmes LAC (Logiciel Automatique de ont été développés laméthodologie etles duterritoire.caractérisations Danscecontexte automatique possiblecesreprésentations et classifier etcomparer delamanière laplus l’interprétation estposéelorsqu’il s’agit de laquestiondel’aideà D’autre part volumineuses dansleurslieuxdestockage. la gestiondesdonnéescomplexes et part analyse deterritoire d’une concerne La problématique quiaccompagne cette campagnes deprélèvement d’échantillons. dans despuitsdeforage, ouencore par navigation sismique, parcarottage, acquises des mesures obtenues parcampagnes de s’agit declassifier, caractériser, etinterpréter de nombreuses informations sontacquises. Il but d’en identifier lesressources naturelles, territoire surle plangéophysique, etdansle e-mail : [email protected] e-mail : Laboratoire Sisyphe, UMR7619,Université Pierre Curie etMarie Paris VI, Alba Fuga RÉSUMÉ. COMPARISON AND OF METHODS AUTOMATIC DATA GEOGRAPHIC INTERFACE AREAS AUTOMATIQUE DE DONNEES DE METHODE COMPARAISONET ZONES D’INTERFAÇAGE GEOGRAPHIQUE

Dans lecadre del’analysed’un filtering systemfiltering andathreshold adjustment criteria comparison between The interaction have been designed andcoded. Comparaisons) methodologyandprograms LACthis context (Logiciel Automatique de automatically a territory. In characterize inordergeoscience datacomparisons to that couldoptimize andautomatize big moreover neededto findamethodology data. Automatic interpretation assistanceis the managementofcomplexandvoluminous analysisprocess goesalongwith This territory andinterpreted.characterized sample withdraw, needsto beclassified, drilling, orseismic navigation surveys, All thisinformation acquired through in order to identifynaturalresources. geophysical configurationandbehavior, hasto beanalyzed inits when aterritory seuil detolérance, zone d’interfaçage similarité, groupe desimilarité, résolution, décliner surleplangéographique. de géosciencesetcommentonpeutla quelle manière elles’applique auxdonnées de laméthodologie LAC, nousvoyons de frontières. Après unepremière description un caractère plusoumoinsprogressif deces ABSTRACT. MOTS CLÉ:

Numerous dataare registered Ressemblance, de métrique in thegeographic field, willbeexplained. geoscience data,andhowitcanbedeveloped of LAC methodology, theway itisappliedto changes bedetected. afirstdescription After areas, borderinterface areas, orenvironment geographic analysiselementwhichmakes key resolution.and clustering This resolution isa methodology, inorder to defineacomparison system isone ofthemechanismsinvolved inthis place pas surl’ellipsoïde,place ou dansl’espace l’autre. Ici,ladifférence estquel’on nese objets sontproches s’ils vers tendent l’un de limite enanalyse mathématique. Deux prochenotion extrêmement delanotion inférieure à1unité demesure. s’agit Il d’une la distanceeuclidiennequi les sépare est deux pointsdel’espace sontsemblablessi tolérance utilisé. Onpeutconsidérer que la ressemblance, ouencore de au facteur relatif àlarésolution àlaquelleonjugede loxodromie… L’adverbe “suffisamment” est la distanceeuclidienne, ou orthodromie, s’ils sont “suffisamment” proches, selon objets sontsemblablesenpositionnement de laressemblance enpositionnement.Deux résolution donnée. Onpeutprendre l’exemple conceptuelle entre objets, selon une le jugementoul’évaluation delaproximité La ressemblance peutêtre perçue comme métier.experts raisonnements pouvantêtre faitsparles comparaisons suivantauplusprès les de ressemblance, etparlaréalisation de etgéophysiqueterritoriale parlamesure fournir unoutild’analysedel’information L’objectif delaméthodologie LAC estde hiérarchisées. demesurescouplés àunesérie desimilarité declassificationautomatique algorithmes La méthodologie généraleestbaséesurdes threshold, area. geographic interface groups,similarity resolution, tolerance KEY WORDS: AUTOMATIQUE DE DONNÉES L’APPROCHE LAC DE COMPARAISON INTRODUCTION :

Similarity, similarity metrics,Similarity, similarity ici l’ensemble desinformations, acquisitions une unité demesure. Par “donnée”, onentend et tout enregistrement, elle aunenature et du critère. Cependant, commetoute mesure comparaison. Elleestuneréalisation physique enregistrement, de cescritères de l’un de territoire. Uneacquisition estunemesure, un mêmephénomènesurce configurations d’un decomparaisonentre les différentes pertinents constituentdescritères caractéristiques deces Certaines et decaractéristiques. modélisable parunensembled’attributs ou leterritoire quel’on souhaite explorer est Le phénomènequel’on souhaite analyser, comparaison hétérogènes pourlaplupart. car mettantenjeuplusde20critères de complexeest unobjetgéo-scientifique sismique. Uneligne denavigation sismique de comparaison4000lignes denavigation exemple, lesystème croise en5minutes nombre d’informations enpeudetemps. Par assure lecroisement multicritères grand d’un de ressemblance etdecescomparaisons L’automatisation informatique decesmesures évoluée,de similarité oucomposée. etdoncunemétrique même unalgorithme l’arbre. Cet arbre ouautomate constituelui- au cheminementdelaressemblance dans objets comparés. Cet indicateur estrelatif signifiant ledegré deressemblance des égalementdedonnerunindicateur permet Il multicritères, detolérance auxfacteurs près. sinon. Untel lacomparaison arbre permet onapplique etfacteurs quelle métrique ont été identifiés commesimilaires, et à l’étape précédente lesobjetscomparés detolérancequels facteurs onappliquesi de savoir et desimilarité quellemétrique un arbre binaire, ouautomate, permettant Un arbre dedécisionesticidéfinicomme induite unl’arbrepar lamétrique dedécision. nombre decritères decomparaison,etrégi espace ayant autantdedimensionsquele dans un “espace desimilarité”, c’est-à-dire un euclidien à3dimensions, maisonseplace LES CRITÈRES DE COMPARAISON LA MODÉLISATION ET

31 GEOGRAPHY 32 GEOGRAPHY les critères decomparaison établisoucalculés Dans unedeuxième phaseméthodologique, comparaison desdonnées. de renseignement pasàla qui neserviront critèresattributs decomparaisondes attributs d’attributs,catégories endistinguant les il estnécessaire d’identifier lesdifférentes de ladonnéeouduphénomène. Ensuite, méthode decomparaisonestlamodélisation Dans l’approche LAC, lapremière phasedela physique. phénomène physique, ouuneconfiguration directes oudéduites réalisant unmodèled’un Fig. 1 : Schéma HBDS de la méthodologie LAC par sommation dessegments entre points soit etabscisse curviligne, par interpolation navigation sismiquepeutêtre calculée soit exemple, unelongueurpourligne de grande avec lephénomènemodélisé. Par etsonadéquationplusoumoins l’attribut formule mathématique decalcul laLa fiabilité mathématiqueconcerne robustesse detolérance. dufacteur (ou degré deladonnée), decaractérisation decomparaison mathématique, lapertinence de laclassificationattributaires sontlafiabilité ranger parcatégorie, partamis. Les critères sont classifiéseux-mêmes. s’agit Il deles On peutconsidérer qu’une de métrique une unité demesure etunemétrique. A chaquenature d’acquisition correspondent élémentaire. attributaire desimilarité et des métriques hiérarchisés, on peutaborder laquestion des tamis, etquelestamissonteux-mêmes Une fois sontclassésdans quelesattributs date donnée, parexemple. le nombre surle coursd’eau debarrages à une robuste qu’un etgénérique queserait attribut des débitsdecoursd’eau n’est doncpasaussi Le seuildetolérance choisipourcomparer selon leclimatdelazone géographique ciblée. d’eau, ledébitchangeenfonction delasaison, Pour l’exemple cours demodélisation d’un tolérance lepays d’acquisitiondesdonnées. on devraprendre encompte dansleseuilde selon lepays danslequelilssontsaisis. Alors plus oumoinséloignésnomstandard d’un donnés auxobjetsgéographiques peuvent être ladonnée.où estprise Par exemple, lesnoms fiabilité peutdépendre delazone géographique les objetssontsuffisammentsimilaires, leur dequelleproximité desavoirpermettant àpartir tolérance quisontcesseuilsderésolution nous larobustesseConcernant de desfacteurs à despointsprécis, ouenmoyenne. quesaprofondeurcaractérisant ousondébit pierres dansl’eau seraituncritère moins modélisation decoursd’eau, lacouleurdes donnée modélisée. Par exemple, pourune lephénomèneoula capacité àcaractériser vise àordonner selonleur lesattributs Le decomparaison critère depertinence des comparaisonsetcalculsd’attributs. temporellesproblématique deperformances utilisé, notamments’il fautfaire faceàune pas forcément l’appareil mathématique ligne,de lalongueurd’une maiscen’est mathématique approchant lepluslaréalité de tir. L’abscisse estlemoyen curviligne COMPARAISON DESEN CRITÈRES FONCTION DE DE SIMILARITÉ – SPÉCIALISATION LES ATTRIBUTAIRES MÉTRIQUES – De prendre De encompte lefaitqueces – de dictionnaire disposerd’un De – divers, ilestnécessaire : de roches dansdestitres dedocuments exemple, noms afinderechercher certains de lafonction descritères qu’il contient.Par comparaison, enfonction delanature et être àchaquetamis decritères attribué de Un ensembledecomparateurs peutdonc quetextuelles.numériques, géométriques doncaussibiendesdonnées concernent acquisitions. Ces comparateurs etmétriques pouvant être déduitsetcalculésdepuisles centroïdes, azimutsetautres éléments d’auteurs d’enveloppes extraits, convexes, s’agir depréfixes, suffixes déduits, denoms peut d’acquisitions. Il dire calculéesàpartir aussi auxmétadonnéesdéduites, c’est-à- des mesures. Les comparateurs s’appliquent conditions d’acquisition ousurlafiabilité techniques, d’avis donnéssurles rapports sismique oudesnomsdedocumentset sismique, unnomdeligne denavigation d’acquisition commeunnomdecampagne métadonnées quereprésentent lesconditions comparateurs. sontapplicablesaux Ils méthodologie LAC unensemblede lamêmemanière,De ondéfinitdansla manipule descoordonnées géographiques. ouuneloxodromieune orthodromie sion à faire àdescoordonnées planes, oubien on utiliseunedistanceeuclidiennesia comparer deuxpositionsgéo-référencées, métrique. Poursimple soustraction totales de puitsdeforage, onutiliseune exemple, pourcomparer deuxprofondeurs de similarité.constituer unemétrique Par comparateur “>” ouégal)peut (supérieur detolérancefait aufacteur près. Unsimple s’ils sontsimilaires ounon.Lacomparaisonse objets selonuncritère uniqueafin d’évaluer decomparer permettant deux algorithme estuneformulesimilarité mathématique, ou avec des insertions decaractères spéciaux avec desinsertions noms peuvent être danslestitres écrits roches quel’on souhaite chercher synonymes, ouabréviations connuesde

33 GEOGRAPHY 34 GEOGRAPHY bloquants, celapeutcauserune baissede tamis, lacunaires silesattributs nesontpas son tamis, lesautres etdutamisparmi la positionhiérarchique dans del’attribut différents.exactement Cependant, selon similaires,vide sontsoitexactement soit comparés que lesdeuxattributs dont l’un attributaire,similarité onpeutconsidérer de vides?Danslesmétriques attributs renseignés. Comment traiter alorsces unedonnéenesont pascaractérisant lacunaires, c’est-à-dire quetous lesattributs données, lesinformations peuvent être Par basesde exemple, dans certaines donnée deLAC. chacune, onpréconise uneconfiguration les différentes problématiques, etpour donc uneapproche adaptative. Onrépertorie problématique donnée. L’approche LAC est méthode declassificationspécifiqueàune critères une decomparaison,onattribue mesure selonlanature etlafonction des l’élaboration sur desimilarité de métriques une problématique spécifique. Tout comme Chacune decesméthodesestappropriée à les groupes asymétriques, etlesclusters. trois deregroupements types :lescouples, On peutdistinguerdanscette approche d’analyse del’information. ainsi quesurcequ’elle impliqueentermes résolution quecontientcette méthodologie, l’attentionsuite, surlanotion de onportera de tolérance pourlescomparateurs. Par la comparaison, etduparamétragedesseuils l’on effectue, delahiérarchie descritères de declassificationque éléments :dutype Elle dépendégalementdetrois autr es spécifiquesauxdifférentssimilarité attributs. de demétriques du phénomène, d’autre part delamodélisationduterritoire et part d’une L’analyse del’information dépenddonc prendre De encompte qu’il parfois arrive – PRINCIPE DE RÉSOLUTION TROIS STRATÉGIES DE CLASSIFICATION –

potentielle dezéros nonsignificatifs de numérotation avec laprésence qu’on trouve danscestitres un système de résoudre lescasderecouvrement une mêmezone géographique demande Fusionner desinformations concernant d’acheter. quelles donnéesilestréellement nécessaire base qu’on souhaiterait acheter, afindevoir l’on possèdedéjàauxmétadonnéesd’une données qu’on veut comparer une baseque est aussiutilepoursavoir quellessont les pas déjàcontenues enbase. Ce procédé savoir silesdonnéesàcharger nesont données dansunebasederéférence, pour aussilors duchargement denouvelles servir ou réconcilier peut desbasesdedonnées. Il nécessaire lorsqu’on l’on souhaite fusionner même source”.d’une deprocédé Ce type est même coupledeuxdonnéesprovenant règle “on nedoitjamais retrouver dansun contraintes deregroupement commela à deuxdedonnées, pouvantsuivre des Les couplessontdesregroupements deux Couples etréconciliation desources lecroisement multicritère pourl’analyse – legéo-référencement – la reconstitution et lerattachement – laréconciliation d’informations etde – desbasesdedonnées l’harmonisation – naturelles, sont: meilleured’une exploitationdesressources du territoire, et del’analysedesrisques jusqu’à présent danslecadre delagestion Les différentes problématiques envisagées problématique visée. contexte, laconfigurationdesdonnées, etla auxdonnéeslacunaires selonle par rapport àadopter encore choisirlecomportement fautdonc précision danslacomparaison.Il

et l’interprétation desphénomènes documentaire différents supports garder quelesdonnéesplusprécises afin d’enlever desdoublonsetdene positionnement, ou des caractéristiques positionnement, oudescaractéristiques spécifique tous lespuits quiontun une zone naturel connuepour unrisque plus haut.Nouspouvons alorsrattacher à référence auxseuilsderésolution exposés saisies. Le terme “approximativement” fait coordonnées plusoumoins exactement ce puitsapproximativement ouses écrit, les titres desquelsonretrouve lenomde l’ensemble desdocumentstechniques dans sur unpuitsdeforage etdeluirattacher approche icidesebaserparexemple permet quasi impossibledemanière manuelle. Notre phénomènes ouobjetsphysiques peut être liaison desélémentsseréférant auxmêmes peuvent être nombreux, volumineux, etla naturels. Toutes cesdonnéesetrapports etétudesdezones àrisques des rapports techniques deforage,puits, desrapports identifiants depuitsforage, desnomsde référencées zone, d’une autre d’un côté des géo- côté descartes peut posséderd’un données dontondispose. Par exemple, on afin deformer unpuzzlecompletdes des informations parrecoupements à unesituationoùl’on souhaite rattacher Les groupes correspondent asymétriques Groupes asymétriques etrattachements del’information.stockage de de basesouchangementssupport dedonnéeslorsmigrations pas euperte données. aussidevérifiers’il Ellepermet n’y a la réconciliation dedifférentes sources de doncclassification parcouplagepermet prendre desdécisionssurcesdonnées. La notre aptitudeàlire etanalyser, puis d’optimiserLa secondesolutionpermet la meilleure qualité ? que lesinformations lespluscomplètes, de de manière afindenegarder plussélective union d’ensembles, lesfusionner oudoit-on de donnéesenréalisant simplementune alorsfusionnerlesdifférentesDoit-on bases peuvent avoir été appliquéssurlesdonnées. traitements, notammentd’analysedusignal, technologies, ouméthodologies, différents peuvent avoir été faites pardifférentes d’informations. Parfois desacquisitions inexistant, etn’est pasdansuncluster avec lenuméro duclusterdonnée courante porte alors nousavons deuxpossibilités. Soitla une donnéedéjàcontenue dansuncluster, une donnéeestsuffisammentsimilaire à déjà été affectée àuncluster existant.Si du cluster inexistant,doncsiellen’a pas toujours lenuméro seulement sielleporte avec ladeuxième, “donnée courante”, première donnéedelaliste, oncontinue du cluster vide. Lorsqu’on enafiniavec la numéro decluster, différent dunuméro alors onaffecte àcesdonnéeslemême suffisamment similaires (unedonnée suffit), autres. Siontrouve desdonnéesquiluisont compare lapremière donnéedelaliste aux le numéro ducluster inexistant.Ensuite, on numéro decluster. Au début,ellesonttoutes àchaquedonnéeun dèsledépart attribue declassification,on Dans cetalgorithme de groupes, avec tous lesattributs. surles objets,de similarité lesfuturséléments suivant l’approche s’agit LAC. Il mesure d’une basée surlamesure élémentaire desimilarité par densité. Lanotiondedensité utiliséeest est laclassificationhiérarchique ascendante Le troisièmederegroupement type utilisé Clustering, propagation, harmonisation plusieurs puits. lié àplusieursdocuments, unezone liéeà c’est-à-dire1-N d’appartenance, unpuits donc demanière successive desrelations rattachables àcette zone. Onconstruit deconsidérerpermettant qu’ils sont Fig. Exemple 2. de fusion entre deux clusters. Phénomène de “contagion”

35 GEOGRAPHY 36 GEOGRAPHY à auxdifférentes natures de critères. La attributaires spécialiséesde métriques méthodologiques, ainsi qu’à l’affectation comparaison danslespremières phases mise entamishiérarchisés descritères de système defiltragequicorrespond àla classification estleurcouplage avec un de de cesalgorithmes La particularité légèrement translatés. possède descoordonnées depointstir deslignesde navigation sismiquesil’une lorsqu’on raccorde encontinuité deuxlignes représentant cluster, d’un commec’est lecas possibilité estdechoisir, ouconstruire un d’intégration oudeséparation.Uneautre prendre, ounon,desdécisions defusion, complexes etcomposites, ilestpossiblede voisinage. d’entités Seloncette cartographie des phénomènesdepropagation par comme Ces fusionspeuvent secomporter composites, dansledomainedelasimilarité. aborde unenotiondecontinuité entre objets données sontsuffisammentproches. Icion duseuilderésolution, sid’autresau-delà groupes sont dontlesdonnéesextrêmes estpossibledefusionner des de résolution. Il regrouper lesobjetssimilaires selonlevecteur informations etleurnombre, ils’agit de Quelles quesoientlessources des fusionner lesdeuxclusters. donnée quiluiestsimilaire. fautalors Il dans uncluster différent ducluster dela ressemble. Soitladonnéecourante estdéjà l’affecter aucluster deladonnéequilui d’autres données. Onpeutalorsdirectement Fig. 3. Représentation de données dans un graphi formés selon vecteurs différents de similarité que de similarité, avec les contours de clusters analyser unezone géog comparaison du modèle. Par exemple, pour résolution attributaire suruncritère de attributaire, chacundéfinissantune comme unvecteur deseuilsrésolution Ce seuilderésolution peutêtre défini les données. être souhaitantanalyser définiparl’utilisateur supérieure àunseuilderésolution pouvant objets dontlamesure est desimilarité On considère alorscommesimilaires deux discriminatoire, etleurfiabilité. critères decomparaison,selonleur potentiel classement quel’ond’un effectue entre les élémentaire hiérarchie dépendd’une et de cesmesures attributaires. Lamesure de manière élémentaire parassociation de critère decomparaison,maiségalement spécifiques àchaquenaturede similarité de manière attributaire parlesmétriques méthodologie LAC, estmesurée lasimilarité s’agitIl delarésolution desimilarité. Selonla résolution àlaquelleonregarde ceslignes. sismique parexemple dépenddela Le choixentre deuxlignes denavigation Résolution etzone d’interfaçage humaine. critères travail d’intelligence dépendentd’un du phénomèneetlamiseentamisdes sur lefaitquelamodélisationpréalable mesures. Par contre, ilfautmettre l’accent l’application dusystème defiltrageetdes classification estautomatique, ainsique raphique sur laquelle de le placer, de le positionner par rapport aux de leplacer, aux de lepositionnerparrapport représentation quel’on s’en fait,etnotre manière un objet,deledistinguerdesautres estla étendu. dereconnaître Ce quinouspermet s’agitIl d’un “positionnement” géographique tout ladonnée. autre élémentcaractérisant profondeurs, deroches unâge, destypes et textuelles, descouleurs,des descriptions des compte desparamètres commedesdébits, phénomènes deregroupement enprenant en cette approche, onestcapabledesimulerdes données endeuxoutrois dimensions. Dans au delàdutraitement depositionnementdes géographiques etgéophysiques vont bien ces traitements appliquésàdesdonnées En outre, ilestnécessaire deremarquer que dans unmêmecluster. et dedistinguerdifférentes cercles decertitude dedispersioncelles-ci, des caractéristiques demettre permet de similarité enévidence retirer lesredondances, faire levecteur varier des donnéesdanslebutdelesharmoniser, les différents groupes. Sil’on compare donc mais aussidedéfinirlalimite entre d’interfaçage différents duquelondiscrimine groupes,partir dedéfinirnonseulementlemomentà permet Le paramétrageduvecteur derésolution si elleestmoinscomplète, prédominera. considèrera quelatraceplusprécise, même pouruneétudedeterritoire, on importante Si onconsidère quelaprécision estplus d’étalonnage lepluspetitseralaprécise. la pluscomplète, etlatraceayant lepas d’ondes reçues), latracepluslonguesera (même positionnement,mêmeslongueurs considérer quepourdeuxsignaux similaires de géophonesetsismographes, onpourra on aobtenu destracesdesignaux àpartir Fig. 4. Les trois échelles de mesure de Ressemblance alors lelien faisable entre unecarte La questionque l’on peutse poser concerne et desgroupes dans cetespacedesimilarité. représentées selonladispersiondes éléments d’interfaçage, zones frontalières sontalors peut être trouvé danslefaitqueleszones autre intérêt dereprésentation decetype entred’interfaçage lesditsgroupes. Un groupes sontégalementliéesauxzones entresimilarité clusters. Ces distancesentre auxautres selondesmesures de rapport il s’agirait deplacerlesclusters lesunspar Une fois cette dispersionparcluster effectuée, attributaire) étaitune “force d’attraction”. élémentairela similarité (paroppositionou selon lesmesures desimilarité, commesi auxautresdu groupe lesunsparrapport vue dugroupe, deplacertous lesobjets s’agirait d’adopter enpremier lepointde mesures entre desimilarité lesclusters. Il enfonction des uneanamorphose sorte classique, unereprésentation possibleserait géographique Dans lecasdelacarte vision globaledutraitement etdesgroupes. auxautres. s’agit Il rapport besoind’une d’un à unbesoindeplacerlesgroupes lesunspar dereprésentation répondCe type parcarte manière spatialementdiscontinue. au mêmecluster seraient “regroupés” de élémentsappartenant dimensions, certains àdeux alors sur unecarte caractérisant, comparaisons surd’autres critères les géographique desdonnéesgrâce àdes retrouver leserreurs depositionnement En effet, sil’objectif traitement estde d’un représentation, maistrès rapidementlimité. deux dimensionsseraitunpremier outilde à autraitement. Lacarte servant attributs complexes carconstituéesdenombreux de lavisualisationdescesdonnées Ici, ilestintéressant d’aborder laquestion du territoire ouduphénomèneréel. de construire unereprésentation plusproche critères decomparaison,quinouspermettent complétées parautantd’autres “coordonnées”, géographiques, projetées ounon,sont autres. Danscette approche, lescoordonnées

37 GEOGRAPHY 38 GEOGRAPHY d’harmoniser, réconcilier desbasesde L’approche LAC aujourd’hui permet de représentation. pouvoir serepérer entre lesdifférents modes exemple, l’idée de étantpourlelecteur dansleszones concernées,parlées par coordonnées géographiques, leslangues seraientdestoponymes,Ces attributs des enprojectiongéographique.avec lescartes defaire nouspermettant lelien d’attributs troisième l’affichage dimensionpermettrait entroisnumérique dimensions, oùla desimilarité la réalisation carte d’une Le premier lienpossibleconsiste en coordonnées, desimilarité. etunetelle carte géographique construite parprojectionde GÉOPHYSIQUES ZONES D’INTERFAÇAGE DE DONNÉES CONCLUSION – L’APPLICATION À DES Fig. 5. Une possibilité de visualisation de clusters. Exemple sur des arbres que l’on a classifié selon selon l’on aclassifié que arbres des sur Exemple clusters. de visualisation de possibilité 5.Une Fig. leur taille, la largeur de leur tron Alba Fuga d’un Doctorat àl’Université françaisePierre Doctorat Curie.d’un etMarie ressemblance danslecadre entre données géo-scientifiques méthodologie LAC. Ellepoursuitsesrecherches en mesure de chez conçu pourleDataManagement TOTAL, basésur la qu’elle enproductionlesystème expert elle metactuellement a – Ingénieure en Systèmes d’Information Géographiques, Géographiques, en Systèmes –Ingénieure d’Information c et leur positionnement géographique en trois dimensionsaumaximum. de stratégies deprojectionlasimilarité d’étude carellesdemandentladéfinition Ces méthodesdevisualisationsontencours représentation surces “cartes desimilarité”. à différentes échellesserait la règle de traitements oùlamesure deressemblance de visualisationceszones etdeces brutales duterritoire. méthodes Des ou moinsprogressives oudesvariations des zones frontalières plus d’interfaçage identitaires prédominantes,caractéristiques entre différents écosystèmes, derepérer des l’évolution delimites etfrontières naturelles obtient peuvent permettre d’étudier croisements etclassificationsque l’on océanog l’appliquant surdesdonnéesgéographiques, del’information.de placestockage En meilleuraccèsàladonnée,d’un etàungain informations lesunesauxautres, danslebut données géophysiques, etrattacher des raphiques etgéophysiques, les  1 [New seismicmap..., 1996].Dozens ofМ continentalregionactive inRussia(Fig. 1) zone isthemostseismically rift The Baikal topography, seismicdeformations. tectonics,active blockanalysis, seismoalpine is estimated at5000m. blocks. Neotectonic movements’ amplitude areterritories dividedinfive level groups of ourmodelpiedmontandmountain done. In basin)is zonepull-apart (perhaps rift Baikal ofthe section scheme oftheKodar-Udocan analysis methodsthemorphostructural opening) are evident.Usingmorphotectonic saddlesorclamms[gorges] rocky ridge Kodar ofthe destructions local deformations (like origin) and,Muya Mountains more often, intheSouth- Lake theNewNamarakit (like scale andmorphology. Areal disturbances produce seismicdeformations ofdifferent ones. Seismicevents affect topography and Mercally scale),aswell asinfrequent slight (upto 10–11inthe devastating earthquakes seismic conditionsbecomeapparent inrare Stanovoein theeastern Upland. Extreme region isanaturalresult geodynamics ofactive Moscow, Leninskiye Gori,1.E-mail:[email protected] Moscow, Leninskiye Gori,1. Tel: (+7495)9395469;E-mail:[email protected] 2 * Andrey A.Lukashov segment – one of the most active parts of segment parts –oneofthemostactive intheKodar-Udokan morphostructures inimpressiveseismic conditionsreflect 2009]. Suchtense 2007; Earthquakes..., year [Earthquakes..., happen here every l INTRODUCTION KEY WORDS: ABSTRACT. ZONE OF UDOKAN SECTION THE BAIKALRIFT OF MORPHOSTRUCTURE THE KODAR-

Corresponding author Faculty ofGeography, Lomonosov Moscow State University, Russia.119991, Faculty ofGeography, Lomonosov Moscow State University, Russia.119991, 4andhundreds ofМ The morphostructure of theThe morphostructure Charabasin,morphotectonics, 1 * , Stepan V. Maznev w < 4 earthquakes <4earthquakes w

2 presence evidenceisshownby anumber an appropriate fieldofstrain. The plume without themantleplume influence and isbelieved to be impossible boundary development on theSiberian 2008]. Rift [Petit, inthickness Burov,than 35km Tiberi, and thefold beltlithosphere ofnotmore lithosphere ofthe and strong pre-rift cold, thethick(morebetween than 50km), possible becauseoftheexistence oftheborder zone became rift The formation oftheBaikal volcanism inregion. the Quaternary themorphological expressionconcerning of evolution andare puttingasidemany issues ofthemorphostructure the tectonic aspect thispaper,Chara basin.In we concentrate on reason to search closinginthe for therift feebly marked Tokko basin;it gives usno isthe easterly problem. kilometers Thirty closingremains anopen rift the eastern segment.pronounced rift The issueof to eastern betheoutermost section basins. We canconsidertheKodar-Udokan theCharaandwesternbetween Muya sides, tectonic sowneck andtheinterbasin onits ridges andtheUdokan the Kodar basin, includes theChara(orUpper-Chara) [Active tectonics...,activity 1966]. The section zone to wassubjected magmatogenerift Pleistocene andtheHolocene, theBaikal inthe As iswell known, flank. on itseastern 2002])islocated dictionary..., [Explanatory basin zone (perhaps, pull-apart rift Baikal the rift. ofthe section The Kodar-Udocan GEODYNAMICS craton

39 GEOGRAPHY 40 GEOGRAPHY control thebasalt magmatism activity. movements (including the latest period) the regional geodynamic processes. Tectonic The seismicenvironment of istheproduct [Ufimcev, compensational isostaticuplift 2002]. tectonic oftheinverse- sowneckisaproduct pahse.warming interbasin The Muya-Chara ofanarch formedborder during isapart by aslippingconstituent(,whileitsmountain basin wasforming underpullingstress created exten flank. The Chara ds to itsnorth-eastern Stanovoe upland. axis Stress alongtherift arc inthe rise culmination oftheSayan-Baikal here, whichprovides for theKodar-Udokan Presumably, islocated theupward plumepart including theCharabasin. the north-east, axisundersomebasinsof along therift upwelling zoneThe asthenospheric traces Zorin, Turutanov, 2005andothers]. of authors[Ufimcev, 2002;Logachev, 2003; mechanism inthelowerhemisphere [Goljova 2010]) al., et the epicenter earthquake withdate;in 1960–2004 2 – (1 – epicenters of in theyearis marked by thestar); C – 2007; [Earthquakes..., A – in2004 2009] B –in2007 (earthquakes notlowerthan 33 [Earthquakes..., km; thestrongest Fig. 1. Seismicity of the Baikal rift zone: strong earthquakes intheCharastrong earthquakes basin andadjacent ranges with М stress field[Giljova etal., 2010]. fault planes. That corresponds to thelocal directionswith western andnorth-eastern offsets inthe north- slip andstrike-slip mechanism demonstrates reverse strike- focaland hada5,1pointmagnitude. Its happenedonJune 28,2004,strongest. It fortypical theregion, andoneofthe isthelatest, earthquake Charskoe-III zonethroughout section. therift The a numberofseismicdeformations М in 1958withМ М Muyskoe in1957withМ Muyskoe region (thestrongestthe Kodar-Udokan – (seeFig.earthquakes 1).Seismic events in Mercalli scale),aswell asinfrequent small devastating (reaching 10–11pointsnthe Active geodynamicsmanifests inrare w w = 6,3, and some weaker ones)create =6,3,andsomeweaker = 5,8, Charskoe-II in1994with =5,8,Charskoe-II epicenter of the earthquake on 28 June 2004; 3 – focal focal epicenter on28 3 – theearthquake of June2004; w = 5,6, Charskoe-I in1994with =5,6,Charskoe-I w = 6,5, Kodarskoe in1970 =6,5,Kodarskoe w =7,8,Nukzhinskoe define the appearance of the Kodar ridgesdefine theappearance oftheKodar large andsmallseismicdislocations and many respects,In seismicevents form state. divider inthecompressed andstrained presence ofarelatively block high-ranked tourists. Suchdeformations the confirm valley becamesteeper andharder for theslope oftheLedinkovayafractured; the2008 earthquakes. after The passwas topography around thesaddlewas altered into thisarea. extends block-divider The showsthatthedisplacement zone. It inthetectonicdislocation these rocks are theevidenceof “dry” biotite were found onthesaddle; are notablysteeper. Strongly brecciated with 30°slopes, whiletheadjacentslopes saddle hasaU-shapedlengthwise profile this area onatopographical map;the in is difficult to tracetheblock-divider It the resent seismicdeformations (Fig. 2). ridge, isoneoftheexamples Kodar and theLednikovaya rivervalleysinthe theMedvezhysaddle between stream The Medvezhy pass(Н=2200m),a Dotted lines show the block-divider zone; arrows show pressure directions. directions. pressure show arrows zone; block-divider the show lines Dotted Fig 2. View of the Medvezhy pass from the Medvezhy stream valley. Photo by E. Tokareva byE. Photo stepped lengthwise stream profiles. ofriver valleys, glaciers, rocky andparts of thegravitational trainsin thelowest topography iscontrolled bycontinuity the lower elevations, theseismic-alpine of saddlesthatfrequently are saw-like. At the ridges, andprofound fragmentation and number ofcarlings “gendarmes” on (up to pendant)slopes, anomalous complexes includewidelyspread steep features ofthelandscape denudation of anastomosing glaciation. The typical Shan formed numerous during phases the BigCaucuses, thePamir, andthe Tan- classic alpinetopography oftheAlps, the seismic-alpinetopography from the ofthelandformssharpness distinguishes Gendarmes, andothers). The extraordinary (passes Pioneer –Fig. 3,Balitisky, Of Three rivers Sakukane the UpperandMiddle impressive watersheds of inthepeaked climbing passes.isvery Suchdestruction of anumbercomplexhigh-altitude We seismicdestruction noticedtheactive unique, i.e., seismic-alpine, mountaintype. belongstohighest level a oftheKodar and valleystopography. Probably, the

41 GEOGRAPHY 42 GEOGRAPHY agents intectonic submerge conditions plane influencedbymainlyexogenous a predominantly accumulative subaerial sediments (Fig. bottom presents 4).Its macrorelief filledwith landform partly The Charabasinisaconcave tectonic MORPHOSTRUCTURE pebble Neogene deposits, 4 – quaternary, fluv sandy mainly 4 – deposits, Neogene pebble sandstones, conglomerates 3 – andboulder- includingcarboniferous, deposits, sedimentary 2 – bedrock, 1 – Fig. 4. Schematic geologic-geomorphic section across the Chara basin in the Apsat coalfield line line coalfield Apsat the in basin Chara the across section geologic-geomorphic Schematic 4. Fig. Fresh seismic deformations on the watershed of the Upper and Middle Sakukane. Sakukane. Middle and Upper the of watershed the on deformations seismic Fresh Dotted lines show the block-divider zone; arrows show seismic cracks. cracks. seismic show arrows zone; block-divider the show lines Dotted [by Enikeev, 2009] with the authors’ modification (position on Fig. 5). Fig. on (position modification authors’ the with 2009] [by Enikeev, Fig. 3. The easterly Pioneer pass view from the BAM peak (3072 m). peak BAM the from view pass Pioneer easterly The 3. Fig. Photo by E. Chesnokova byE. Photo hills. andform individualbedrock to thesurface thetectonic movements inthebasinuplift severalgenesis. locations, In differential bottom have glacial, fluvial, andlimnic Accumulative landforms inthebasin [Geology andseismicity..., 1984]. ioglacial-alluvial and glacial deposits; 5 – fault andglacialdeposits; kinematics 5 – ioglacial-alluvial basin iswell seen through block-dividers. ridge, the Upper-Sulban theKodar In close. We canisolate individuallarge blocks. tops are situated rathermost important high). hasmassive its structure; The Kodar m (thedominant,Peak BAM, is3072 m ridge, whosepeaksare over often 2750 the CharabasinisboundedbyKodar meters higherthan1500m.From thenorth, just fewby alower sowneck, tectonic The Charaand Tokko basinsare separated tectonic sowneck. Chara interbasin can alsonamethesestructures theMuya- (above 2250m); weSouth-Muya Mountains spursofthe north-eastern by theextremely basins. Kouanda The latter onesare separated there istheSulbanand south-western part, east, there isthe Tokko basin;inthe utmost (lower thenorth- than1000m)altitude. In withthesame tectonic morphostructures andsouth-west ofit,we cansee north-east depression inthecentre ofthemap. To the Chara basinisthevisiblespace-forming featuresmorphostructural oftheregion. The contoursstructures (Fig. 5)showsthespecific A small-scaleschematicmapoftheterrain geological, andgeophysical data. blocks identifiedusinggeomorphic, most clearvisualdemonstrationoftectonic horizontal movements. Topography isthe movements’ effects, even assumingnoticeable form mainlyundertheinfluenceofvertical to thelithosphere unitsofdifferent ranks Tectonic blockstructures thatcorrespond western part. of thebasinplungesfaster thanitssouth- part geophysical data,thenorth-eastern foundation beddingdepthassessedfrom unsteady sedimentation. According to the ofthebasinpointsto (downstream) part inthenorth-eastern large numberoflakes basin exhibitscompensative warping. The uncompensated; onthecontrary, theChara is Baikal SedimentationofLake unknown. ofthesedimentsis the maximalthickness has 1180minface[Enikeev, 2009]);therefore, (thedeepestofthem oftherift central part No boreholes reached thebedrocks inthe in the north-eastern directionandbounded in thenorth-eastern isatectonic depression elongated basin. It The Chara basin are presentedcharacteristics below. Chara basin[Lopatin, 1972]. Their general and theSouth-Muyaridges, andthe theKodar,of thesecondorder: theUdokan, study area, itincludesfour morphostructures inthe ofthefirstorder; a morphostructure is mountainouscountry The Olekma-Vitim remote sensingdata. on topographic mapsandrecorded with repeatedly found fieldresearch during and several hundreds meters amplitude were ridges, throws with andUdokan the Kodar thethrough zones block-dividers in m. In ofdownthrows)the series reaches 1000 blocks oftheUdocan(estimated with of mutualdisplacementtheoutermost oftheCharabasin,amplitude periphery reaches about1700m;inthesouth-eastern thisamplitude Sakukane, Apsat andMiddle the faultbetween in thezone oftheKodar movements. Thus, the Neogene-Quaternary and allowsusto estimate theamplitudeof depends, undauntedly, ontheblockdivision contours structure oftheterrain The pattern dividers. the mapthatcanbetracedthrough block of part south-eastern river intheoutermost we canseethedepression withtheKalar same level astheUpper-Sulban basin.Also, basinsituated atthe there istheUpper-Kalar is more “descrete”. area theUdokan-Kalar In withtheKodar, comparison In theUdokan alarge unitedit doesnotlooklike massif. however, oftheUdokan; in thecentralpart The topographical maximumsconcentrate them looksasaunited mountainrange. to separate. are ridges difficult andKalar the Udokan contours structure the terrain showsthat ofthescheme. part eastern of The pattern area islocated inthesouth- Udokan-Kalar and altitudesnotexceeding 1000m. The west) andtheMalaya Tora rivers (south-east) tectonic depressions withtheSenj(north- by isboundedfrom thenorth The Kodar

At thesametime, neitherof is a 120 km long Baikal-type longBaikal-type isa120km

43 GEOGRAPHY 44 GEOGRAPHY However, theplaneissqueezed between plane aswe have already mentionedabove. a predominantly accumulative subaerial are along thisside. The bottom represents mostly submerged foundation fragments slope ismuchsteeper, i.e., 35–60°;the side (Kodar) structure: thenorth-western flanks. The basinhasanasymmetrical tectonic scarps andUdokan by theKodar Fig. 5. Schematic map of the terrain structure contours (every 250 m). A–B – transect line (see Fig. 4) Fig. (see line transect m). 250 A–B – (every contours structure terrain the of map 5.Schematic Fig. located. Probably, itwas forming during the inversionally tectonic step, uplifted is junction, basin, theSouth-Muya–Udokan of tectonic buttes. thesouth-western part In correlate withseparated blocksand uplifted basin, there are bedrock protuberances that At thesametime, inthebottom ofthe the directstructure/topography correlation. the mountainmassifs andwe canconsider for a large-scale (detailed)study ofthefor alarge-scale analysis wasdone Block morphotectonics inthesouth. detaches Udokan graben theKouanda inthenorth; Kodar graben separates themountainsfrom the faults [Active tectonics..., 1966]. The Sulban is fracturedwithagreat numberofyoung watershedwidth oftheKouanda-Sulban complicated. mountains isvery The entire ofthe steepness. part The north-eastern with25–50°amplitude faultescarpment rise. slopeisahigh- ridge The north-western Mountains ofthe The considered part structure ofrange. separated theblocky blocksanddetermines area isformed byseveral The axledUdokan into thepiedmontsteps oftheCharabasin. gradually transition steps oftheUdokan direction. The mountainous north-eastern are ofeast- separated bytectonic escarps grabens andhasastepped form. The steps of smallintramountainbasinsand series macroslope iscomplicated bya northern slope issteeper thanthesouthern. The half-arch.ridge That iswhy thenorthern arch becomestheKalar west, theUdokan thesouth- structure. asymmetric In blocky The Udokan ridge blocks thatconsistofsmallercells. isdividedinto anumberoflargerange. It is atilted horstinaform ofanasymmetric Chara basinwithatectonic escarp. The Kodar Chara uplands;inthesouth,itabuts andOlekma- with theBaikal-Patomskoe smoothlyconnects theridge part, eastern thenorth- slopes.and steep southern In structurewithflatnorthern the asymmetric construction. shows The transverse section The Kodarridge (see Fig. 4). section the transverse geologic-geomorphic visible bothonthemap(seeFig. 5)andin Step altitudes are 1000–1200m,whichis the uplift-submerge process [Ufimcev, 2002]. METHODS is the eastern closingofthehorst istheeastern is a complicated blocky isacomplicated blocky isacomplicated arch- South-Muya and belongsto the “innermost” category. This altitudinal difference compared to theothers has the highest One blockontheKodar 2011]. glacier upland[Kovalenko, orography features, inparticular, intheKodar be seen.Sometimes, itdefinesthemajor mosaicstructurecanthe morhotectonic andespeciallyoftheKodar,the Udokan, thetopographyIn oftheCharabasin, – abovemost uplifted 2700m(Fig. 6). –2300–2700m;5) 1950–2300 m;4)uplifted 2) descended–1700–1950m;3)mid-high they are: –lower 1)innermost than1700m; delineation of46blocksthesecondorder; the mountainouslandblockanalysisis relative submerge oruplift. The result of and mostuplifted. We talkonlyabout descended,innermost, mid-high,uplifted, block tops analysis, we usedfive categories: across thelowestcontact cols. For extreme dividers –to riverheadstreams andtheir system; through block-the Horton-Straller correspond to riversofhighestorder in Large blockdividers using andtectonic linesandsaddles. 1972]. Blockdividers from(Kodar) the Chara basin block thatseparates theridge escarp Kodar The mostimpressive exampleisthefrontal delineated blockdividers theoretically (seismic deformations) support interceptions, andseismogeniclandforms valley sections, their90°bends, river too. Presence oflongstraightened river andlandscapecharacteristics geomorphic not onlyindrainagesystems butinsome However, ruptures may become apparent analysis. delineation usingonlyrivernetwork consider block-dividerinitial principals large densification. faultsandfracture The that beneathalmostallstreams, there are and others]. We usedtheassumption discussed inliterature [Simonov, 1972, The fundamentalsofthemethodsare endogenous topography investigation. detailed upper lithosphere andafurther BLOCK ANALYSIS

in mountainousareas were alsodelineated .

[Grachev,

45 GEOGRAPHY 46 GEOGRAPHY zone; 14 – large relief ruptures; 15 – ordinary block dividers (tectonicmorphostructures – lines): 12 1000–1200 m; 11 – near800 m; small fragmentation 10 – block topography; linear zonewith denudation-tectonic near buttes; tectonic steps tectonic withaltitude: intermountain; 9 – intramountain; 8 – 7 – 6 – basins bottoms: rift uplift; active 5 – temperate uplift; comparative stabilization; temperate 4 – descend; 3 – submerge; active 2 – 1 – Fig. 6. Morphostructural elements scheme of the Kodar-Udokan segment of the Baikal rift zone. Block motion morphostructures tendencies: frontal depres escarps graben-like of sions, 13 – through the block-divider theblock-divider – through sions, 13 us to recognize thatthedifferentiation schemeallows The wholemorphostructural fault zone. when blocksare dividedbyaprominent apparent,become clearly especiallyincases signsand indirect ofendogenousactivity zones, insuchcontact both direct Exactly the Upper-Sulban andtheCharabasins. Stanovoe upland andare situated between They group around thehighestblockin This istruefor blocks. themostuplifted the grabens oftheSulbanandKouanda. iscompressed Muya Mountains between basin. Kalar The highestblockoftheSouth- neartheUpper- oftheUdokan central part Upper-Sulban and basin,andinthesouthern nearthe basin, inthewest oftheKodar nearthe oftheUdokan Tokkoin thenorth zone, inthe Charabasincontact the Udokan, and oftheKodar case inthecentralparts withnegative structures.contact This isthe blockgroupsand alltheuplifted have outstanding blocks. ofblocks The majority ofmountains, butthere areparts several blockshaveUplifted features ofthecentral oftheKodar.north-west inthe blockslike descended anduplifted atransitionbetween Such blocksmake upland.axes areas, neartheOlekma-Chara are situated atsomedistancefrom ranges Mountain. The blocksofmiddleheight andtheeastofSouth-Muya Udokan, oftheKodar,in thenorth theeastof features ofmountainstructureperipheries be found inallstudied ridges. They have Blocks withaltitudebelowtheaverage can instead oftheinitialbasinlevel. consider itaplungedfragment oftheridge lineamentzones; thatiswhydistinct we can block isdisjointed from bodyby theridge basin step elevation(1000–1200m). The altitude ishigherthanthatoftheChara itsmaximal periphery; Kodar the eastern to itsmorphology, theblockbelongsto structure contours (seeFig. 5).According evident ontheschematicmapofterrain Tora flowsthrough. River The depression is block hasadepression, where theMalaya the basinisabout1050km volume oftheriver valleysthatsurround the basinisabout6600km area thatnowprovides solidsedimentsto activity. topographic signs ofbroad endogenous and hisco-authors. Therefore, we cansee “Active tectonics...” by V.P. [1966] Solonenko deformations inavaster area are shownin Large seismictopography andstructures different breaksfault. withthemainKodar zones ofcracks canbeseenincontact in theform oflengthwise seismotectonic processes (Fig. 7,8).Great relief deformations morphological consequences ofseismic massifs, seismotectonic cracks, andother landslides, “indents” in andgapedclefts found seismogravitational collapsesand we have repeatedlyin theUdokan in theKodar, andtheLower Ingamakit Sakukan Sulban, theUpperandMiddle the1961–2010fieldresearchDuring inthe 250 =4922m). zone atjustunder5000m(3072+1600 rift oftheBaikal amplitude inthenorth-east altitude can evaluate thebedrock surface estimates itat–1600mlevel. Therefore, we is notlessthan–600m; Yu.A. Zorin [2005] high andthefoundation beddingdepth is3072m topThe extreme ofthe Kodar erosional period. less than250mofdenudationinquaternary equally over themountainwatershed, we find volume levels. we thesuperfluous distribute If wasbroughtmaterial from higher mountain andtherest period ofthesediment activation that thesevalleyswere filledbefore thelast volume intheCharabasinat2700km N.A. Logachev [2003]estimates thesediment activity. isalsoa signmorphostructures ofsuch presence ofdifferently block uplifted to manifest morphologically.activity The agreatwe expect amountofendogenous zones, andthrough and submerged zones, blocks, contact fault uplifted elements butalsoinsidethem.In themainstructural exists notonlybetween

block-dividers junctions junctions block-dividers 2 wide. The total total wide. The 2 , considering , considering 3 . The . The

47 GEOGRAPHY 48 GEOGRAPHY Fig. 7. 15-m deep seismotectonic narrow with the Uglovoy stream in the central part of the Kodar ridge. ridge. Kodar the of part central the in stream Uglovoy the with narrow 7. seismotectonic Fig. deep 15-m Dotted line shows the trace of the weakened zone. zone. weakened the of trace the shows line Dotted Photo by S. Maznev byS. Photo be explained in the following way: intheKodar, be explainedin the following way: itis1200–1500 m.Suchdifference Udokan, can have Kodar elevetation of 900–1100m;inthe axis. the sidesofrift The passsaddlesinthe The altitudesofblockdividers are different on saddles ofthrough blockdividers istypical. presence andwetlands onpass oflakes glaciers were forming. As aconsequence, anastomosing glaciation,transaction-type among river valleysindifferent phasesof intectonic gorges On thesaddlesofthiskind, and theirtectonic genesis canbesuggested. rivers. Suchzones jointhrough thelowcols, zonesfrequency enlarged withglaciersand large zones tectonically weakened andcrack block-dividers. Suchdividers are, perse, –byglaciers)withthrough(historically bystreams andrivers transport weathering pulling down.Mainly, ofbedrock products lands remain aprovince ofprevailing accumulation areas. Naturally, mountainous localdenudationanddetermines differently morphostructures uplifted Presence ofintramountainbasinsand Fig. 8. The rocky canyon of the Uschelisty downstream in the Udokan ridge. ridge. Udokan the in downstream Uschelisty the of canyon rocky The 8. Fig. Dotted linesDotted show slopes of genesis tectonic in the canyon. Photo by S. Maznev byS. Photo south-eastern Kodar.south-eastern stretch strainandto pressure stress inthe see awidelyspread topography reactionto decrease intheregion.activity We canalso cannot speakabouttheseismotectonical we volcanism intheUdokan, weakening spite oftheevidentPleistocene-Holocene indicators intheregion. current activity In offwallsofcollapses,tearing and talus are deformations occur. Fresh faultescarpments, seismic dislocationsandnew region. Fault place regularly in slipstake ofthe reflected inthemorphostructures zone isnaturally rift segment oftheBaikal Active geodynamicsintheKodar-Udokan strain realization. suchlinesoccurdueto stretch in theUdokan, different tectonic movement rates, whereas largest blockdividers splitmacroblocks with theKodar,splitting anddisintegration. In the theyare theproduct ofarch but intheUdokan, they are theresult division, oftheinitialridge CONCLUSION 

49 GEOGRAPHY 50 GEOGRAPHY 12. New seismic zoning map of the Nothern (1996) / Khromovskikh V.S., Newseismiczoning Eurasia(1996)/Khromovskikh mapoftheNothern Nikolaev V.V., 12. Lopatin D.V.zone –Novosi- rift oftheBaikal part oftheeastern (1972)Geomorphology 11. //Geologyand Geop- rift andgeodynamicsoftheBaikal Logachev N.A. (2003)History 10. N.V. Kovalenko MAKS (2011)Behavior andevolution ofsmall glacierforms. –Moscow: 9. GrachevA.F. zone (geophysical rift solutionofgeomor- oftheBaikal (1972)Asymmetry 8. 1 . Zorin Yu.A., Turutanov zone //Geo- rift E.H.(2005)Plums andgeodynamicsofthe Baikal 16. G.F. Ufimcev State Publis- University Irkutsk ofEurasia–Irkutsk: (2002)Morphotectonics 15. Simonov Yu.G. University Moscow (1972)Regional geomorphologic analysis. –Moscow: 14. Petit C.,Burov E., C.(2008)StrengthTiberi ofthelithosphere andstrainlocalizationinthe 13. 7. Giljova N.A., Radziminovch GiljovaN.A.,Radziminovch Ya.B., Melnik 7. zoneNauka. Mainline (1984).–Novosibirsk: oftheBaykal-Amur Geologyandseismicity 6. ofEnglishgeological (2002). terms dictionary Vol. Explanatory J.A. 2/Editor-in-Chief Jack- 5. F.I. Enikeev (2009)Pleistocene glaciationsoftheEastern Transbaikalie andSouth-Eastof 4. GSRAN.–220p. Russian). inRussia2007(2009).–Obninsk: (In Earthquakes 3. GSRAN.–140p. Russian). inRussia2004(2007).–Obninsk: (In Earthquakes 2. Active tectonics, volcanoes, oftheStanovoe Upland(1966)/Editor-in- andseismicity 1. REFERENCES Demjanovich M.G.etal.Demjanovich //Geophysical research atthepointof21 Siberia inEastern 116 p. Russian). (In Nauka. birsk: hysics, vol. 44,№5,pp. Russian). 391–406.(In Press. 240p. Russian). (In phologic problem) andgeophysics, //Geomorphology pp. Russian). 95–106. (In Eurasiain2004,pp. Russian). 324–334. (In of northern logy andGeophysics, vol. 46,№5, pp. Russian). 685–700.(In hers, 2002. 494p. Russian). (In Publishers, 1972.254p. Russian). (In ScienceLetters, andPlanetary v. //Earth rift 269.P.Baikal 523–529. publishersofRAS.P. Siberian Nauka. –Novosibirsk: century Russian). 94–99.(In earthquake onJune28,2004withMSPS=4,7,K earthquake 174 p. Russian). (In MCGK son. –Moscow: “Geocart”, GEOS.644p. Russian). (In //Geomorphology, Siberia Middle №2,2009,pp. Russian). 33–49.(In Chief V.P. 232p. Russian). (In Nauka. Solonenko. –Moscow: ova V.I., N.A.(2010) Radziminovch The Chara-III p =13,5,I 0 = 6 (Pribaikalje) // Earthquakes //Earthquakes =6(Pribaikalje) st

Stepan V.Maznev Andrey A.Lukashov “Geologix” company. regionsand Moscow andothers. Nowheisageologist ofthe investigations attheCaucasus, the Yamal Peninsula, Volgograd in engaged inengineering geologypioneering, hetook part geomorphology.topic ofhisstudyisstructural From 2011heis Peninsula andNorthern Transbaikal region.Kamchatka The main inexpeditionsatthePasvikparticipated at Nature Reserve, Lomonosov State in2011.Heactively University Moscow and Evolution ofNaturalGeosystems (2000,withco-authors). Structure, Dynamics (2000,withco-authors); geomorphology (1996);Problemscomparative geomorphology oftheoretical to bodies. Introduction publications:Reliefofplanetary Main published over 180works, includingmapsand7monographs. universities. Helecture coursesatRussianandUkrainian comparative planetology. Prof. delivered Lukashov anumberof geomorphology, geoecology, withstructural connected karst, State University.Moscow present research His interests are 1993 heisprofessor oftheFaculty ofGeography, Lomonosov graduated from theFaculty ofGeography, received hisD.Sc. degree in1990.Since

51 GEOGRAPHY 52 ENVIRONMENT regional technophility is oftheorder ofn ( “ continental crust. The newparameters are: average chemicalcompositionoftheupper average compositioncorresponds to the (AR) –anelementalequivalent,whose parameters. is The newterm “abstract rock” introduced and anumberofnewterms in different countries, theauthorshave chemicalelements of productionvarious order tocountries. In compare theintensity technogenesis andindividual intheworld involvement ofchemicalelementsin geochemical assessmentoftheprimary volume ofARpertheworld’s capita. * 2 Nikolay S.Kasimov 1 estimated for 2008–2010. The highest regional conditional technophility element. for theproduction ofthe current level ofthe equals to thetons ofARperyear necessary elements. faster thanitsdemandfor many chemical that theEarth’s populationisgrowing much changes from the1960sto 2010indicates T values are andAu. associated withC,S,N,Ra, and population,andareas.production, The withdifferentcountries levels ofelements andallowcomparing individual countries of thetechnogenesis process atthelevel of the regional scale;they reflect theintensity integrated assessmentoftechnogenesis at 119991 Moscow, Russia; Tel. [email protected] +79267603742,e-mail: 119991 Moscow, Russia; Tel. [email protected] +7495939238,e-mail: conditional technophility ABSTRACT. ELEMENTS INDEXES OF OF CHEMICAL PRODUCTION GLOBAL AND REGIONAL GEOCHEMICAL T conditional technophility ofanelement conditional technophility Corresponding author Y Faculty ofGeography, Lomonosov Moscow State University, gory, Leninskie 1, Faculty ofGeography, Lomonosov Moscow State University, gory, Leninskie 1, Y ofmany andultramicroelements micro- ), “ T S specific technophility levels of the leaders in extraction of levels oftheleadersinextraction T T Y YR ofdifferent elements hasbeen This paperpresents a , T N , and • ” ( 1 10 T , Dmitry V.Dmitry , Vlasov T S 11 N were usedfor the ” ( ), and “ t. ” ( T YN T T YR YN

reflects the ), “ )

density of density ” ( “ regional specific T S ). T T YN T T N Y Y 2* ”

In the last quarter oftheXX thelastquarter In macroregions, countries, andtheirparts. differences different between terrestrial more manifested clearly geochemical of naturalresources generate increasingly of elementsinthecitiesandneardeposits scattering, andintense localconcentration compounds, globalanthropogenic and of newartificial “alien” to thebiosphere involves almosttheentire globe, creation in aman-mademigration, whichcurrently controlled andspontaneousincorporation hydrosphere, andatmosphere, their different –thelithosphere, layers oftheEarth Extrac elements production,elementalequivalent. Morocco). Tanzania, and Malaysia, Congo (Kinshasa), France, Egypt, Thailand, Pakistan, Algeria, Brazil,and demographic dimensions(, orto bothhighspatial Bangladesh, Nigeria), (Indonesia, Vietnam, thePhilippines, and Sudan),to thelarge population Libya,Mongolia, Colombia, Zambia,Mali, Argentina, Bolivia, Venezuela,Kazakhstan, (Russia, USA,Canada,Australia, SaudiArabia, dueto thelargeother countries territories natural resources are belowthesevaluesin 1976]. geochemical regional geography [Glazovskiy, – direction inenvironmental geochemistry hasformulated theideaofanew Glazovskiy INTRODUCTION KEY WORDS: tion ofchemicalelementsfrom technogenesis, tehnophility, th century, N.F. or compounds, i.e., metals, heavy CO 2012] andemissionsofindividual elements etal., andvehicles [Bityukova from industry air, withassessmentofthetotal emissions the environment, e.g., ontheatmospheric on theindividualcomponentsof of impact countries, regions, andcitiesbytheintensity impact” thatinvolves thegrouping of &Kirillov, 2011]; 2010; Bityukova “technogenic &Jochem,2007;Bradshaw etal.,Bцhringer etc. etal., [Esty 2005; (aENV,rankings pENV), composite environmentalproportional (EF), livingplanetindex(LPI),absolute and index(EPI), ecological footprint performance index(ESI),environmentalsustainability development index(HDI),environmental life andenvironmental indicators –human development” of thatincludesthequality &Kirillov, 2011]; 2007; Bityukova “sustainable product (EDP),etc. &Jochem, [Bцhringer (GSI), environmentally adjusted netdomestic natural capital, e.g., genuinesavings index depletion andenvironmental damage, and adjusted for thevaluationofnaturalresource domestic savings, netdomesticproduct), price” utilizing basicindicators (GDP, gross the following approaches: “environmental coefficients andindices. The latter includes method thatinvolves calculationofaset [Glazovskiy, 1976];andthe “environmental” countries,between regions, cities, etc. of goodsastheflowschemicalelements elements andrepresentation oftheflows oftechnogenicthe intensity migration of method thatconsidersidentificationof world..., 2012];the 2012; Key “geochemical” and otherresources, andgoods[Mineral..., the levels ofproduction ofenergy, mineral the “matter-energy” methodthatconsiders density, GDP, & Tsapuk, etc. 1999]; [Tikunov area,of countries: populationsize and characteristicseconomic-geographical considers thecommonphysical and the “geographical” methodthatprimarily ascending ranking. These methodsinclude: of descendingor and ageneralprinciple with alarge numberofcharacteristics technogenesis of aspects ofcertain by theintensity ofcountries The methodsofcomparison SO 2 , NH 3 , etc. [Pacyna &Pacyna, 2001;Nriagu 1 representsystem aranking 2 , CH 4 , techcnogenesis. from theEarth’s andtheirusein interior of chemicalelementsextraction intensity for understandingthebasictrends inthe level of chemicalelementsproduction informational the coefficient that reflects the Earth’s crust[Perel’man, 1975]. in tons to itsaverage concentrationsin productionofanelement annual primary Technophility ( elements production,population,andareas. to compare withdifferent countries levels of searching geochemicalindexes whichallow in thepaper, becausewe focused on arecountries. Butthesefactors notdiscussed chemical elementsproductionindifferent resources ofthe thedistribution determine Geology andendowmentofmineral demographic dimensionsofcountries). of elementsproduction(spatialand parameters thatinfluencethemagnitude upper continentalcrust]),andgeographical migration [average composition ofthe of theirinclusioninthetechnogenic influencesthepotential(which directly natural resources), abundanceofelements ofdifferent of (extraction interior types mobilization oftheelementsEarth’s technogenic thevalueofprimary know global andregionalto scales, itisnecessary chemical elementsintechnogenesis atthe order toIn assesstheinvolvement of parameters. these approaches have notutilized integral on theenvironment. However, to date, parameters ofdirectandindirectimpact identifying groups withclose ofcountries individual countries, becausetheyallow of technogenesis and intheworld methods for theevaluationofintensity “geochemical” approaches are thebest The “emission”, “matter-energy,”and 2010]. components simultaneously[Bityukova, severalanthropogenic considering impact 2012]; ortheintegrated assessmentofthe Kasimov,2009; Revised.., 2012;Bityukova, & Pacyna, vanderGonetal., 1988;Denier Т Т ) is an important notion ) isanimportant represents theratioof Т isan

53 ENVIRONMENT 54 ENVIRONMENT of the mass [Mineral ..., 2012]. Extracted ...,2012].Extracted of themass [Mineral are –about 2% alsothe only source ofHf concentrates containupto 49,8%Zr. They Thus, the USGSdatastate thatzirconium production oftheessentialminerals. elements wascalculated from thevaluesof et al., 2003,2004]. ofsome The production ...,2012;Butterman 2000s –from [Mineral [Emsley, 1991],inthelate 1990sandearly from [Perel’man, 1975],inthe1980s–from of elementsinthe1960swere obtained 2007–2009 wasused. The productionlevels 2010, theinformation for 2007averaged over theabsenceof dataforminerals ..,2012].In ...,2012;International 2008–2010 [Mineral (USGS)averaged overGeological Survey oftheU.S.derived from theannualreports elements andtheircompoundswere valuesofmostchemical The production continental crust. on theaverage compositionoftheupper andthelatest oftheworld data countries on theproductionofelementsinalmostall mining industry, andusedtheinformation onthe oftheglobaleconomiccrisis impact three years (2008–2010),accounted for the values oftheelementsproductionfor the The authorshave calculated themean & [Kasimov Vlasov, 2012]. and inAfrica on theelementsproduction noble gases, andinformation rare , Os, Sc, Rb, someplatinumgroup metals, Т herein improves calculationsof theearlier of theEarth’s crust. presentedThe work previously calculated average composition inthe elements productionandcorrections on theincreasing ordecreasing of intensity & time [Kasimov Vlasov, 2012]anddepends Т islacking. dependency Hg, U, Mo, Ti, andZr),whilefor others, such their average content intheEarth’s crust(Cd, to proportionately bymankind extracted development ofsociety. Someelementsare in different phasesofthetechnogenic MATERIALS AND METHODS withthenewdataonproduction of of various chemical elements varies over chemicalelementsvaries of various 0,765 kg/m ofnaturalgas of 0,1364andthedensity conversion wasdoneassumingacoefficient energy ...,2012].Barrels to[International tons oil, andnaturalgas)were obtainedfrom offossilData ontheproduction fuels(coal, Yang etal., 2009]. elements inthisgroup [Haxel etal., 2002; Nd, 4%Pr, and0,1%for otherindividual mineral –bastnaesite: 49%Ce, 34%La,13% from theiraverage content inthemainore elementsproduced wascalculated earth Li, lepidolite –3,1–6,0%Li contain upto 15%UO and columbite, respectively. can Djalmaite Ta content of40%wasusedto calculate the spodumene LiAl(Si CO of measure (tons peryear), themassof fossil fuelsproduction to thecommon unit elements inthe Earth’s crust calculated Russia,theaverage contentsIn of the goal. without beingitsprimary are only “associated” withtheproduction, “potentially” involved intechnogenesis and high,theyare only masses are generallyvery limestone) containtraceelementswhose although many naturalresources (sand, main sources ofproductionelements; The authorstook into accountonly the 1999]. –from [Kapitza, the lastcentury atdifferentpopulation oftheEarth times 2012];andthedataon factbook, world asawhole–fromof theworld [The size andarea and ofindividualcountries et al., 2003,2004];thedataonpopulation Environmental, chemistry.., 2012;Butterman 2012; market.., world obtained from [The Ne, Ar, Os, Sc, Po, Ac, Pa, Th, Cs, was andRb ontheproductionofXe,Information Kr, C/TJ [Revised...,2012]. C/TJ; andfor naturalgas–43 TJ/kt and15,3t for coal–20 respectively; TJ/kt and25,820t TJ perthousandsoftons) and20tC/TJ, foremission factors: oil–42,5 TJ/kt (i.e., the average valuecoefficientsand calorific 2 2 O andCcontent 5 and

Nb 3 . After reducing. After thedataon 2 O 5 contents

2 were calculated using O 6 3 ) contains3,73% . The massofrare

2 from tantalite O. The oxideO. The 1997; Vinogradov,1962]. 1989;GreenwoodHandbook, &Earnshaw, in Earth’s Practical crustingeneral [CRC this paperusedtheaverage concentrations crust have notbeenestimated; therefore, the concentrationsinupper continental For gases, Po, inert Ac, Ra, Pa, Rn, and Rh, Te, Br, Cd, andCl. crust of[Grigoriev, 2009]were usedfor S, composition oftheuppercontinental included intheirestimates. The average dueto alarger& S.Gao list ofelements the uppercontinentalcrustofR.L.Rudnick reliedwork onthe average composition of therefore,the technogenesis intensity; this that significant for theassessmentsof continental crustof1,5–3timesisnot the average concentrationsintheupper for Iis3timeslower. The difference in and Bi–1,5–2times;theconcentrations and for B, Ca,Se, Ag, Sn,Sb, Gd, Ho, Lu, Ta, 7 times, for Cl–4times, for Au –3times, are higherfor S–23times, for BrandCd – [Rudnick &Gao, 2003];theconcentrations eleme The estimates of[Grigoriev, 2009]for some for example, Rb/Cs. with La,andrelations withotherelements, according to theirsolubility, correlation separately for andmicroelements macro- the uppercrustusingbothmethods calculated average compositionof [2003]1933]. R.L.RudnickandS.Gao deposits, orglacialloess[Goldschmidt, rocks,grained glacial clasticsedimentary 1889], ortheaverage compositionoffine- exposed attheEarth’s [Clarke, surface of thechemicalcompositionrocks calculated from theweighted averages composition oftheuppercontinentalcrust studies, itisfeasible to applytheaverage as inenvironmental andgeochemical oftechnogenesis,the intensity aswell technogenesis. Therefore, whenestimating of thechemicalelementsinvolved in andthemainsource ofmostby mankind ofnaturalresourcesis areservoir used often used, whereas onlyitsupperpart by A.P. Vinogradov 1962]are [Vinogradov, nts are very differentnts are very from thoseof C, S, N, Ra, Au,C, S,N,Ra, Xe, Kr, andHe(Fig. 1).High of differences volume inproduction over time) sum of an elementalequivalent.Calculationofthe their overall accounting, i.e., itrepresents of different chemical elementsandfor for ofproduction ofintensity comparison the term “oil equivalent” andcanbeused “abstract rock” proposed herein issimilarto of oilequivalent[Revised...,2012]. The term ittoenergy tons equivalent–byconverting environment byburning, orbyusingthe At theendoffirstdecade oftheXXI in technogenesis. assessment oftheirintegrated involvement amount ofCO themassoffuelto anequivalent converting fossil fuels, thisproblem may besolved by oftechnogenesis.of anumberaspects For composition, represents aproblem inanalysis different ofnatural resources, in types varying The assessmentofthetotal of production technogenesis. parameter asoneofthegeneralindicators of of inert gases can be explained by the fact gasescanbeexplained by thefact of inert century, thelargest n ( using theterm “conditional technophility continental crust.Hereafter, theauthorsare average chemicalcompositionoftheupper whose chemicalcompositionequalsto the thiscase, ARcorresponds toin g/t.In rock of elementintheuppercontinentalcrust X production of “abstract rock” (AR) (intons) required for corresponds to thevolume ofextracted it hasaphysical meaning:theunitof ismultipliedby100,then technophility If of technogenesis Global estimates ofthe intensity The highlevel ofcontrast(from element corresponding to itscurrent level. for theproductionofachemical necessary RESULTS AND DISCUSSION T isthevalueofaverage concentration • Y T ) to AR indicate thevolume ofextracted 10 Y for different elementsallowsusingthis 13 T t) and temporal variability (larget) andtemporal variability Y ofchemicalelementsprovides for 2 X thatcanbereleased into the grams oftheelement,where T Y wasassociated with n • 10 3 to to T st T Y ”

55 ENVIRONMENT 56 ENVIRONMENT 2 technogenesis. considered intheregional assessments of gaseswasnot on theproductionofinert Ne –by10000times. Therefore, thedata 100 timesfor He, whilefor Kr, Xe, Ar, and T air.atmospheric Underthisapproach, their to usetheaverage compositionofthe atmosphere; therefore, itismore feasible is nottheuppercontinentalcrust,but that themainsource oftheirproduction Fig. 1: for Po itequals to 5 upper continentalcrustare notshownin lowaverage concentrationsinthe very Y • valuesdecrease byseveral times:about 10 Fig. 1. Conditional of technophility chemical elements (here and in Figs. 2–4, the data on on data the 2–4, Figs. in and (here elements elements production are for 2008–2010) 9 t andfor Pa –9 T Y ofsomeelementswith • 10 8 t. • T 10 Y of rare earth ofrare earth 11 t, for Ac – given in [Kasimov & given in [Kasimov Vlasov, 2012].Currently, parameterexplanation of the technophility is upper continentalcrust.A more detailed with relatively highconcentrationsinthe butlittle usednowadays bymankind, ofScandRb, theelements is characteristic elements is9 products, andcar fuel, spare have parts, for industrial theproductionofvarious some platinumgroup elementsused Zn, Cu, Pb, Br, Sn,Mo, Sb, Cd, Ag, and ultramicroelementsMany micro-and –Cr, of for Lu to 2 n • 10 11 • t. The minimal t. The 10 • 8 10 t for Sm. 8 t and varies fromt andvaries 4 T Y (1000–10000t) • 10 T 9 Y t

Regional conditional technophility Geochemical regional geography technogenesis. of intensity Regional for many chemicalelements. growing significantly faster thanitsdemand populationinrecentthat theworld years is considering productionofallchemicalconsidering Specific technophility and Sb. production, i.e., C,Fe, S,N,Cl, Cu, Zn,Cr, Mo, areperspective theelementswithintensive from thetechnogenesis the mostimportant 44,3 in2010. in This reduction began to decline, reaching 47,2in2000and then,it been previously usedintheindustry; hadnot ultramicroelements thatpractically increase1980s dueto asharp oftheuse was equalto 6,4;itgrew to 58,2bythe world’s to thetotal countries world’s of172differenttechnogenic contribution inorderwas incorporated to assessthe chemical elements. In themid1960s,chemical elements. In the populationanditsdemandfor various used for ofthegrowth comparison rate of capita peryear). This parameter canbe capita population(thousandstons per calculatedchange inARproduction per Fig. ( Regional 2. conditional technophility ( T YN )

T YN represents indicates ( T T YR YN T Y )

T T technogenesis attheregional level. parameter represents anintegral indexof relative to AR(tons peryear) (Fig. 2). This of an 1,4 “polyelemental” withasignificant countries (1,3 America North from 3,6 medium were isolated: difference theindividualgroups) between (withanordercountries ofmagnitude step- China (2,3 Sb, Na,Cl, andCa);thegroup alsoincludes Africa (1,6 Africa occupyintermediate positions:countries (4,2 elements: , andRussia(each1,1 South Africa, According to thevaluesof (1,2 High allelements). practically is Kyrgyzstan (7,8 Very high YR YR ) of different countries (tons per year) per (tons countries different ) of • ofthemacroregions varies oftheworld • • 10 10 10 (10 13 i 11 , 12 -chemical element in a country elementinacountry -chemical 11 (>10 low t in (including Russia). Other t inAsia (includingRussia).Other • t). • t) andAustralia andOceania T –10 YR 10 • 10 , and

10 = 11 12 12 12 Σ t in Central America tot inCentral America 12 t – practically allelements), t –practically t). The group includes21 very high very t). The leaderofthisgroup • T very low very t), Europe (1,4 Yi 10 • , where 10 12 t –Au, Hg, Mo, C,F, 12 (Fig. 2). t), t), SouthAmerica , T T YR high Yi , sixgroups of isproduction , intensive • • 10 10 12 12 t– t– t), ,

57 ENVIRONMENT 58 ENVIRONMENT Intensive Mexico, and Turkey). (Canada, Australia, Japan,Peru, Kazakhstan, (Peru, Mexico, Chile, andArgentina), andSb Hg Chile, andIran), Peru,(Japan, Kazakhstan, toxic elements:As of productionvery havesome ofthecountries alarge level ferrous, andprecious addition, metals. In Cl, Ca,Mg, S,N,P, B, Fe, heavy, Mn, non- to to Jordan, andArgentina. The maincontribution Poland, Brazil,Kazakhstan, Spain,Israel, Turkmenistan, Germany, Saudi Arabia, Iran, Peru, Turkey, Mexico, Japan,Indonesia, India, arecountries USA,Chile, Canada,Australia, In thedescendingorder of In production ofawiderangeelements. Medium and non-ferrous metalsproduction. high levels ofC,S,Ca,Na,Cl, N,Si,Fe, Ag, Au, of produced elements. “polyelemental” withasmallerlist countries and Central African Republic (Au,and Central African C,and Mg), Guadeloupe (C,Na,Cl, and Ca),Benin chemical elements:Belize (Au, C,Ca,and withminingofoneto fourthe countries Eritrea (Au, C,Ca,Cl, Na,Mg, andS), (Au, Be, C,Ca,Cl, Na,Nb, Sn, Ta, and W), Very low (Mozambique). Cr, andN(Afghanistan), andBe, Zr, andHf Ba, Lanka), P(Sri Mg (Latvia), U (Malawi), Sn and andBurundi),Ag (Fiji),W (Rwanda andSlovenia), Si (Mozambique, Lanka, Sri Burundi), S(Afghanistan, andMalawi), Latvia, Ta and (Mozambique, Rwanda, andNb Leone), and Sierra Afghanistan, Lanka, Sri Feand Liberia), and Ti (Mozambique, Leone, Chad, Fiji, Panama, Costa Rica, Burundi,Sierra Au (Mozambique, Rwanda, elements: C,Ca,Na,Cl(almostallcountries), thatproducecountries onlysomechemical Low Low with smallproduction. production, oralarge numberofelements list ofchemicalsandhighlevels oftheir withminingofeitherlimitedcountries T YR (10 of these countries isprovided ofthesecountries byNa, (< 10 8 (10 –10 (10 10 9 9 8 –10 –10 t). This group includesUganda t). This group includes20 11 10 t). t).

This group includes55

This group Many countries haveMany countries T YR

, these has 53 America, Europe,America, andCentral America, Asia, America, South North In and . to 15,400tons percapitayear inAustralia from 1,500tons percapitayear in Africa specific regional tehnophility countries, theauthorshave calculated to technogenesiscontribution ofindividual order toIn estimate thepercapita geographical characteristics. or otherphysical, economic, orsocio- inrelationpurpose to population,area, be calculated dependingontheintended parameters. The relative coefficientsshould coefficients inadditionto theabsolute parameters, itisfeasible to userelative oftechnogenicby theintensity orother For different between comparison countries technophility conditional regional of anddensity regional tehnophility Specific Mn, andpreciousTi, andheavy metals). elements (C,Si,Na,Cl, Ca,Mg, N,P, S,Al, Fe, withminingofonlyisolatedcountries yr) and (t/ ARinacountry volume ofextracted (persons) (Fig. 3).For asawhole, theworld the groups of low and very low the groups oflowandvery a widerangeofelementsisproduced, while exclusively “polyelemental” countries, where 3,800, 3,200,3,100,2,000,and 1,800 intensive, high and very high intensive, highandvery the countries ofthemacroregions,the countries is equalto 2,850tons percapitayear. For equal to theratio with thegrowth ofits isassociated elements produced inacountry general, theexpansionoflist In Antilles,Netherlands andSomalia(C). Luxembourg (P),andSingapore, Rico, Puerto Cape Verde (NaandCl),Swaziland(C V), Salvador, and andHaiti(CCa),Mauritius and Si),Iceland(Na,Cl, andSi),Barbados, El Ca), Paraguay (Ca,C,andS),Nepal(C,Ca, produced (e.g., and Nb Ta orAu inRwanda, rare elementscanbecountries, very Within ofrelatively theterritories small capita peryear, respectively. N is the population of that country isthepopulationofthatcountry T Y / N T , where YR : thegroups of ( T N T ), whichis T YR YR T

T include Y tons per include N isthe varies varies T N T is N

of acountry T T in Burundi, Togo, andFiji). Therefore, their density of density of productionelementsandarea, different withdifferent countries levels S R equalsto theratio values increase. order to In compare Fig. of 4. Density ( regional technophility Fig. 3. Specific regional technophility (

regional conditional technophility ( T S ) have beenintroduced; T Y / S , where S T the is N ) of different countries (tons per capita per year) per capita per (tons countries different ) of T S ) of different countries (tons per km per (tons countries different ) of and Asia, respectively. t/km T world’s level of the area of a country (km the area ofacountry t/km Central America, South America, North SouthAmerica, Central America, S varies from varies 52,6to 281thousands 2 2 peryear. For themacroregions, peryear inAustralia-Oceania T S reaches 149thousands T 2 2 S ) (Fig. 4). The per year) per ofEurope,

59 ENVIRONMENT 60 ENVIRONMENT

Table 1. The matrix array of the world's countries based on the intensity of technogenesis Factor Levels of TN (tons per capita per year) Very low Low Medium Intensive High Very high (<10) (10–102) (102–103) (103–104) (104–105) (>105) Very low Cape Verde, Puerto Rico, Cambodia, Afghanistan, Eritrea, (<103) Benin, Uganda, Nepal, Chad, Iceland CAR, Paraguay, Somalia, –––– Haiti Low Sri Lanka, El Salvador, Burma, Ethiopia, Yemen, Neth- Montenegro, Angola, Panama, Djibouti, Namibia, Mauritania, Bo- (103–104) Mauritius erlands Antilles, Cameroon, Sudan (with S. Sudan), Congo-Brazzaville, tswana Costa Rica, Latvia, Sierra Leone, Liberia, Niger, Belize –– Malawi, , Kenya, Swaziland, Mozambique Medium Singapore, Rwanda, Burundi, Denmark, Thailand, Czech Rep., D.P.R. Korea, USA, Croatia, Norway, Equa- Australia, Suri- (104–105) Luxembourg, Nigeria Jamaica, Slovakia, France, India, Egypt, Ma- torial Guinea, Belarus, Saudi name, Canada laysia, Albania, Romania, Hungary, Serbia, Arabia, Kazakhstan, Russia, Georgia, Switzerland, Syria, Dominican Sweden, Bolivia, Venezuela, Rep., Pakistan, Cuba, Tajikistan, Bosnia & Finland, Guinea, Estonia, New – Herzegovina, Guadeloupe, Fiji, Morocco, Zealand, Colombia, Zambia, – Moldova, Iraq, Burkina Faso, Honduras, East Laos, Argentina, Uruguay, Timor, Tanzania, Tunisia, Nicaragua, Lithu- Bhutan Guyana, Mali, Libya, ania, Brazil, Slovenia, Senegal, Cote d’Ivoire, Gabon, Mongolia Algeria, Ecuador, Congo-Kinshasa Intensive Malta, Taiwan, Lebanon, Martinique, UK, Belgium, R. Korea, Japan, South Africa, (105–106) Barbados, Bangladesh, Philippines, Indone- Germany, Gambia, Turkey, UAE, Chile, sia, Vietnam, Guatemala Poland, Armenia, Austria, Turkmenistan, Brunei, Bulgaria, China, Spain, Peru, Oman Ghana, Italy, Uzbekistan, Levels of TS (tons per km2TS (tons per year) of Levels –– Macedonia, Togo, Cyprus, – Ireland, Greece, Mexico, New Caledonia, Portugal, Baha- mas, Zimbabwe, Azerbaijan, Iran, Papua New Guinea, Ukraine High Netherlands Aruba, Qatar, (106–107) – – – Israel, Kuwait, – Jordan Bahrain Trinidad & Kyrgyzstan Very high –– – (>107) Tobago assigned for the ferrous metals).Further increase of produced (C,Ca,Na,Cl, S,Au, Si,Fe, Ti, andnon- area, where countries only someelementsare medium-sized, ofpopulationand interms 10 T considering concurrently considering Eighteen groups were ofcountries isolated 53,7 thousandst/km is196,133,69,4,66,9, andAfrica America, the enormous the enormous with Kyrgyzstan thatstandsoutasacountry Qatar, and Trinidad and Tobago), aswell asof elements (Aruba, Israel, Kuwait,Jordan, medium level ofproduction of chemical and area, withintensive countries and of relatively small, ofpopulation interms (Fig. 3and4). The The countries whosevaluesof The countries that shouldbeconsidered incombination. high theindividualgroups):between (with anorder ofmagnitude step-difference werecountries combinedinto sixgroups or below greater orsmaller areas are located above diagonal, respectively, with whilecountries ofthemain orto to theright theleft matrix or smallerpopulationsare located inthe main diagonal, withagreater thecountries ofthe of technogenesis inthecountries elements iscomparablewiththeintensity following ofchemical cases:ifproduction to themaindiagonalmay occurinthe next inthecells The locationofthecountries i.e., Russia,China,andSouthAfrica. for countries, themajorresource extraction Very high oftheirproduction. elements andtheintensity occurs dueto expansionofthelistproduced low diagonal ofthematrix. Thus, lowandvery chemical elementsare located onthemain ofproduction depend ontheintensity According to thevaluesof Table of array 1isamatrix S valueshigherthan10 5 tons per capitaperyear andfor the T , N intensive and or the maindiagonal. However, the T high S

, values are typical of small and values areofsmalland typical T medium YR

T T N reaching thelevel of N and valuesofhigherthan very high very 2 , respectively. , T T low S 7 N are characteristic are characteristic t/km T and N T , and and N ranking was ranking and T 2 T S peryear. very high very T N (Table 1). (Table T N very low very and S and values T S , the T T YR T S S ,

with of relative parameters oftechnogenesis, i.e., elements production andwithhighlevels withsignificantidentifying countries absolute Analysis of Table 1andFigs. 2–4allows andBotswana). Mauritania, elements production, thelevel of withintensive chemical USA, andKazakhstan not differ significantly. For example, for Russia, in thecellsadjacentto themaindiagonaldo values ofboth km of thepopulationabout3personsper They account for awiderangeofchemical different demographic andspatial dimensions. withvery technogenesis ofthecountries therelativeallow comparing of intensity Thus, the proposed integral parameters demographic dimensions. Sahara) –becauseofbothhighspatialand Morocco Malaysia, (with (Kinshasa), Western Thailand, Pakistan, Algeria, Tanzania, Congo Brazil, France,population; whileIndia, Egypt, –becauseofsignificant Bangladesh, Nigeria Indonesia, territories; Vietnam, Philippines, Sudan (withSouthSudan)–becauseoflarge Libya,Mongolia, Colombia, Zambia,Mali, Argentina, Bolivia, Venezuela,Kazakhstan, Russia, USA,Canada,Australia, SaudiArabia, have lowrelative regional parameters: with thegiant absolute levels oftechnogenesis minerals leaders intheproductionofvarious Belgium, Greece, Bahrain, andPortugal. The Zimbabwe, Austria, Kuwait,Oman,Bulgaria, UAE, Ghana,Netherlands, Papua NewGuinea, Korea, Trinidad and Tobago, Qatar, Ukraine, Italy, Poland,Iran, Spain,Israel, R. Jordan, Uzbekistan, Turkey, Mexico, Japan, Turkmenistan, Germany, main diagonalcellshave “ thatareCountries notintheadjacentto the territory, issetinto thegroup with hand, The Netherlands, bythereason ofsmall because ofthegiant territories. Ontheother to asmallarea (Bahrain), T countries inthe countries is why such theauthorssuggestconsidering or S : Kyrgyzstan, Chile, China, SouthAfrica, Peru, high 2 (Australia, Canada,Suriname, Namibia, intensive levels of , high T N intensive and T , and S due to the low density dueto the lowdensity T S for different countries

very high very T N – very high very low T S group. levels of T

high T S is YR , ” medium

T T T N S S . That . That , and , and due T N ,

61 ENVIRONMENT 62 ENVIRONMENT sum of in different countries. Calculationofthe useful indicator ofthelevel oftechnogenesis “ sofar.crust, are littleusedbymankind concentrations intheuppercontinental that, thoughtheyhaveRb relatively high associated with C, S, N, Ra, andAu.associated withC,S,N,Ra, technophility,” and “density ofregional conditional technophility,” “specific regional parameters. “ The authorshave alsointroduced new composition oftheuppercontinentalcrust. coincides withtheaverage chemical whose average chemicalcomposition elemental equivalent,i.e., “abstract rock” authors have introduced theconceptof ofchemicalelements,of production the For oftheintensity concurrent comparison are anditsderivatives. tehnophility and indices, amongwhichthemostuseful and represents factors analysisofvarious technogenesis indifferent intensity countries of aspects for ofcertain comparison The “geochemical” approach provides contrary, oflarge withlowlevels. countries levels ofelementsproduction, oronthe for example, withhigh ofsmallcountries elements andare effective inidentification, have also used: oftechnogenesis,aspects theauthors order toIn integrally assesstheregional many chemicalelements. growing much faster thanitsdemandfor indicates thattheEarth’s populationis of thechangesfrom the1960sto 2010 volume ofARpertheworld’s capita.Analysis in technogenesis. The highest allows assessingtheirintegral involvement of contrastandtemporal variability, level ofanelement.Becausethehighlevel year, for productionofthecurrent necessary represents thenumberoftons ofARper the order ofn many andultramicroelements micro- isof CONCLUSION Specific technophility T Y for different chemicalelements • Conditional technophility 10 T 11 YR t. , T T Y ” ( N isminimalfor Scand , and T YN )

T T S reflects the Y – “regional valuesare T Y ” ( T isa Y of T Y ) technogenesis. mobilizationoftheelementsin primary oftheelements andintheintensity that differ inthelistsofproduced chemical possible to isolate 18groups ofcountries Considering andAustralia-Oceania. Central America Asia andEurope, while thelowest –with country. The highest country. The on thepopulationandphysical size ofa elements intechnogenesis, depending of involvement ofarangechemical These parameters indicate theintensity conditional technophiliy,” respectively. are produced; wherecountries onlyindividualelements sized, ofpopulationandarea, interms values areofsmallandmedium- typical (Kinshasa), Malaysia, andMorocco). Malaysia, (Kinshasa), Thailand, Pakistan, Algeria, Tanzania, Congo Brazil, France,dimensions (India, Egypt, to bothhighspatialanddemographic orthe Philippines, Bangladesh, Nigeria), to thelarge population(Indonesia, Vietnam, andSudan), Libya, Mongolia, Zambia, Mali, Argentina, Bolivia, Venezuela, Colombia, Canada, Australia, SaudiArabia,Kazakhstan, due to (Russia,USA, thelarge territories are belowthesevaluesinothercountries ofnaturalresources the leadersinextraction The relative indicators oftechnogenesis of Mexico, and Trinidad and Tobago. Zimbabwe; –Chile, andinSouthAmerica Peru, Ghana, –SouthAfrica, inAfrica and Portugal; Austria, Belgium,Netherlands, Bulgaria, Greece, Turkey, Germany, Poland, Italy, Spain,Ukraine, Guinea, Kuwait,Oman,andBahrain;inEurope – R.Korea, Qatar,Uzbekistan, UAE, Papua New Japan, Israel,Turkmenistan, Jordan, Iran, of technogenesis: inAsia –Kyrgyzstan, China, levels oftheabsolute andrelative parameters The authorshave withhigh isolated thecountries elements production. of Kyrgyzstan volume of with itsenormous Kuwait, Qatar, Israel, andJordan), aswell as elements (Aruba, Trinidad and Tobago, medium levels ofproduction ofchemical withintensivevalues –ofsmallcountries and T N high and Low and and T T S concurrently, itwas YR very high very isassociated with very low very

T T N N  and and T T S S

N.F. Glazovskiy (1976) Technogenic migration ofnitrogen,13. phosphorus, potassiumand 14. Glazovskiy N.F., Glazovskiy andregional M.A.(1981)Environmental geo- Glazovskaya geochemistry 14. 1. Est 12. vanderGonH.A.C., Denier Visschedijk A.J.H., vanderBrugh H.,Droge R.,KuenenJ. (2009) 11. Practical ofrocks CRC Handbookofphysical andminerals(1989).Edited properties byR.S. 10. Butterman W.C., ReeseR.G.Jr. (2003) 8. 9. Clarke F.W. Clarke (1889) The relative abundanceofthechemicalelements. 9. Butterman 7. W.C., Brooks W.E., ReeseR.G.Jr. (2004) . Bradshaw C.J.A., GiamX.,SodhiN.S.(2010)Evaluatingtherelative environmental impact 6. 1. Bityukova Bityukova V.R. (2010) Evolution ofregional 1. 5. Bцhringer C.,JochemP. Bцhringer (2007) 5. 4. Bityukova Bityukova V.R., P.L. Kirillov ofcomplexestimationtheregional (2011)Methods defferen- 4. 3. Bityukova Bityukova V.R., N.S., Kasimov Vlasov D.V. ofRussiancities. (2011)Environmental portrait 3. Bityukova V.R., pollutionofRussia’s N.S.(2012)Atmospheric Kasimov cities:Assessment of 2. REFERENCES sulfur onUSSRterritory. Measurement Project. Available from: http://www.yale.edu/esi/ [Accessed 17.06.2013]. Vol. 116. Moscow: Mysl’Vol. 116.Moscow: (inRussian). graphy, pp. IssuesofGeography. 104–120. In: conditionandtasks. Regional Geography: M., DahlA.(2005) A.,AndersonB., M.,Levy M.,de Sherbinin Saltelli A.,SaisanaM.,Nardo Martinez M., Gregg K., megapoli.dmi.dk/publ/MEGAPOLI_sr09-02.pdf D1.2.Available from: 09-02,MEGAPOLIDeliverable Report Project ScientificReport EuropeanA Baseyear (2005)MEGAPOLI GriddedEmissionInventory Press, CRC Carmichael. BocaRaton: 741p. Bull of/2004/1432/2004-1432.pdf [Accessed 02.12.2012]. sium 045.pdf [Accessed 02.12.2012]. Open–File 03–045.Available from: Report http://pubs.usgs.gov/of/2003/of03-045/of03- of countries. indices. 2008. with Englishsummary). ces undertheecological stress inRussia. Ecology and industry ofRussia Ecology andindustry emissions andimmissionsbasedonstatisticaldata. y D.C., Andonov C., B., Kim Townsend J., Srebotnjak T., LiQ., Campbell K., ZhangB., Goodall ., XI,pp. 131–142. [online].USGS,Open-File 2004–1432.Available from: http://pubs.usgs.gov/ Report Ecology and industry ofRussia Ecology andindustry Ecological Economics PLoS ONE Environmental sustainability index Environmental sustainability , Vol. 5,Iss. 5,e10440. Vestnik yn-ta,Ser. Mosk. 5,Geor. , Vol. 63,Iss. 1,pp. 1–8. , N4,pp. 6–18(inRussianwith Englishsummary).

Measuring the immeasurable – A survey of sustainability ofsustainability theimmeasurable–Asurvey Measuring , N10,pp. 4–7(inRussianwith Englishsummary). Mineral Profiles. Commodity Rubidium

Regional studies structure ofecological situationinRussia1990– [Accessed 17.06.2013]. [online].Environmental Performance Geofizika , N4,pp. 32–44(inRussian). Mineral Profiles. Commodity Ce- , N2(32),pp. 56–69(inRussian , Vol. 29,N1,pp. 53–67. Phil. Washington Soc. [online]. MEGAPOLI [online]. USGS, http://

63 ENVIRONMENT 64 ENVIRONMENT Pacyna J.M., Pacyna E.G.(2001)Anassessmentofglobalandregion emissionsoftrace 29. Goldschmidt V.M. (1933)Grundlagenderquantitativen Geochemie. 15. J.O., Nriagu Pacyna J.M. (1988)Quantitative contaminationof assessmentofworldwide 28. 27. Energy [online].Available energy world Agency statistics(2012).International from: Key 26. K 25. S.P. Kapitza ofhumanpopulationgrowth: howmany (1999)Essay people onthetheory 24. 23. 31. Perel’ 30. 2. Inter 22. Haxel resources G.B., Element–Critical J.B., Hedrick G.J. for Earth Orris (2002)Rare High 21. Fersman A.E.(1934)Geochemistry. Leningrad: Khimteoret, 354p. (inRussian). 20. Environmental, &hazardous news, material careers chemistry & resources (2012)[online]. 19. Emsley J. (1991) The Elements. Oxford: Clarendon Press, 251p. 18. intheuppercontinentalcrust.Eka- N.A.(2009)Chemicalelementdistribution Grigoriev 17. oftheElements. Greenwood Oxford: A.(1997)Chemistry N.N.,Earnshaw Butterworth- 16. views metals to theatmosphere from anthropogenic sources worldwide. air, water andsoilsbytracemetals. rals.usgs.gov/minerals/pubs/mcs/ [Accessed 02.12.2012]. Mineral summaries commodity http://www.iea.org/textbase/nppdf/stat/12/kwes.pdf [Accessed 02.12.2012]. 239p. (inRussian). Nauka, lived, Moscow: lives andwilllive ontheEarth. from: [Accessed http://minerals.usgs.gov/minerals/pubs/country/ 02.12.2012]. International minerals statisticsandinformation able from: http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm [Accessed 02.12.2012]. Petrogr 21st century. html [Accessed 02.12.2012]. (2012). IPCC [online].Available from: http://www.ipcc-nggip.iges.or.jp/public/gl/invs6. 1996IPCCRevised GuidelinesforNationalGreenhouse Inventories: Reference Gas Manual fs/2002/fs087-02/fs087-02.pdf [Accessed 02.12.2012]. Technology [online].USGS,Fact Sheet087–02.Available from: http://pubs.usgs.gov/ odic/ [Accessed 02.12.2012]. Environmental chemistry. Available from: http://environmentalchemistry.com/yogi/peri- terinburg: UralBranchofRAS,382p. (inRussianwithEnglishsummary). Heinemann, 1600p. asimov N.S., Vlasov D.V. (2012) Technophility ofchemicalelementsinthebeginning ofthe national energy statistics(2012).U.S. Energy Information Administration [online]. Avail- man A.I. (1975) Landscape geochemistry. Moscow: 342 p.man A.I.(1975)Landscapegeochemistry. Moscow: Vyshaja Shkola, (in Russian). , N9,pp. 269–298. ., N17,pp.112. (inGerman). Vestnik yn-ta,Ser. Mosk. 5,Geor. (2012).U.S. Geol. Surv. [online].Available from: http://mine- Nature , N1,pp. 15–22(inRussianwithEnglishsummary). , Vol. 333,pp. 134–139. (2012).U.S. Geol. Surv. [online].Available Fortschr. Mineral. Kirst. Environmental Re-

Vinogradov A.P. (1962) The average of content ofchemical elementsinthemaintypes 36. Tikunov V.S., Tsapuk D.A. and cartographic (1999)Sustainabledevelopment ofterritories: 35. ofnoblegases. (2012)New chemicaltechnologies. market Theworld Analyticalportal 34. (2012).CIA[online].Available factbook Theworld from: https://www.cia.gov/library/pu- 33. 32. Yang X.-Y.,37. Sun W.-D., Zhang Y.-X., Zheng Y.-F. (2009)Geochemicalconstraintsonthe 1999 (co-author A.I.Perel’man);1999 (co-author LandscapeEcogeochemistry, 2013. atlases ofRussia.Heistheauthorabout300scientificworks, including:LandscapeGeochemistry, in theuniversities ofRussiaandin 2004for theelaboration ofenvironmental andnaturalresource awarded for bytheRussiangovernment thedevelopment ofasystem ofenvironmental education He alsogave lecturesattheuniversities ofSofia,Havana, 2000hewas Barcelona andCambridge. In lectures: “Landscape geochemistry” and ofnaturaland anthropogenic landscapes”.“Geochemistry Statecoastal zone hedelivers University landscapesoftheCaspianSea.AtMoscow coursesof of aquaticlandscapes. HeleadsRussian-Dutch projectsrelated to thestudyofchangesin

igneous rocks of the Earth crust. igneous rocks oftheEarth Izd-vo SGY, Moscow–Smolensk: GIS support. 176p. (inRussian). php?n_id=7855 [Accessed 02.12.2012](inRussian). [online].Available from: http://www.newchemistry.ru/printletter.of chemicalindustry [Accessed 02.12.2012]. blications/the-world-factbook/ try. Vol. 3: The Crust.Edited byH.D.Turekian. HollandandK.K. ElsevierScience, pp. 1–64. Rudnick R.L.,GaoS.(2003)Composition ofthecontinentalcrust.In: Treatise ongeochemis- genesis oftheBayan OboFe Cosmochim. Acta , N73,pp. 1417 Dmitry V.Dmitry Vlasov

English summaries, withco-authors). ofMoscow”snow cover district withintheEastern (allinRussian with elements inthebeginning ofthe21stcentury”, of “Geochemistry ofRussian cities”, portrait “Environmental “Technophility ofchemical techogenesis publications are andbiogeochemistry. Main University. The focus geochemistry, ofhisstudiesisinurban and SoilGeography oftheFaculty ofGeography, State Moscow ofLandscapeGeochemistry Junior Researcher oftheDepartment 2012heisaPhD studentand (Diploma).SinceOctober degree University, graduated in2012andobtained the Specialist’s Nikolay S.Kasimov geochemical principles for GIS of cities and regions and geochemistry forgeochemical principles GISofcitiesandregions andgeochemistry and theworld, theirassessmentandclassification,elaborationof landscapesinthecitiesofRussia ofurban interests are: geochemistry Geography State University. attheMoscow current research His and SoilGeography oftheFaculty andsince1990–Dean of ofLandscapeGeochemistry 1987 heistheHeadofDepartment landscapesin1983.Since ofsteppes anddeserts paleogeochemistry ofScienceforfault zones in1972andgainedDoctor research in received of hisPhD inGeography studyinglandscapegeochemistry andFullUniversity oftheRussianAcademy Member ofSciences, – Nb – Geochemistry 1435. – REE deposit in Inner Mongolia, China.Geochim.et Mongolia, REE depositinInner studied Geoecology at the Moscow State studied GeoecologyattheMoscow , Professor oftheLomonosov State Moscow , N7,pp. 555–571(inRussian).

65 ENVIRONMENT 66 ENVIRONMENT either in terms ofthe droughteither interms occurrence hundred years inthe Tien ShanMountains, ofthelast threelook unusualinthecontext e-mail: [email protected] e-mail: Russia, 119017; Tel: +7-495-959-00-34,Fax: +7-495-959-00-33, 2 * Olga Solomina 1 Tel: 845-365-8618,Fax: [email protected] 845-365-8152,e-mail: nearest stations. The 20 using themeteorological datafrom the theresultsdata confirm ofthemodeling temperature andprecipitation grid point withCRU of thereconstructions TS3 the summertemperature. The correlations different climaticparameters, namelyon not correlate with them:itdependson chronology doesThe maximumdensity a large onmoisture extent availability. a strong similarity. They bothdependto from theupperandlower tree limitsshow chronology. widthchronologiesThe ring on thelower tree limitregional width ring fromreconstruction 1680to 2000based upper tree limitandthedrought index chronologymaximum density from the to 1995basedonamulti-site composite temperature reconstructionfrom 1626 reconstructions:theMay–Augusttwo upper andlower tree limits andprovide atthe widthandmaximumdensity ring climaticparametersbetween andspruce Kirgiz Republic. We explore theconnection researchring inthe Tien ShanMountains, spruce ( ABSTRACT. INFORMATION AS A SOURCE OF PALEOCLIMATIC TIEN SHAN MTS (KYRGYZ REPUBLIC) AND LOWER TREE LIMITS IN THE ATAND DENSITY THE UPPER PICEA SCHRENKIANA Corresponding author Institute ofGeographyInstitute RussianAcademy ofSciences, Staromonetny-29, Moscow, Lamont-Doherthy Observatory, Palisades, Observatory, Lamont-Doherthy New York 10964USA; Picea schrenkiana We present here theresults of 1* , OlgaMaximova th

century doesnot century Fish. etMay. ) tree- 1 , Edward Cook RING WIDTH in thesecondhalfof20 shore, butmostofstationswere established meteorological station,nearIssykKullake Tien Shanbeganin1879 at theKarakol regions. in Meteorological observations inKyrgyzstanMountains isoneofthose Shan TheTien networks. meteorological the remote mountainregions withpoor in of information isespeciallyimportant paleoclimatic information. This kind the mostreliable sources ofhighresolution Tree-ring basedreconstructionsare among and lower tree limits, Tien Shan. and drought indexreconstructions, upper maximum density, summertemperature region compared to the20 the 19 change inprecipitation isindicated with contrast, someespecially prominent. In in summer warming Tine Shanhasbeen not encompassthelastdecadewhen changes. However does thereconstruction orinsummertemperatureand severity provide important dendrochronologicalprovide important forests, whichare widespread inthisregion, INTRODUCTION KEY WORDS: th century being drier intheIssykKul beingdrier century 2

Tree width, rings, ring th century only. century Spruce th century. used the “Reg climatic signal aswell. Esperet al. [2003] that thechronologies containedaregional provided evidence Shan andKarakomum withothers from theseseries between Tien summer airtemperature. The similarity correlateswhich inturn withJuly-August chronologymaximum density ofspruce, widthagainstthe calibrated thejuniperring widthandmeteorologicalring variables, they of statisticallysignificant correlation between Kyrgyzstan.site insouthern Dueto thelack juniper chronology (sinceAD618)for one Esper etal. thelongest [2002]constructed identified weak correlations withclimate. Later, clearly, buttheirresu aiming to identifytheclimaticsignal more ofmeteorologicalthe vicinity stations [2005]sampledjuniperin and Gorlanova parameters. Graybill etal. [1990]andGlazirin widthandmeteorologicalcorrelations ofring usedforseries calibration,andweak replicated chronologies, meteorological short these firstattempts were basedonpoorly for juniperintheIssykKularea. However, [1989] obtained similarresults and Glazovsky widthto summertemperature.ring Solomina the generalcorrespondence ofthejuniper than thousandyears old. Hedemonstrated [1977]discovered treesMukhamedshin more Range, slopeoftheAlaisky the Northern 1960–1970s. Studyingthejuniperforests at most attention ofdendrochronologists since growing inthe attracted Tien ShanMountains and spruce( oftreesTwo –juniper( kind Respublic. intheKrygyz Mountains upper andlower tree limitsinthe Tien Shan to reconstruct climaticparameters atthe (MXD),and andmaximumdensity (RW) width climatic parameters andsprucering namely to explorebetween theconnection researchring inthe Tien ShanMountains, synthesize theachievements ofsprucetree- rings. The studypresented here aimsto to 700–800 years oldandform clearannual reconstructions. The sprucetrees canbeup formaterial potential dendroclimatic STATE-OF–THE-ART Picea schrenkianaFish. etMay. ional Standardization Curve” to lts were similar: they lts were they similar: Juniperus sp.) ) Picea schrenkiana peerreviewed.internationally publications are inRussianandwere not werecenturies published, butallofthese [Solomina etal., 2007]coveringthelastfew [Solomina etal., 2006]anddrought index (spruce) reconstructionsofairtemperature an indexofglacialactivity. Recently, tree-ring Glazovsky, 1989]were alsousedto reconstruct from theIssykKularea [Solomina and chronologies [Borscheva, 1981].SpruceRW of several years preceding thegrowth influenced bytheclimaticparameters [Solomina etal., 2007]. widthis The ring precipitation thevegetation during period on thecombinationoftemperature and the lower tree widthdepends limitthering summer temperature [Borscheva,1981].At widthalsodependedonthe valleys thering the growth thenarrow shaded season.In fall-winter-spring precipitation preceding the uppertree limitdependsmostlyonthe wood widthofspruceeven ring at early spruce tree limit).Shediscovered thatthe (ecological optimum),and2800 m(upper (lower sprucetree limit),2200and2600m –1400m along anelevationaltransect Schrenkiana published theresults ofherstudies 1980sBorscheva[1981,1983] theearly In Republic. ofKirgiz part inthesouthern Alai Mountains widthchronologiesring inthe constructed in thereconstructionbasedonjuniper temperature thelong-term preserve trend slopes, in the mid part onwest- andeast-slopes, inthemidpart of itsrange, sprucegrows onnorth-facing of 1400to the lowest 3600masl. part In 500 to 700mm,and anelevationrange from –2to 2°C,annualprecipitation from area withthemeanannual airtemperature Tien Shansprucegrowth to isattributed the in thewestern Tien Shan. The optimumfor andAtbashiregions,Sarydzhaz, aswell as Zailiisky, Kungeyand Terskey Ala-too, Koeliu, SCHRENKIANA ECOLOGICAL PREFERENCES OF SPATIAL DISTRIBUTION AND ring width in Zailiiiskii Alatau widthinZailiiiskii ring

IN TIEN SHAN MOUNTAINS grows intheKyrgyzky, PICEA Picea

67 ENVIRONMENT 68 ENVIRONMENT standard dendrochronological methods All sampleswere analyzed usingthe byF.valleys) contributed Schweingruber. andSaryimek Sarykungey Bank (Karabatkak, sites) from theInternational Tree-Ring Data measurements widthanddensity (3 of ring We alsousedinthisstudythecollections Central Tien ShaninKyrgyz republic (Fig. 1). elevation and9lowsites inthe of spruce( samples (cores anddisksfrom deadtrees) From 2000to 2009we tree-ring collected 1982]. evaporation [Kozhevnikova, to great amountofprecipitation andlow thin soillayers canbecometoo wet due slopesthe atthenorthern part uppermost Spruce requires abundantwater, butinthe role inthespruceecology.an important by temperature. The soilmoisture plays tree limitthegrowth ofspruceislimited suggeststhatattheupper This distribution 1982]. south-facing slopes[Kozhevnikova, on facing slopes, part andintheuppermost MATERIALS AND METHODS Fig. 1. Map of tree-ring sites: 1 – Upper tree limit, RW, 2 – Lower tree limit, RW, 3 – Upper tree limit, limit, tree Upper RW, 3 – limit, tree Lower RW, 2 – limit, tree Upper 1 – sites: tree-ring 1. of Fig. Map MXD (from the International Tree-Ring Data Bank contributed byF. Schweingruber) contributed Bank Data Tree-Ring International the (from MXD Picea schrenikiana ) from 15high [Briffa and Melvin, 2010]. andMelvin, [Briffa we were detrending notableto useRCS number ofsamplesthesubfossil wood F.Schweingruber. Dueto theunsufficient was usedto detrend of theMXDseries local chronologies. The sameprocedure detrended were series thenaveraged in [1990]for details). Kairiukstis The individual fitted value(seeCook growth and curve widthbyitsrespectiveeach annualring indices were calculated asthedivisionof andtheresulting tree-ring linear curves approximated bynegative exponentialor chronologies. The growth trends were detrend andbuildthelocal theseries andusedARSTANseries 1985]to [Cook, ofthecross-datedevaluating thequality We usedCOFECHA [Holmes, 1983]for fixed withbyGPSandmapped(seeFig. 1). The coordinates sites oftheselected were and meso- homogeneous orographic, soilandother and wounds, andfrom thesites with each other, withoutvisualdisturbances fromsampling thetrees standingapart 1990]. Where possiblewe for selected [Fritts, 1979; Cook andKairiukstis, microclimatic characteristics. CKSU; 2–ENG,KOE, NAN;3–DJKU, KOK. The identified: 1–AKS,ATB, KUN,ONS,ONN,NAR, analyses three groups ofchronologies were respectively.the variance Basedonthese The 2 widthvariability.explaining 50%ofring PC showsthatthere isacommonfactor analyses. ofsites bythefirst The similarity component both correlation andprincipal to combinethesite chronologies we used growth order atthislarge pattern territory. In is asign ofacommonsignal influencingthe locations inthe Tien ShanMountains., which site chronologies fromof all18RW various analyses demonstrates thehighsimilarity width. Upper tree limit.Ring series. to theinsufficientlengthofmeteorological the response for thesites AKSandATB due of thesameseries. We couldnotcalculate weretime series replaced bythemedians The missingvaluesinthemeteorological records from elevationslower than2000m. stations atthehighelevationwe hadto use cases dueto thelackofmeteorological near thesamplingsites were some used. In measured atmeteorological stationslocated temperature andtotal monthlyprecipitation and density. For thisanalysis, meanmonthly width thatinfluencebothring the factors 2004] andcorrelation analysesto estimate We [Biondi and usedDENDROCLIM Waikul, RESULTS nd and3 d PCexplain25and10%of Fig. 2. Regional RW spruce chronology (TSH UP) and its EPS index EPS its UP) and (TSH chronology spruce RW Regional 2. Fig.

The correlation months oftheprevious year. Temperature in temperature aswell aswiththesummer negative correlation withtheApril–May temperature islessconsistent: there isa of theprevious year. The correlation with in August, October, November, December widthandtotal precipitation ring between forthere isatendency positive correlation in Tien Shan in Tien signal embeddedinthesprucetree-rings sites, ofclimatic butalsobyacomplexity meteorological stationsfrom thetree-ring explained bytheremote locationofmany chronologies isnothigh. This canbepartly meteorological withthering-width variables generalthecorrelation oftheIn from 1510to 2006. chronology isreliable from 1360to 1460and to theEPS-test (>0,85)theremaining out dueto thepoorreplication. According of thechronology (AD1301-1360) wascut chronology – TSH UP(Fig. 2 other theyallcanbeaveraged inaregional the localchronologies correlate witheach As well soonasallsamplescross-date and well witheven remote sites. located faraway from thissite. АТВ correlates with ATB, ONS,ONN,CKSU, thoughtheyare for theКОК. KUNhasahighcorrelation correlate withany site except neighboring exceptions. For instance, DJKUdoesnot of theirlocation,thoughthisrulehassome chronologies tend to group bythevicinity . In theFig.In 3onecanseethat ). part The earliest

69 ENVIRONMENT 70 ENVIRONMENT coefficient of correlation exceeding 0,35 exceeding of correlation coefficient are 95%level at Significant chronologies. site limit tree lower the for same (c) (d) –the and stations. meteorological nearest the at (b) measured temperature (a) monthly and precipitation of sum monthly Fig. 3. Correlation functions: the correlation of ring width site chronologies (upper tree limit) with the of 17 18 the endof16 early 20 early our regional chronology in1970–80s, inthe The lowgrowth anomaliesare identifiedin for thegrowth attheuppertree line. favorable isto thecontrary June-September correlates alsowith April-September, but al., 2006]. significantly The maximumdensity for allthree sites are alsosimilar[Solominaet them (r=0,7–0,75). The response functions is highdespite of longdistancebetween formation. thesitesThe correlation between climatic signal isforcing maximumdensity variability. meansthatastrong This similarity both atthelevel ofinterannual anddecadal highsimilarity SJdemonstrate avery SK, chronologiesmaximum density for KAR, Upper tree limit.Maximumdensity. Table 1we listthenarrowest andlargest rings. centuries, nthemiddleof16 century, inthelate 18 century, in1770–80s, in thelate 17 growth anomaliesoccurred inthemid20 in themiddleof18 th Table 1. The largest and narrowest tree rings rings tree narrowest and Table 1. largest The 9413 980.60 0.49 0.65 1918 0.65 1917 0.62 1771 1.34 0.65 1591 1.33 0.66 1549 1.30 1994 0.45 1538 1.30 1956 0.54 1535 1.34 1955 0.54 1497 1.30 1804 0.64 1496 1.45 1795 0.67 1459 1.38 1751 0.65 1457 1.35 1747 0.67 1454 1.56 1677 0.61 1453 1.44 1651 1452 1.38 1583 1451 1.59 1582 1.53 1567 1.45 1512 1480 1474 errn it erringwidth year ringwidth year centuries, inthemid17 th ags ig Narrowest rings Largest rings century, inthelate 16 th century, in the second quarter 19 century, inthesecondquarter th at the upper tree limit tree upper at the century (seeFig. century 2). The positive th century, and in the early century, andintheearly th – early 19 –early th th century, and in century, andin century. In the the century. In th – early 17 –early th centuries, centuries, th – early –early The th th th

Shan occurred inthesecondhalfof17 low May–August temperature inthe Tien According to ourreconstruction(Fig. 4)the of1950s–1980s.period for the The highestcorrelation isobserved (r=0,51and 0,48respectively). intervals temperature remains significant for both that thecorrelation withMay–August (1965–1995 and1930–1964)shows periods records into calibrationandverification The subdivisionofthemeteorological them asasign ofaclimaticsignal. mountain ranges. For thisreason we consider from eachotherandeven atthedifferent which are apart located more than200km chronologiesthemselves inbothSJandKAR localdisturbances, buttheyreveal look like growth intheyears 1694,1696,and1698 99% level (r=0,41). The three offsets ofthe 1995) decreases, butremains significant at from Tien Shanmeteorological station(1930– 1987). The correlation withthelongerrecord meteorologicalChon-Kizil-su station(1948– May-August temperature measured atthe 1984, 1994,1995. 1878, 1881,1916, 1926,1933,1944,1978, 1716, 1720,1727,1732,1747, 1807,1822, are extremes 1972, 1989;warm 1705,1708, 1803, 1813,1816,1841,1869, 1920,1957, 1694, 1996,1698,1722,1755, 1761,1783, coldyearsextremely are 1664,1674,1676, 60s andin1980s. According to thesedata century, in1810s, 1830s, 1880–90s, 1950– century, inthemiddleandendof18 chronology correlates (r AD 1650–1995. period This regional Dmax (> 0,85)thechronology isreliable over the including 58cores. According to theEPS-test chronology lastingfrom 1626to 1995and themto beaveragedpermit into asingle chronologies SJmaximumdensity SK, KAR, andcorrelation ofthe The highsimilarity (r =–0,56). with thesumofannualprecipitation The correlation issignificant andnegative August (r=0,63andr0,79,respectively). windowfor May– withashorter comparing with lower coefficientofcorrelation when 2 = 0,62) with the =0,62)withthe th th

71 ENVIRONMENT 72 ENVIRONMENT buildings inthe area. They are theSvetly Mis order theirlengthwe to extend sampled old for thepaleoclimate reconstructions. In andtherefore valuable century) are notvery rarely exceed (one theinstrumentalperiod Thus thechronologies from livingtrees here hasrelatively fewwood init. portion rings inside atthesesites andtheremaining solid Secondly, thetrees are almostalways rotten where thepopulationisconcentrated. neartheplaces used for thebuildingactivity reasons. Firstly, thesprucewood isintensely for atthelower two tree series ring limitisshort chronologies. The lengthofthesprucetree- tree limitwe analyzed 9individualsite Lower width. tree limit.Ring is more influencedbythemoisture supply. the summertemperature, width whilethering shows thattheDMAX isresponsible mostlyfor is alsoclearfrom theresponsewhich function, limit doesnotcorrelate width. withthering This ofspruceattheuppertree density Maximum 1626–1995; for density (d) samples of number station to andadjusted attheChon-Kizil-su measured linear onthebase of reconstructed density by themaximum to the elevation temperature (b) atth measured chronology; May–August of 3600 m (for(a) the linearregression and coefficient comparison with Tien Shan station) (1), measured at the Tien Shan station (2), Fig. 4. Reconstruction of May–August temperature by maximum late wood density (mean of three chronologies SJ, SK, KAR): KAR): SK, SJ, chronologies three of (mean

For thelower of correlation of May–August temper N in the chronology used for thereconstruction for used in thechronology chronology isreliable from 1750to 2005. (Fig. 5). According to theEPS-test (>0,85)the extension were around 200years long andallowed the significant. Allsamples ofwood we used same valleys(CKSandKUN) isstatistically with thelivingtrees chronologies ofthe The correlation ofallindividualsamples far backmore thenafew more decades. thechronology to extend did notexpect colonization ofthisregion (19 trees growing inthevicinity. Dueto thelate probably were builtfrom thewood ofthe at theelevation1600–1800maslandmost houses are located neartheIssykKulshore With theexception ofthelastbuildingall samples withthelivingtree chronologies. et al., 2007]. We thebuilding cross-dated valley[Solomina station inChonKizil-su of Tien-Shan Physical Geography research in Teplokliuchenka village, andthehouse one ofthefirstRussianhouseKolomiitsv village, Monastery, theschoolinPokrovka the elevation mandreconstructed 3600 of by maximum regression coefficient (3); e Chon-Kizil-su meteorological station meteorological andadjusted e Chon-Kizil-su of thechronology backto AD1680 ature and indices of maximum density density ature andindices maximum of (c) temperature, May-August th century) we century) current andtheprevious years. of the(temperature) ofJune–September where Q (June-September): forperiod thecurrent andprevious year temperature andprecipitation for thewarm drought coefficientwhichincludesboth correlations thatwe found are withthe 1974]. parameters [Bitvinskas, The highest drought indexcombiningthetwo width withseveral modificationsofthe We tested thecorrelation ofthering year atthe lower tree limitisnegative. temperature period the warm ofthecurrent for thetree growth. However theinfluenceof August ofprevious year are mostimportant temperature andprecipitation isJulyand the uppertree limit(Fig. 3,aandb):both isgenerallysimilarto correlation function displayed attheFig. 3(c, d). of The pattern chronologies from thelower tree limitare forThe correlation functions thelocalRW [Borscheva, 1981]. the othersites inthesame Talgar valley correlatesthis chronology with alsoweakly a.s.l. isofinterest that [Borscheva,1981].It chronology located attheelevation1400m Alatauregion exceptZailiisky for thelowest to thechronologiesextend from the another. The significant correlations also of theIssykKularea correlate withone All localandregional average chronologies = Fig. 5. Ri ng width regional lower tree limit limit 5.Ri tree Fig. lower regional width ng P 1 + P (TSH DOWN) and its EPS index EPS its and DOWN) (TSH P 0 ( 0 /( T chronology of spruce T 0 1 ) + и P T 0 )/2, 1 ( T 1 ) –precipitation of the20 and drought coefficientinthesecondhalf 0,34). width ring The correlation between the lastcasecorrelation isnothigh(r= data for 1951–2000.However theperiod in drought indexreconstructed bytree-ring drought index(r=0,69)aswell aswith records correlates withthePrzhevalsk The drought coefficientbasedon these recorded atotherstationsoftheregion. standard deviationsandthisanomalyisnot in July–September exceeding two demonstrate anomaloushighprecipitation becausethey timeseries the Pokrovka the years (1986and1988–1990)from su) andCholpon-Ata. We hadto exclude meteorological (Kyzil- stationsPokrovka 1887 to neighboring 2000 usingtwo We thePrzhevalsk extended records from 1950s. 1828–1829, 1856–1857,1873–1874,1879– Issyk Kulregion occurred in1774–1775, to thisreconstructionthedroughts inthe 1750–2005(Fig.the period 6).According reconstruction ofthedrought indexfor the at thelower tree limit. This allowed the limit thegrowth of temperature season thewarm during Thus, lowprecipitation andhigh it didweaken. R beginning oftherecords (for 1887–1959 mean). The correlation ishigherinthe coefficient is0,41(0,59for five years running withthedrought DOWN) chronology (TSH correlation oftheregional lowelevation station (1887–1988)over itsfulllength,the Using thelongestPrzhevalsk meteorological meteorological data (black) and reconstructed reconstructed and (black) data meteorological 2 =0,50),butitdecreases sincethelate Fig. 6. Drought Index calculated from from calculated Index Drought 6. Fig. th century didnotdisappear, century but by tree rings (gray) rings by tree Picea Schrenkiana

73 ENVIRONMENT 74 ENVIRONMENT Issyk Kulregion thatthe20 Drought index was carried onusing the Drought index wascarried August temperature andJune–September presented above, namelyfor theMay– reconstructions analysesofthetwo Spectral ofthereconstructions.Spectral properties and ahalfcenturies. of drought occurrence over thelastthree 20 general the19 well thechronologies ofthedroughts. In due to regression, althoughitreproduces meteorological datadueto lostvariance thanthea lower interannual variability based reconstructiondemonstrates in 1768–1769/1774–1775. The tree ring 1916–1917. The longestdrought occurred in1894–1895andthe instrumentalperiod 1880, 1884–1885,includingthoseduring temperature, (b) precipitation, (c) sea level pressure level (c) sea (b) precipitation, temperature, (a) period same the of parameters point grid TS3 temperature in the Tien Shan Mts with CRU Fig. 7. Correlation maps of the May th century does notlookunusualinterms century th century was drier inthe was drier century th century. The – August August

A negative correlation ofthereconstructed [Diurgerovtime series etal., 1995]. basingonmeteorologicalidentified earlier temperature andprecipitation inthis region ofsummer consistent withanti-correlation (Fig. isalsoobserved same period 7b). This is with CRU TS3 precipitation data over the negative correlation ofthisreconstruction oftheregion (Fig. part northeast 7a). The point temperature dataespeciallyover its positive correlation withtheCRU TS3 grid the showastrongTien ShanMountains May–Auguststructed temperatures in Explorer recon- [http://climexp.knmi.nl/], Correlation maps. in the Tien Shanregion. ENSOandclimate between teleconnection band, butthere islittleevidencefor astrong (2–7yrs) intheENSOfrequency both series sign ofconsistent in inter-annual variability 16–32 and60–80years. There isalsosome significant withtwo peaksaroundboth series of characteristics inthespectral similarity edu/research/waveleth. showsacertain It online wavelet http//paos.colorado. software period (a) temperature, (b) precipitation (a) temperature, period same the of parameters point grid TS3 CRU with Mountains Shan Tien the in index Drought June-September the of maps Correlation 8. Fig. UsingKNMIClimate as well. bythe supported This isindirectly summer temperature to limitradialgrowth At theuppertree limitoneshouldalsoexpect spruce chronologies islogical. 1982], thedrought signal widthin inring sensitive to moisture supply[Kozhevnikova, sprucequiteis ratherdry, thusmaking limit sites. As theinner Tien Shanregion for bothupperandlower treeimportant summer precipitation ofaprevious year is Alatau (for 5years smoothedvalues). The andKungeyupper tree limit inZailiisky woodwidthofspruceatthe ring the early precipitationthe October-May signal in upper tree limitBorschova[1983]identified andmeteorologicaltree-ring data.For the used amore limited datasetfor both agree withthoseofBorschova[1983]who precipitation. Bothconclusionsgenerally correlation ishigherwithJuly-August and February, while atthelower sites the precipitation ofAugust, October–December are periods sites themostimportant mostly onmoisture supply. For theupper spruce inthe dependTien ShanMountains We have widthsof shownthatthering (Fig.Tien ShanMountains 8a,b). negative correlation withtemperature in reconstructions withtheprecipitation and is apositive correlation ofourdrought the lower tree above. limitreported There results onring-width climaticresponse at smaller inspace, butalsoconsistent withthe reconstruction areDrought somewhat Index The correlation fieldsoftheJune-September Mountains. hotsummerweather tobrings the Tien Shan and southwest into periphery itseastern airisadvected from warm over the Siberia pressurenegative anomalyofatmospheric negative the correlation meansthatduring significancethe hemispheric (Fig. 7c). The of pattern isadistinct America to theNorth large area ofthehighlatitudefrom Siberia sea level pressure (samearchive) over the May–August temperature withtheHadSLP2 DISCUSSION combined chronologies from bothlocations date againsteachothersuccessfully. The from the upperandlower tree limitscross- The individualsamplesand chronologies Cook etal., 1999]. areas [e.g. forsignal istypical thesemi-dry of integrated temperature/precipitation fall.summer andearly This combination influence ofthetemperature ofspring, precipitation, butintegrates alsothe the growth dependsnotonlyfrom the m a.s.l. thesignal becomesmore mixed: parameters. Attheelevation2000–2400 widthandmeteorological thering between to ourcases, butwithhighercorrelation by summerprecipitation inasimilarway a.s.l. widthwaslimited Atthissite thering much lower site attheelevation1400m Borscheva [1983]wasableto samplea 2000and2400m a.s.l.,between while oursites inthelowerMost locationsare trees were usedfor buildingandheating. natural processes: for thespruce centuries dominates the clearly human activity probably even more disturbed, buthere The lower tree lineinthe Tien Shanis natural uppertree line. the natural agentsinlowering important flows,and debris slopemovement are also the naturalvegetation. A efficientindestroyingthe sheepare very fires andbuildhuts.make Atthesametime, population, andtheshepherds usewood to is thetraditionaloccupationoflocal Use ofthehighelevationsfor pasturage anthropogenic activity. andgeomorphic real spruceforestactual isalsolowered by beltofspruceforests.lower-elevation The widthismore forin theirring typical the possible uppertree limit. Thus, thesignal they donotrepresent thepotentially however, and we therefore that suspect growth. Noneofoursites are south-facing, the contribute would onthecontrary tree growth, whilehighairtemperature moisture, whichcannegatively influence at theuppertree limitcontaintoo much slopes that thepoorsoilsatnorthern [1982],whoclaimed results ofKozhevnikova valanches, mud

75 ENVIRONMENT 76 ENVIRONMENT al. widthanddensity [2007]used thering influenced by monsoon activity. Wilson et with substantiallydifferent climate largely parameters come from Tibet andHimalaya reconstructionsof climaticour data.Most region available for with thecomparison ofthe periphery Tien Shan the northern fewThere for reconstructions are very etal.,limits [Briffa 1998,2002]. 2003, [Schweingruber etal., 1988,Esper, 2002, different speciesgrowing attheupper have for beenreported thetrees of withsummertemperaturedensity temperature. from width,which isthesummer ring depends onadifferent climate influence demonstrating adifferent climate signal. It or lowtree limitchronologies, clearly not correlate witheitheruppertree limit chronology doesThe maximumdensity this hypothesis. by cloudcover changes, butdidnotprove might beforced bysolarradiationcontrolled authors suggested thatthetree growth aslong1438–1995). the period These and lower tree limitsites isupto 0,72for the upper mountains (correlation between sites inthe Tien ShanandKarakorum altitudinal gradient byanalyzing28juniper juniper ring-width chronologies alongthe found ahighdegree among ofsimilarity Tian ShanMountains. Esperetal. [2007] even attheuppertree limitinthearid limitingtree factor radialgrowth important showed thatprecipitation wasthemost the elevationofsites. These authors decreased response withtheincreasing of the correlationsites between andthe 1600–1700 to 2600–2700ma.s.l. They found alonganaltitudinalgradientMountans from ofthe in theadjacentterritory Tien Shan widthof studying thering [2005]cameto thesameconclusions Ma locations (seefigure 3). Wang, Renand moisture supply ontree growth ofboth be explainedasacommoninfluenceof level ofinterannual variations. This might especiallyatthe also showalotofsimilarity Buentgen etal., 2010] Similar relations ofmaximum Picea schrenkiana or northern tree or northern

was basedona temperature reconstruction June–September contrast,theEsperetal. [2003b] 1775–1995). In reconstructionsishigh(r =0,66,for the two in Wilson etal. [2007]. The correlation between variance explainedishigher(r=0,79,r variance meteorological Chon-Kizil-su station,andthe (May–August temperature) measured atthe case thecalibrationwaswithalongerwindow of thegr reconstruction explained36%(r=0,61) gridded June–July meantemperatures. The in astepwise multipleregression against utilized separately aspotential predictors andMXDchronologies werestudy theRW temperatures. the In Wilson etal. [2007] we usedhere to modeltheMay–August ofthethreeThese includedtwo sites reconstructions for theKyrgiz territory. data from theITRDBfor theirtemperature the IssykKularea. The bestfit modelincludes lower tree limitchronology for constructed reconstruction for 1750–2000basedonthe We have alsopresented here adrought index climate isoccurring. forcingsignificant external ofgrowth dueto theconclusionthat chronologies supports Overall, thespatialagreement the between in ahighlyconsistent andsignificant way. positively withthesummer temperature contrast,MXDcorrelates In more important. temperature period warm andprecipitation is lowerand drier elevations, thecombinationof role for sprucegrowth, whileatthewarmer precipitationperiod plays themostimportant the upperelevationsofmountains, cold depend mostlyonmoisture availability. At of elevationsinthe Tien ShanMountains over alarge widthvariations Spruce ring range showasimilarpattern. curves above, althoughfor the two someperiods Wilson etal. [2007]reconstructionmentioned it isalsonotsignificantly correlated withthe temperature reconstructionisinsignificant, but (r=0,46). Uzbekistan The correlation withour Fergana meteorological stationineastern chronology,RW whichcorrelated withthe CONCLUSIONS idded temperature variance. In our idded temperature our variance. In Juniperus turkestanica 2 = 0,62) as =0,62)as regional regional 8. Briffa, K.R. and Melvin, M.(2011)ACloserLook andMelvin, Standardization atRegional of Curve K.R. Briffa, 8. Jones, P.D., K.R., Briffa, Schweingruber, F.H., Osborn, 7. T.J. ofvolcanic eruptions (1998) Influence Osborn, K.R., Briffa, T.J., Schweingruber, F.H., etal. (2002) Tree-ring data widthanddensity 6. Buentgen, U., Frank, D., Trouet, V., Esper, 5. J. (2010)Diverse ofMediter- climate sensitivity . Borscheva,N.M. (1983)Dendroclimatological analysisof 4. Borscheva,N.M.(1981)Picea widthchronologies ring Alatau Schrenkiana for Zailiiskiy 3. Bitvinkas, T.T. (1974)Dendroclimatic research. Leningrad Gidrometeoizdat (inRussian). 2. Biondi,F. and Waikul, AC++ (2004)DENDROCLIM2002: program for K. statisticalcalibra- 1. pressure inthehighlatitudesSiberia. in reconstruction Tien Shanandthelow oftheMay-Augustpattern temperature stations. We alsoidentifiedateleconnection meteorological datafrom thenearest the results ofthemodelingusing with theCRU TS3 grid pointdataconfirms The correlation ofthereconstructions August temperature from 1650to 1995. correlation ofMay– allowsthereconstruction data over 1951–2000. The significance ofthis temperature intheobserved of thevariance limit. accountsforThe reconstruction 62% attheuppertree maximum wood density was alsopresented here thatisbasedon A summertemperature reconstruction region thanthe20 the 19 1887–1988. According to thisreconstruction drought indexover inobserved variance accountsforThe reconstruction 41%ofthe average temperature ofthesameperiod. previous andcurrent years dividedto the precipitation of the sumJune–September REFERENCES droclimatology: Progressdroclimatology: and Retrospects Springer Verlag 113–145. Applicationin MKHughes, HFDiaz,and Improvements inIts T W Swetnam, editors Den- Tree-Ring Records: JustificationoftheNeed, a Warning ofSomePitfalls, andSuggested Hemisphere summer temperature overon Northern thepast600years. Nature 393:450–455. 12 (2):737–757. Hemisphere: Part 1,localandregionalaround theNorthern climate signal. The Holocene widthanddensity.ranean tree-ring Trees 24:261–273 DOI101007/s00468-009-0396-y. in theNorthern ofPhD SverdlovskTien ShanMountains. Abstract (inRussian). mountains. Tree-ring chronologies ofSoviet Union2:17–23(inRussian). chronologies.tion ofclimate signals intree-ring Computers &Geosciences 30:303–311. th century was drier intheIssykKul wasdrier century th century. a RASProgram P4. Number0000,O.SolominaContribution –by Observatory Earth 02474. Lamont-Doherty National ScienceFoundation award ATM 04- attheLamontby E. Cook wassupported especially prominent. in summer warming Tine Shanbecame not encompassthelastdecadewhen do notlookunusual, thoughtheydo temperature ofthelastcentury variations half centuries. Again the in thiscontext over thepastthreelonger context anda temperature allowsfor reconstruction a ofseverity.or interms The summer ofdrought offrequency terms occurrence hundredof thelasttwo years, eitherin does notlookunusualinthecontext According to theseresults the20 60–80 years. significanttwo peaksaround 16–32and with characteristics inthespectral similarity showsacertain The reconstructions ACKNOWLEDGEMENTS Picea Schrenkiana  radialgrowth th century century

77 ENVIRONMENT 78 ENVIRONMENT Solomina,O.N., Abilmeizova, B., Griaznova, V.V., 26. Yershova, I.V. (2007) Tree-rings drought S 25. Schweingruber, F. (1988) Tree24. basicsandapplicationsofdendrochronology. rings: RPC, NOAA Paleoclimatology: http://wwwncdcnoaagov/paleo/treeringhtml. 23. K.D. (1977)Juniperforests Mukhamedshin, in asaforest Tien Shanandtheirimportance 22. N.D. Kozhevnikova, (1982)Biologyandecology of Tien-Shan spruceFrunze, Ilim. 21. Holmes, R.L.(1983)Computer-assisted control quality intree datingandmeasur- ring 20. Holmes, of R.(1994)Dendrochronology –usersmanual. programLaboratory Tree- library 19. Graybill, D., Shiyatov, S.,Burmistrov, V. (1990)Recentdendrochronological investigations 18. ofdendroclimatic L.A.(2005)Experience researches G.E.,andGorlanova, Glazirin, ofjuni- 17. Fritts, H.C.(1979) Tree andclimate. rings London-New York. 16. Esper, J., Shiyatov, S.G.,Mazepa, V.S.,15. Wilson, R.J.S., Graybill, D.A., Funkhouser, G.(2003) Esper, J., Schweingruber, F.H., Winiger, for M.(2002)1300years14. ofclimatichistory Western Esper, J., Frank, D.C., Wilson, R.J.S., Buentgen, U., Treydte, (2007)Uniform13. growth K. trends Diurgerov, M.G.,Mikhalenko, V.N., M.B., Kunfkhovich, etal. (1995) Tien ShanGlaciation 12. applicationsinthe ofdendrochronology: L.A.(1990)Methods E.R.andKairiukstic, Cook, 11. E.R.,Stahle, D.W., Cook, Cleaveland, (1999)Drought for Reconstructions theConti- M.K. 10. standardization. approach ring PhD A.R.(1985)Atimeseries to Dissertation. tree- Cook, 9. Problems ofecological andecosystem monitoring modeling 21:183–202(inRussian). index reconstruction inNearIssyk-Kul area, Tien Shan, Kyrgyz Republic for AD1680–2005. spruce (Picea DataofGlacialogical Studies100:104–113(inRussian). Schrenkiana). glaciers inCentral of Tien Shan for density ofAD1626–1995usingmaximumring theperiod M.,and Kutuzov.,nakhovich, ofsummertemperature S.(2006)Reconstruction andablationof Dordrecht, Holland. resources Frunze, Ilim.ORIG. ments. Tree-ring Bulletin44:69–75. Research,Ring Tucson, Arizona. USSR. in Kirghizia, Tree andEnvironment Rings 123–127. pers on Western Tien Shan.Proceedings ofNIGMI5(250):24–42. trends. Climate ynamics21:699–706. Temperature-sensitive Tien Shantree chronologies growth ring showmulti-centennial Central Asia. The Holocene12(3):267–277. 101007/s00468-006-0104-0. junipertree sites.among centralAsian low-andhigh-elevation Trees 21:141–150DOI (inRussian). Moscow environmental sciences. Dordrecht, Academic Netherland, Kluwer Publishers. nental United States. JofClimate 12:1145–1162. of A rizona. USA. University Tucson, 171. olomina, O., Schweingruber. F., Nagornov, O., Kuzmichenok, V., Yurina, Yu., Mikhalenko, V., Ku- Wilson, R.,D’Arrigo, R.,Buckley, B., Buentgen, U., Esper,29. J., Frank, D., B., Luckman, Pay- Wang, T., (2005)Climaticsignals intree ofPicea ring K. along Ren,H.,Ma, schrenkiana 28. Solomina,O.N., Glazovsky, A.F. (1989) Tree-ring of Tien-Shan spruceandglaciervariations 27. doi:101029/2006JD008318. scalesusingtree data.JGeophys athemispheric ring warming Res112D17103, ette, S., Vose, R.,and Youngblut, D. (2007)Amatter ofdivergence: Tracking recent 735–741 DOI101007/s00468-005-0003-9. an altitudinalgradient inthecentral China. Tianshan Mountains, northwestern Trees 19: (in Russian). slopeof on thenorthern Terskey Alataurange. DataofGlacialogical Studies65:103–110 drdendro). climate reconstructions(http://www.ldeo.columbia.edu/user/ University, intree-ring USA.Oneofthemosteminentexperts inColumbia Observatory Earth inLamont-Doherty Laboratory biologyandpaleoenvironment,tree-rings, Director of Tree-Ring Edward R.Cook – OlgaMaximova OlgaSolomina – Transbaikal Mongolia. region andNorth Eniseyregion,Shan mountains(Kyrgyzstan), RussianPlain, North Shan (Kyrgyzstan). Participated inscientificexpeditions Tien hydrometeorological for reconstructions for lastcenturies Tien glaciological reconstructions. PhD thesis: Tree-ring based Lead authorofthe4thand5thIPCC Assessments. ScienceReviews, the Holocene, Climate inthePast).Quaternary (Naturepublished inthehighratingjournals Geoscience, RAS. Author ofmore than100scientific papersincludingthose leoclimatology. ofGeography director oftheInstitute Deputy –EwingLamontResearch Professor. Specialistin Expert inclimate change, glacialmorphology,Expert expert indendrochronology,expert climate and

79 ENVIRONMENT 80 ENVIRONMENT 1 project №12-05-00900 a. №12-05-00900 project 1 4 3 2 Ekaterina V.Lebedeva Mariya E. Kladovschikova processes. An important featureprocesses. ofthe Animportant geomorphologic andextreme both typical unique heat-moisture rate, whichgoverns which are bytheindividual characterized from temporal to latitudes, subequatorial naturalzonesmountains invarious – disasters ofthesecontinentalmarginal ofgeomorphologicdrawing outprinciples allows Andesextension South American catastrophic processes were identified. The with different ofthedominant spectra ofAndeswascompiled.sector 16areas and hazardous processes for theCentral development. Aschematicmapofdisaster causedisastersand humanimpact frequent seismicshocks, volcanic eruptions, hydrometeorologicalThe enormous events, ofthegeomorphologic processes.intensity andhighpotentialinfluence thecharacter vegetation statusare themaindriversthat and rock lithology, precipitation and type, disaster. morphology The Andeanterrain increase of factors of conductive therisk and intensity Their complex,interaction, way ofsomegeomorphologic processes. includingdisaster-likeof morpholitogenesis PacificAmerican coastcausedhighintensity physiographical features oftheSouth * [email protected], e-mail: Staromonetny per., 29,119017; Tel: +7-910-416-66-89,Fax: +7-495-959-0033, Staromonetny per., 29,119017; Tel: [email protected] +7-926-577-40-43,e-mail: Tel: [email protected] 056-51-204396,e-mail: Gory,Leninskie 1,119991; Tel: [email protected] +7-903-259-05-92,e-mail: ABSTRACT. AMERICAN ANDES AND DISASTERS IN THE SOUTH GEOMORPHOLOGIC HAZARD The reported study was partially supported by RFBR, research research RFBR, by supported partially was study reported The Corresponding author Institute ofGeographyInstitute RussianAcademy ofSciences, Moscow, Russia; Institute ofGeographyInstitute RussianAcademy ofSciences, Moscow, Russia; CEAZA,LaSerena, Chile, ColinaUniversity ofLaSerena – ElPino s/n,Casilla 599; Faculty ofGeography, Lomonosov Moscow State University, Moscow, Russia; 1 Geological-and-tectonic and 1* , Dmitry , Dmitry V. Mikhalev 4 1 environmental transformations by driven (sea-leveleruption) orstep-by-step change) could becausedbyimmediate (e.g. volcanic given territory. Geomorphologic disasters processes, i.e. commonprocesses withina wouldmaterial) be incomparableto ground (e.g.and impact the volume ofdisplaced development,in thiscaseitsquickness, range couldmanifest adisaster, however, Any process inoneoranotherregional substance and/orenergy mass. critical change istheresult ofaccumulation 1996; Ananiev, 1998;Phillips, 2011]. This or suddenchangeofitsstate [Aleksandrov, geomorphologic system andleadsto step to beaprocess whichunbalancesthe Geomorphologic disaster isconsidered mass movements ofdebris volcanic activity, unbalancedprecipitation, of geomorphologic processes, seismicand disasters, Andes, SouthAmerican intensity well aslatitudinalzoning ofthisdistribution. and inlandslopesofthemountainsystem, as geomorphologic processes withincoastal of study area distribution istheasymmetric INTRODUCTION KEY WORDS: 2 , JosйE. Novoa Geomorphologic hazard and

Jerez 3 , expensive natural disaster isassociated more than225,5 thousanddeaths. The most topping thelistofmostlethaldisasters – is maximal since1976.Haiti earthquake – 304thousand deathsworldwide nearly info states thatalldisasters in2010caused record figure of$350 billion in2011.Finam. amounted to $226billionin2010anda global financiallossfrom naturaldisaster According to Swiss ofnaturalhazard.the risk technologycomplex production increase of vulnerableregions andapplicationof and economicactivity. The development causes significant damageto population highand processes where isvery disaster risk number andhighspeedofterrain-forming for withlarge territories highcontrastterrain isespeciallytrue are ofgreat It importance. conditions other physical-and-geographical precipitationweathering kind, regime, and composition ofrocks, vegetation, processes isofgreat Lithological concern. complexes to naturalandhuman-caused for plainlands. Also, resistance ofterrain mountainous processes may bedisastrous nature e.g., ofterrain: commonground largely dependuponspecificactivation Obviously, and rate thecharacter ofprocess andtheircombination. caused factors or rate ofprecipitation, etc.), andhuman- exogenous volume (extreme earthquakes), disasters. These couldbeendogenous(e.g. ground valuesfor situationsor critical geomorphologic processes thatchange some “triggers”: theysetand/orpromote Actually, thesespecificenvironments as act [Ananiev, etal., 2011]. 1998;Korotkiy elementsingeomorphologic system certain processes andcausethetransformation of (ground)deviation from oftypical thenorm butserious that coincidewithshort-run (or extreme, display ofprocesses) critical Also, there are geomorphologic hazards destruction). (e.g.natural andhumanfactors slopeplant inosmi.ru/infograp hic/20111226/181319 Reinsurance Co [http:// [http:// 543], 543], (between 18°and 20° S),where(between high-altitude inthe Central Andes total widthis500km; mountain rangeswithindifferent areas. The m. There are oreven two three subparallel m; andtop altitude–Aconcagua –is6962 average altitudeis4000 Andes is9000km; The total length of theSouthAmerican analysis. interpretation, literature, andmapdata study records, results andsatellite ofphoto- The paperisbasedontheauthors’ field in thispaper. hazards anddisasters. This issueisaddressed temporal specificnature ofgeomorphologic continental marginal mountainsofareal and Lebedeva, 2013]require research of disbalance [Gotvanskiy, Lebedeva, 2010; systems andprocesses, i.e., theirpotential Stress conditionsofgeomorphologic sometimes, disasters. forming processes, theirhighspeed, and, ofterrain- bydiversecharacterized variety role inexogenesis. Sogiven regions are alsoplayair massesinteraction thesignificant causedbyoceanandcontinental territories et al., 2013,etc.]. Climate ofthese patterns Evolution, 2000; R. The Andes, 2006;Charrier seismicity, movements [Tectonic andvertical endogenous processesmodern –volcanism, complexof andcrust,rich of surface by supreme contrast,mosaicstructure terrain Andes,the SouthAmerican are characterized Continental marginal mountains, including task. important processesgeomorphic isavery natural andanthropogenic catastrophic Therefore, for thestudyandprediction both [http://finam.info/need/news2478800001]. caused themaximallossof$122–235billion followed bythetsunamionMarch 11, ofa9,0magnitude Japanese earthquake $30 billion.According to the World Bank, withlossof with theChineseearthquake OF THE REGION OF THE GEOGRAPHICAL FEATURES MAIN GEOLOGICAL-AND-

81 ENVIRONMENT 82 ENVIRONMENT while steep dip sections (the Centralwhile steep andthe dipsections volcanism, andmodern by lackofquaternary the Central ChileanAndes)are characterized steep dip. (thePeruvian Easydipsections and lateral faultsinto withunlike several sections itisseparated by side oftheSouthAmerica; A seismofocal zone istracedalongthewest 2006]. Beck, destroyed many timesinthepast[Alvarado, scale;thesecitieswerepoints ontheRichter reach 7–8 Salta (Argentina), theearthquakes specifically, San-Juan, nearMendoza, and are muchlessseismic, thougheven there, in the40–45°Sinterval. Andes The Eastern of magnitude greater than,for example, andtheir energy are anorder of earthquakes theseareas,25°S and30–35°S.In thenumber i.e.,to narrow two 20– latitudinalintervals, corresponds that themaximalseismicactivity Pacific [Levin, Sasorova, part 2009]showed andenergy inthe frequency distribution more. analysis ofearthquakes Detailed withamagnitude of8and by earthquakes Valdivia are mostseismicandcharacterized Peru, of andcoastalChileto thenorth Ecuador,Northern Central andSouthern Columbia and ofSouthern Coastal parts www.ncedc.org/anss/catalog-search.html]. instrumentally recorded before 2013[http:// werethan 7andfocus ofup to 100 km withmagnitude of more earthquakes mountains astheAndesare. About570 isindicative for seismicity youngHigh Evolution, 2000, etc.]. tectonic dislocationsare indefinite [Tectonic whilecrossover extension, submeridional are by main morphostructures characterizes the alpinefold-block forming. structure The rolerecent in played lifting animportant continue untilpresent. Faults, volcanism, and tectonic movementsresult ofAlpineorogeny; Andes,The SouthAmerican isthe primary, and-Venezuelan) Andes. (Ecuadorian- oftheNorthern part southern Andes, andalsothe (Chile-and-Argentine) (Peruvian andBolivian)Andes, theSouthern 750 km. This paperhighlightstheCentral Altiplano plateau issituated, itreaches Southwards, annual rainfallvaluesincrease to andtropical thesubequatorial zones. more38°S) brings moisture compared Argentine 28°and Andes(between Subtropical climate oftheChile-and- 2000]. Kondakova, [Troshkina, winds –e.g. beingatthetop intheworld airandhighinsolation with itsdry to 6300–6500mintheAltiplano m andrises Ecuador andPeru rangesfrom 4000to 5000 environments. Atthisrate, thesnow-linein too climatic irregular becauseofthevarious et al., 2003].As for glaciation,itis modern brought from [Garreaud theAtlanticOcean Andes catch 3000–6000mmannualrainfall ofplateau. parts slopesofthe The eastern themlesscontrastcompared tomakes other mitigates temperature and fluctuations of Lake Titicaca withinsurrounding lands rainfall onlyoccasionally. action Softening punawithmore than250mmannual dry (within theAltiplanoplateau) –so-called steppe landscapesprevail above 3000m to 3000mA.S.L.andhigher. or Semidesert landscapesare tracedup the world. Desert in desert lieshere –themostdry desert ofChile)–theAtacama southward (north does notexceed 50mmannuallyinplaces mm annually, thisamountdecreases and the Central Andes(Peru) catches 200–250 of part 5° and28°S:whilethenorthern have lowmoisture between availability Garreaud, etc., 2009]. The western slopes 1958; andwesterneastern slopes[Lukashova, contrastinprecipitationby asharp onthe subtropical andtemperate) itischaracterized belts (equatorial, subequatorial, tropical, affected areas. Situated within5climatic that separates thePacific andtheAtlantic climaticbarrier SouthAmerican important The Andesisacontinentaldivideandmost volcano.si.edu/world]. [http://www. activity thermal with modern Holocene ageand5ofthePleistocene age more volcanoes than200active –197ofthe volcanic zones are located intheAndeswith Cembravo, Lara,2009; Tilling, 2009]. Three volcanismby intense [Zhidkov, modern 1985; South volcanic mountains)are characterized Rantsman, Glasko, 2004]–areRantsman, ofhighactivity. “morphostructural knots” [Zhidkov, 1985; –theso-called of bigfaultsintersection [Enman, 1973; The Andes, 2006]. The zones movements ofthelandmassare recorded vertical often, and advancerock fracturing; “come to life” first–zones ofrock breaking seismic events,During fractured zones mudflows, andvolcanic processes. glacial slides,kilometers, avalanches and (Fig. 1)withvolume equalto several cubic large withinslopes movements ofdebris provokevolcanic processes. Earthquakes geomorphologic situationsare seismic and Active “provocateurs” (critical) ofextreme geomorphologic hazard anddamage. geomorphologic processes, including and physiographic conditionsthatimpact situated indifferent geological-and-tectonic Therefore, oftheAndes are parts various outletglaciers.with extended PatagonianSouth andNorth glacierplateaus continental icesheetare located here –the line decreases to 1000–1200m;areas ofthe favorable for glacierformation. The snow- Patagonian Andesenvironment ismost andsnowinmountains. drizzle like The (up to 3000mmannual)bearsismore oftheAndes – most part delFuegoTierra – the western. Precipitation ofthesouthern- although precipitation islower thanthatof slopescatcheastern more precipitation differences decrease. Southward 37°S, of rainfallincreases; in-seasonhumidity climate ofmiddlelatitudes:annualamount slopes gradually transitionsto oceanic Near 37–38°S,subtropical climate ofwestern are forming there. ofthesnowlineandvalleyglaciers lowering annual temperatures, leadsto agradual rainfall, inmean alongwithareduction become more rainless. south Increasing within western slopes, slopes whileeastern from 350(Santiago)to 750mm(Valdivia) EVENTS AND DISASTERS FACTORS THAT CAUSE EXTREME [Perov, 2012]. the XX took placeinChile and 8cubickilometers Ocean. Two eruptions oftotal volume 9,5 andreached thePacificmore than100km blow radius. The subsequentlaharpassed of with1000km near 11cubickilometers Huayanaputina pyroclastic reached material place in1600Peru: thetotal volume of eruptionoftheregion took most powerful floods, thelahars, avalanches. anddebris The areas, hazards are related to ashfalls, lava tremor andtsunami,butinmountainous Volcanic canalsocausetheearth activity earthquake. (12.03.2011), were causedbytheJapanese have destroyed seafront theLaSerena city the coast:tsunamiof2mhigh,which distant seismicevents sometimesinfluence plate [Pararas-Carayannis, 1974].However, undertheSouthAmerican subduction platecrustal blocksrelated to theNazka movements ofthe are explainedbyvertical coastal area. Numerous tsunamiinthisarea in 1586,1687,1746,and1828withinthis tsunami were provoked bytheearthquakes found thatthe24–26mhighdestructive to San-Juan was in thenorth inthesouth.It along thePeruvian coast–from Chimbote 1995]. The 1996tsunamiaffected 400km with apeakof14m(1922)[Novoa etal., tsunami were recorded 1562–1995 during bay,La Serena (theKoquimbo city Chile)37 Peru are mostvulnerable. For example, near the Central ChileandCentral andNorthern sea shelfprovoke tsunami.Coastal areas of withfocuses incoastalareas or Earthquakes took place during the XVI took placeduring (Ecuador) volcano has22tracesoflahars that volcanoes;active notably, theCotopaxi deaths. Laharstraceswere recorded on32 Armero city, causing more than23thousand oneofthemdestroyedand theglacier; formed dueto themeltingofsnowcover Lahars (mudflowwithvolcanic genesis)were total volume ofabout0,05cubickilometers. (Columbia, 5398m)eruption in 1985withthe be damaging, theNevadodelRuiz like But even relatively smalleruptionscould th century [Tilling, 2009]. [Tilling, century th –XIX th centuries centuries

83 ENVIRONMENT 84 ENVIRONMENT was 0,17 estimated volume ofpyroclastic material than 9thousandyears ofinactivity. The more of2008after inMay years: itstarted volcano (1122m,Chile)lasted almost two example, eruptionofthesmall Chaiten placeintheAndes.power For usually take Annually, several eruptionsofdifferent the same-name town situated intheRio- the same-name of lahars; oneof them destroyed most part pyroclastic flowsformed. There were also3 Fig. 1. Examples of the different types of earthquake-induced landslides in the Aysén Fjord area (Chile). (Chile). area Fjord Aysén the in landslides earthquake-induced of types different the of 1.Fig. Examples D – rock slide (Sepulveda 2010) andavalanche rock al., debris et inPunta flow falls,D – F – rock Cola E – area,

A – shallow soil slides, B – shallow soil–rock slide, C – rock slide Mentirosa infront Island, rock of slide, C – shallow soil–rock B – shallow slides, soil A – cubic kilometers; slopelava and cubic kilometers; 150 km in the central part of Chileandmore inthecentral part 150 km the Andes, high:7000 m for isextremely of from thecoastto part thewater-divide of amplitudeswithinthestudied territory, mountains. steep-side dissected The range topography terrain-forming processes are caused bythe andactiveGeomorphologic instability were evacuated. mouth(Fig.Blanca River 2);however, citizens itself –highaltitudeandhighly processes specific for thesecomplexes and, but alsoin change oftheexogenous only inspatialchangeofnatural complexes, range.altitudinal zonality This isreflected not longitudinal zone byspecific ischaracterized basin [Golubev, 1969].Each latitudinaland 1000 mmwithaltitudeintheAconcagua River example, precipitation increases from 240to [Garreaud, 1992].Forincreases byone-half thousand meters ofaltitude, precipitation basins(32–34°S),withevery River Maipo 2003]. Southward intheAconcagua and the coastto etal., 4500M.A.S.L.[Garreaud PeruSouthern (14–18°S)whenmovingfrom Chile (18–22°S)andto 700mm/year in the from 0to 400mm/year intheNorthern zone. For example, precipitation increases increases withaltitudeinthesameclimatic Air temperature decreases andprecipitation within theAndesslopes[Garreaud, 2009]. temperature andmoisture conditions significant exogenous driversareOther 2,5 millionyears [Novoa,during 2013]. of Chile, where landslideshave beenactive so-called “Lluta collapse” part inthenorthern lithologically favorable environment, e.g., the long-living landslidesinhydrologically and valleycut-ins2011]. Deep canprovoke [Ufimtsev, earthquakes even long-distance areas, rock-falls, ofvalleyslopesto instability Andes) causethesplitofinterstream (both –western slopesofthe andeastern ofgulliessomeriver valleys kilometers inPeru.than 6000mfor 100km Two to three Hereinafter all photos without author index index author without photos all Hereinafter Fig. 2. Lahar traces on the Chaiten streets streets Chaiten the on traces Lahar 2. Fig. (Chile, February 2010). February (Chile, belong to Lebedeva E. within 6–30 S in the Andes is local summer; within 6–30SintheAndesislocalsummer; 2012]. ofthemostmudflowhazard The period volcanoes, itis active it issnowandglacialmudflows, andnear southward glacialmass, andnearthemodern of45°Sisrainmudflows,northward whereas, (Fig. 3). ofmudflowThe prevalent type are oftheAndes indicative for themostpart andmudflows. Mudflowhazardssolifluction, waterlogging: landslides, mudslides, surface and slopeprocesses are dueto active conditions, both fluvial highhumidity In 2008]. Argentine Andes[Kladovschikova, oftheChile- andcentralpart the Ecuadorian exogenous processes inthearea between is reflected ontheschematicmapofmodern geomorphologic hazards anddisasters. This gravitation, fluvial, glacial, eolian,andother conditionsgreatlyhumidity influence Topography andtemperature and etal., 2001]. processes [Montgomery above all, oftheconsequencesthese Fig. 3. Mudflow cone in the River Santa Santa River the in cone Mudflow 3. Fig. (Cordillera Blanca western slope, Peru) slope, western Blanca (Cordillera tributary inflow tributary lahar mudflows [Perov,

85 ENVIRONMENT 86 ENVIRONMENT where alarge volume of desegregated Physical weathering place. take slope debris erosion andredeposition ofchanneland with water, damagefloodsare formed, active streams are rains,of suchheavy filledup dry coast ofPeru 2011].As aresult [Nicholson, (about 100mm/hour)isrecorded onthe [Angillieri, ofrainfall 2008].Asimilarintensity ofrainreachesthe intensity 104mm/hour according cycle; to a30-years observation this area oneprecipitation during event, 5–6 years, from 40to 50mmofrain fallsin precipitation islessthan100mm.Oncein Argentina), where annualaverage of basin(SanJuanprovince, River Kolanguil ted Andeanslopeinthe ontheEastern More unbalancedprecipitation isdocumen- etal.,[Garreaud 2003]. comparable dataare around 350–400mm accrued inthesummermonths, i.e., relatively a littlemore than50%ofthisvolume is basinisunder700mm/year,Titicaca Lake precipitation thetypical in comparison, where precipitation isunder400mm/year. By Chile, (December–February) inNorthern for i.e., 300mm,istypical localsummer illustrate thatmore than75%ofprecipitation, representations presented inFig. 4clearly geomorphologic damage. The schematic events, whichresults ofcertain in intensity (seasonal) precipitation provides for high total precipitation, unbalanced anextremely the precipitation rate. Even incaseofthelow for thefluvialandslopehazardimportant as The annualprecipitation isnotso much et al., 2009]. [Marcato descent whenthepondsoverflow favorable conditionsfor biggermudflow fans forming storage pondsandcreating pondupthemainstreamtributaries, with mudflowsdescendingalong 2009]). Often, basin, Jujuyprovince, Argentine [Garreaud, Grande Andeanslope(Rio on theEastern (near Antofagasta, Chile)[Novoa, 2013] and al., 2000].Mudflowsappearonthe Western et andsummer [Budarina it islocalspring for 30–40°S, it is local winter; andsouthward, itislocalwinter; is active in arid climate inarid isactive and [by Garreaud R. et al., 2003] 60–75, 3 – above 75 4 – 50–60, 50,February): below 2 – 1 – the austral summer months (December, and January fraction ofannualmeanrainfall (%) concentrated in (b) (a), panel As indicates but thesize thesymbol the of 101–200,2 – 401–700, 201–400, 4 – 3 – over 701. 5 – 0–100, indicates rainfall:the symbol theamount of 1 – rainfall(a) annualmean (mm) Rain-gauged –size of m. 1000 every darker gets mand 2000 at begins Shading lowlands. adjacent and Andes central the over rainfall and (shaded) elevation Terrain 4. Fig. debris beginsdebris to move. Giantlandslides, up caseofdisastrous rains, heavy 2013]. In ofitscone[Novoa, with collapseofapart on theParinakota volcano (Chile)eruption avalanches appearinvolcanic regions, as these processes from realization, butdebris processes. ofprecipitation Deficit prevents potential for mass-moving hugedebris too. rockslidesThis causesextended and coupled volcanic rocks are conductive of rock zones andpresence ofweakly with vegetation (Fig. 5).Excessive fissuring rocks occursonsteep slopesnotfixed and Ecuador, winter. snowy –onlyinvery here, andinthemountains ofPeru, Bolivia, Avalanche dangerishighinallseasons 2000]. Kondakova, disasters [Troshkina, Andes are theareas of frequent avalanche The Chilean-Argentinean andPatagonian glacier) according to [Stillwell, 1992]. in temperate climate (thePatagonia plateau “provocateur” ofgeomorphologic disasters a appears more like “conserver” ratherthana theinletPacificdryer andAtlanticairmass. Ice to smallerglacierdynamicasaresult ofmuch due Chile andArgentina (Aconcagua massif) disaster byglaciersare driven lesscommonin massif (Peru).Huaskaran Geomorphologic of theAtlantichumidairmasson example, glaciersgrow dueto the influence geomorphologic processes there. For oftheAndesandprovoke negative part Glaciers are more dynamicinthetropical andtheirfailure.to glaciallakes glacier dynamic(surge ofglaciers),especially conditionscouldberelevantperiglacial to line are potentially hazardous. Hazards in the impact. That iswhy slopesabove tree- increase reduces ofvegetation density together withprecipitation, however, mass-movingincreases ofdebris intensity Generally, conditions, terrain insteep-side completely overlay terraces. river ponds. Sometimes, canalmost thematerial slopes, lockriver-streams, andform storage placeon to several take cubickilometers, Fig. 5. in Rockslides the area of Cristo Redentor (Chile-Argentinia border). The right low angle angle low right The border). (Chile-Argentinia indicates the road tunnel entrance tunnel road the indicates Arid areasArid face are theresult ofrainfallfloods. andgiant fansatfoot-hills debris destruction andeconomic 2000]. Urban Cervera, severecoming after droughts [Codron, rains ofheavy theperiods common during showed thathugelandslideswere most de Humahuaca,Argentina) Andeanslopes River, (Tarija eastern Bolivia,andQuebrada the western (Colca River, Peru) andonthe indeep valleyson mudslides. Observations of ground, andlateral erosion, and vertical and slopeprocesses: landslidesandcreep to March (Fig. rainsintensify 6).Heavy fluvial precipitationair massesbring from January Andeanslope,the eastern where Atlantic interstream areas (Altiplano), andvalleysof basins,happen intheintermountain flat etal.,time [Garreaud 2003].Flooding often this oftheAltiplanoduring characteristic lowlands. precipitation Belownormal is western Andeanslopeandthealongshore occurrence inthevalleysof is anormal Pacific area floodings isexposedto El-Niсo; Generally, alongshore the100km-wide 1999]. ofupto 1000–3000%[Ananiev, rise run-off mountains resulting indisastrous floodswith coastlandand dry within theotherwise air massesthatcauseabundantprecipitation thisperiod, westhumid During windsbring Chile.the coastlandofPeru andNorthern withatremendous acts forceNiсo along 25–30years orlessfrequently,Every El- 2000]. [Kazakov, than normal of seismogenicavalanches are usuallylarger tremors, i.e., only1–3points, butvolumes weak seismic be triggered byeven very Water-and-snow flowsandavalanches can of yellow streams, into sometimesturning sandmovingup theslopesinform drifty the Patagonian plains. see Onecanoften Strongest winds(20–40m/s) arefor typical Altiplano (Fig. paramo. 7)andtheEcuadorian foothills Argentina, andonthe innorth-west of ChileandPeru, intheAndeandesert frequently withinthePacific coastlands accumulation . These processes occur deflation andeolian

87 ENVIRONMENT 88 ENVIRONMENT human life and economic activity; human life andeconomicactivity; adverselyGeomorphologic disasters impact 2011]. erosion [Nicholson, and duststorms, causingsignificant wind there are[Novoa, landspouts 1993].Often, sand flows, roads covering andbuildings Fig. 7. Permanently moving eolian sands choke choke sands eolian moving 7.Fig. Permanently up Pan American Highway (north of Peru) of (north Highway American Pan up B. Peru: houses crashed by flood: 1 – the Urubamba River upper flow (the flow River Amazon basin), River upper theUrubamba Peru:B. 1 – crashed houses by flood: 2 – the River Santa upper flow (Pacific oc theRiver flow Santa2 – upper A. Bolivian Altiplano: overflown river flooded theTupisa-Uyuni road. river flooded Altiplano: overflown Bolivian A. B1 A Fig. 6. Flood consequences (Feb–Mar 2010). however built-up andcutslopes. forThis istypical events andare rains within during active respond to anomaloushydrometeorological First ofall, intense flow andlandslides within thebodiesofroad embankments. communications; funnelholes are formed rains, nearlines of suffusion becomesactive their basins[Novoa etal., long 1988].During rains,heavy damps in butalsobygarbage mudflows. They are causednotonlyby Quito (Ecuador)are associated withfrequent example, 3ofmore than30streams crossing processes areas. intensify inurban For and geomorphologic stress. Many negative rules increase pressure ontheenvironmental violation ofenvironmental management andincrease ofthepopulationdensity consequences offlooding;moreover, example, damfailures causedevastating negative geomorphologic processes. For ean basin) – thelateral erosion activation economic activity B2 alsoprovokes monoculture systems create conditionsfor and change of naturalassociationsto geomorphologic processes. Plant destruction also promotes increase of negative territories), for(the lastoneistypical dry and lossofgrowth asaresult ofovergrazing Agricultural activity, e.g., slopedeforestation and slopeprocesses activation. and subsoilwater level changeandpollution, erosion, deflation,ground subsidence, ground [Porter, Savigny, 2002]:miningcausessoil managed inviolationofcontrol measures loosely controlled intheregion andmore often and rockslides is to tropicalMining solifluction. processes, resulting inevents from landslides onrunoffandslope with adverse impact Roads andlinestructures are alsoassociated situated onsteep slopes(Fig.outskirts 8). development inpoor spontaneous urban Fig. 8. Processes activation on cut slopes after rainfalls (Peru, March 2010): March (Peru, rainfalls after slopes cut on activation Processes 8. Fig. B – landslide-earthflow blocked the road in the Urubamba River basin intheUrubamba theroad blocked landslide-earthflow B – AB A – earthflows at the northern part of Cuzco of part city, atthenorthern earthflows A – in the Latin America, D.in theLatin America, Stillwell [1992] Providing of naturaldisasters anoverview under way. are interrelated. However, are theefforts geomorphologic processes andtheireffects the leaddriver becauseallevent-causing itisdifficultto mark the exception. Often and humanimpact. The Andesare not volume of precipitation andintensity), tectonics, climate conditions(firstofall, of geomorphologic hazard inmountains: 2010] showsthatthere are three drivers damage data[Geomorphologic hazards, geomorphologic oftheworld The summary 2000]. deposition [Codron, Cervera, to badlands, gullying, deflation,andwind ground massmovement, erosion leading DISASTER LOCALIZATION

89 ENVIRONMENT 90 ENVIRONMENT the XX scale negative events isspecificto Peru in wide- concludes thatthemaximumofvarious and Western bythe Cordilleras parted inArgentine,the Subandian ridges Eastern from thePampeantransect: Plain, through of laying apipeline alongthefollowing a studyofnaturaldisasters for thepurpose Savigny M. Porter andK. [2002]undertook within plainsandfoothills. conditions increases landscape-and-climate ofEcuador.within theterritory The role of of geomorphologic processescharacter volcanic processes theextreme govern seismic-and-tectonic and [1996], primary According topart. S.Zavgorodniaya’s findings influence alsogrows stronger inthenorthern ofChile. Seismicevents parts and southern deforestation inthecentral isstrongly marked events (El-Niсo). The negative effect of hydrometeorological byenormous primary, ofChileare caused, andcentralparts northern geomorphologic damageswithinthe main factors. According to hisfindings, the on theChileanslopesandmarked confinedness ofdamaging mass-movement J.E. Novoa [2013]hasanalyzed regional phenomena. andeffect oftheEl-Niсo activity providing hightectonic, seismic, andvolcanic continentalplates, atthejointofactive country huge landslides. This isdueto locationofthe and number offatalitiesfrom earthquakes list. Peru alsotops thelistaccording to the Table 1. Geomorphologic hazards and disasters within the Transandean track – the north of Argentina – Argentina of north –the track Transandean the within disasters and hazards Table 1. Geomorphologic apa li ufc n iereoin e to Deforestation, plowing, grazing seismicity, 1–4mmperyear, High landuplift modern mining Linefacilities construction, Landslides, fluvial processes, lateral erosion, gullying CordilleraEastern andlinearerosion, defl Surface ation Subandian ranges Pampean Plain ua(liln) Seismicity, volcanism, active highpotential ofcor- Puna (Altiplano) etr odlea ihsimct,gaiainlpoessLinefacilitiesconstruction Active rupture tectonics, disastrous floods, mudfl ows, Atacama seismicity, High gravitational processes Western Cordillera hla ai os Tsunami Chilean Pacific coast Region th century; Chile comes fourth in the inthe Chilecomesfourth century; displacement, disastrous floods offllandslides, locking ows asaresult ofmassground rosion high potential ofcorrosion the north of Chile (according to [Porter, Savigny, 2002]) to[Porter, (according Chile of north the Natural hazards and disasters develop apart from the mainbaselevel develop apart ofvastflatinterstream areasCentral parts to processes increase. intensity isconductive oftheterritory seismicity High submountain plainsandthe oceantrench. arevolumes ofdebris movingtowards gravitational processes. As a result, large byawiderangeoferosionprimary, and denudationcaused, byactive speaking, range ofgeomorphologic hazard, broadly the Pacific coastare by specific characterized plains,submountain andintermountain and Then, we candeducethatslopes, valleys, catastrophic processes were identified. with different ofthedominant spectra development 3,Fig. (Table areas 9).Sixteen of geomorphologic hazard anddamage zoning specialaspects considering part mapoftheCentralcompile asketch Andean results allowed usto our ownobservation 2). (Table dataand The above-mentioned low hills, thePacific coast,andlarge lakes plainswith submountain andintermountain slopes, valleys, flatinterstream areas, confinedness to themainAndeanparts: geomorphologic hazards anddisasters We outanalysisof alsocarried 1). (Table geomorphologic processesreported ofthe According to thisstudy, we have isolated the the Atacamato thePacific coastofChile. Bolivian Altiplano, and, then,through Line facilitiesconstruction trolled mining Open- andunderground uncon- trolled mining Open- andunderground uncon- anthropogenic factors Enhanced Table 2. Localization of hazards and disasters driven by natural and human impact Localization of hazards and disasters within main Andean areas Triggering Coasts Piedmont and Plain interstream areas (Alti- factors Valleys Slopes (including big lakes) intermountain plains plano, Puna etc.) Earthquakes Tsunami, shore front uplifting Formation and bursting of Formation of dammed lakes, Mass moving of debris – rock Formation of cracks, faulting of dammed basins, landslides, mud- bursting of natural and man- falls, landslides, detaches; ava- mass fragments, detaches fl o w s made dams, mudfl ows lanches Volcanic Coastline and bathymetry Ash falls, formation and bursting of Ash falls, formation and burst- Ash falls, lava and pyroclastic Ash falls, lava and pyroclastic eruptions changing, tsunami dammed lakes, lahars ing of dammed lakes, lahars fl ows, lahars, debris avalanches, fl ows, formation and bursting of mass moving as a result of de- dammed lakes, lahars, ground forestation subsidence Surge of Mini-tsunami as a result of Formation and bursting of Formation and bursting of Avalanches, mudfl ows Formation and bursting of glaciers icefall, plucking dammed basins, mudfl ows, debris dammed basins, mudfl ows dammed basins, mudfl ows, cryo- accumulation genic processes Heavy pre- Floods, storm surges, abrasion Floods, erosion, suff usion, mud- Floods, erosion, suff usion, Mass moving of debris – land- Floods, erosion, suff usion, mud- cipitation fl ows, accumulation, bogging mudfl ows, local accumulation slides, creep; active erosion fl ows, accumulation, bogging Increase of Storm surges, abrasion, land Gravity winds, dust-storms, eolian Gravity winds Eolian fl ows Land spouts, dust storms wind spouts, dust storms, eolian fl ows fl o w s Human im- Abrasion, accumulation Erosion, suff usion, mudfl ows, Erosion, suff usion, mudfl ows Mass moving of debris, erosion Erosion, suff usion, defl ation (includ- pact defl ation ing land spouts, dust storms) responsible not onlyfor descent The Chaiten eruptionin2010was in caseofcropping). (slopecutting and humanimpact precipitationcaused bybothheavy [Zavgorodniaya, 1996]: itwas valley in1993,wasalsocomplicated Hosefina landslideinthePaute within100km. destruction The of debris, pipeline, andhighway of0,08cubickilometers transport valleyresulting inSalado-Coca caused disastrous mudflowinthe Cordillera Real, rains andheavy caused numerous slumpsinthe inEcuador The 1987earthquake reached 20–30m[Novoa, 2013]. ice; theheightofflowfrontal wave flow becauseofmeltingincluded transformed into mud-and-stone 5km, after avalanche that,inturn, slidetransformed rocky into debris valley (Santiagoregion), where Parraguirre event intheColorado by amudflow. There isalsothe shock causedalandslidefollowed Yungay event (Chile),where seismic lead to hugedisasters e.g., the their sequenceandcombination processeschain ofextreme and [Lebedeva, 2013].Frequently, a increase ofdisasters therisk factors ofconductive and intensity their combinationandinteraction so hazardous bythemselves, but geomorphologic processes are not Analysis revealed thatcertain and badlandare peripherally. active and erosion leadingto deepcanyons processes seismic-and-gravitational in somecases. Gravitational and volcanic andglacierdynamics transformation, andchangeof local flooding, localrivernetwork but alsoaccumulationrelated to (particularly, erosion anddeflation) examplesofdenudation various processes. These are notonly specificrangeofassociated defining

91 ENVIRONMENT 92 ENVIRONMENT

Table 3. Explanatory notes for the map of geomorphologic hazards and disasters in the Central part of the Andes (from 50 to 280S), scale 1:8 000 000

Natural hazards and disasters Background geomorphologic processes Terrain type

Regional processes 1. The Andean Western mega slope

1.1. Floods, tsunami, abrasion, erosion, accumulation, bog- Defl ation-and-accumulation together with nonroutine Coastal lowland plains (up to 200 m) ging, suff usion, land spouts, dust storms, eolian accumulation alluvial-and-proluvial accumulation

1.2. Tsunami, abrasion, fl oods in valleys, erosion, accumula- Defl ation-and-corrasion processes together with gravitation- Low coastal ranges (200-500 m) tion, gravitational processes, land spouts, dust storms, eolian al and nonroutine alluvial-and-proluvial processes fl o w s

1.3. Abrasion, tsunami, fl oods in valleys, erosion, badlands’ Defl ation-and-accumulation together with non-routine pro- Coastal low- and medium-altitude (up to 1500 m) residual forming, accumulation, gravitational and seismic-and-gravi- luvial processes ridges and bald mountains, high (1500-3000 m) intermoun- tational processes, eolian fl ows, land spouts tain basins

1.4. Abrasion, erosion, accumulation, gravitational and seis- Active erosion together with gravitational processes and Deep dissected ranges (up to 2500-3000 m), parts of low- mic-and-gravitational processes, eolian fl ows, land spouts defl ation mountains, residual ridges and hills

Regional processes 2. The Andean central body

2.1. Lahars, lava and pyroclastic fl ows, ash falls, gravitational Pyroclastic and lahar sedimentation together with gravita- Slopes and foots of lost and active volcanoes processes, including debris avalanches, rock falls, erosion, tional processes gullying, subsidence, badlands’ forming, land spouts

2.2. Gravitational and seismic-and-gravitational processes, Glacial plucking and accumulation Above snow line including avalanches, glacial falls, gravity winds

2.3. Gravitational and seismic-and-gravitational processes, Landslides, rock falls together with alluvial-and-proluvial and Short various directed hills and ranges (600-3000 m) erosion, mudfl ows mudfl ows

2.4. Gravitational and seismic-and-gravitational processes, Rock falls, landslides together with erosion and mudfl ows High (up to 4000 m and more) ranges and rock massifs including landslides, rock falls, detaches, avalanches; erosion, mudfl ows

2.5. Erosion, solifl uction, gravitational and seismic-and- Erosion together with gravitational and cryogenic processes, The northern part of the Altiplano (3000-4000 m) gravitational processes, accumulation, fl oods, land spouts, solifl uction dust storms region. within5–7yearsmitigate therisks inthe for restoration ofvegetation cover should abundance ofprecipitation conductive However,consequences ofearthquakes. from mass movement, themostprobable to forecast ofpotential damage theextent within theadjacentslopes. allowsus This fact of laharsbutalsofor vegetation destruction Fig. 9. Map of geomorphologic hazards and disasters in the central Andes sector (from 5° till 28° s.l.). s.l.). 28° till 5° (from sector Andes central the in disasters and hazards geomorphologic of 9. Map Fig. Map symbols see Table 3 see symbols Map disasters. The Andeannatural disasters, increase of factors of conductive the risk andintensity combination andinteraction of somegeomorphologic processes. Their morpholitogenesis coast are associated withhigh features Pacific oftheSouthAmerican Geological-and-tectonic andphysiographical CONCLUSION includingdisastrous paths intensity of intensity

93 ENVIRONMENT 94 ENVIRONMENT 4. Ananiev G.S. (1999). Exogenous processes at the north-west of South America during El- Ananiev G.S.(1999).Exogenous during processes ofSouthAmerica atthenorth-west 4. MSUPublishing Ananiev G.S.(1998).Catastrophic relief-forming processes //Moscow: 3. AlvaradoP., oftheSanJuan(Argentina) BeckS.(2006).Source characterization crustal 2. Aleksandrov S.M.(1996).Nonlinearnature oftherelief-forming processes andextreme 1. disasters development. eruptions, intensify andhumanimpact events, frequent seismicshocks, volcanic processes. Large hydrometeorological theterrain-forming andintensity character andvegetationtype, conditionsinfluencethe androckmorphology lithology, precipitation geomorphologic processes. Thereby terrain thatprovokedrivers of highintensity influenced bymany naturalandhuman Thus, terrain-forming processes are water pollution. andground causes soilerosion andsurface areas) intensify.and deflation(indry Mining consequences. Slopeprocesses, erosion, as aresult ofovergrazing negative bring deforestation, advancement anddesert disasters. For example, cuttingofslopes, enhancesdevelopment ofnatural impact ofmany naturalprocesses.activation Human transformation intheway ofadditional to environmentalconsiderable contribution makesHuman economicactivity economic damagenowandinthepast. lands,and farm are responsible for significant highwaysbreaking anddestroying villages settlements, large floodinginmountains avalanches andmudflowsdestroying human causing bound citiesandfields, earthquakes such asvolcanic eruptionsthreatening ash- REFERENCES 18–25. (inRussian). 1997–1998 //ProceedingsNino oftheRussianGeographic Society. Vol. 131,Issue4,pp. House, 101p. (in Russian). ScienceLetters.etary N243(3–4).Р.615–631. andPlan- 6,8)//Earth 7,0)and11June1952(Mw 1944(Mw of15January earthquakes RFBR,112p. (inRussianwithEnglishsummary). situations //Мoscow: assistance withmapmaterial. paper. Specialthanksto S.Shvarev for opinion abouttheissuesdiscussedin Academy ofSciences)for dataandvalued ofGeography,Chichagov (Institute Russian ofEcuador)and Catholic University V.P. S.S.ZavgorodniayaUniversity), (Pontifical of Geography, Lomonosov State Moscow Authors are grateful to G.S.Ananiev(Faculty ofdisasterspotential development. risk in theregion anddefiningthezones of areal ofgeomorphologic stress distribution for of understandingofprinciples necessary ispotential naturalandhumanimpact quantitative of assessmentofintensity with zoning Mapping ofthisdistribution. the mountainsystem, aswell aslatitudinal within thecoastalandinlandslopesof ofgeomorphologic processesdistribution feature ofthestudyarea istheasymmetric geomorphologic processes. Animportant andextreme bothtypical that governs individual features, e.g., heat-moisture ratio, that are bytheunique characterized from temporal to latitudes subequatorial natural zonesmountains invarious – disasters of thesecontinentalmarginal ofgeomorphologicdrawing out principles allows Andesextension The SouthAmerican ACKNOWLEDGMENTS  2. http://www.volcano.si.edu/world 20. http://www.ncedc.org/anss/catalog-search.html 19. http://finam.info/need/news2478800001 18. http://inosmi.ru/infographic/20111226/181319543 17. Gotvanskiy V.I., Lebedeva E.V. (2010). Naturalandanthropogenic influenceon factors 16. 5–Geography, //MSUBulletin.Series GolubevG.N.(1969).Chilerivers nourishment N2, 15. Geomorphologic hazards anddisaster prevention (2010).Ed. Alcбntara-Ayala I.,Goudie A. 14. R., Garreaud current Vuille M.,ClementA.C.(2003).Theclimate oftheAltiplano:observed 13. R.(2009). Garreaud The Andesclimate andweather //Advances inGeosciences. N22, 12. delalнneanieve delavariabilidad encrecidas invernales R.(1992).Impacto Garreaud 11. Enman Earth //Modern V.B. crustmovements andearthquakes Earth (1973).Modern 10. Codron F.S. J.C., Cervera 9. naturalsenLos (2000)Riesgos Andes:cambioambiental, R.,HйrailG.,Pinto Charrier L.,Garcнa M.etal. (2013).Cenozoic tectonic evolution inthe 8. Cembrano J., LaraL.(2009). volcanism The linkbetween andtectonics inthesouthern 7. O.I., Budarina Perov V.F., Sidorova T.L., 6. Belaya N.L.(2000).Genesisandregime ofmudflows Angillieri M.Y. analysisofColangьil riverbasinandflashfloodhazard, (2008)Morphometri 5. (in RussianwithEnglishsummary). geomorphologic processes intheFar intensity East//Geomorphology, N2,pp. 26–36. pp. 36–41.(inRussianwithEnglishsummary). Press. University Cambridge: 291 p. Palaeoecology. N194,pp. 5–22. conditions andmechanismsofpastchanges//Palaeogeography, Palaeoclimatology, pp. 3–11. Santiago. Hidrбulica, 15p.de Ingenierнa deChileCentral //XICongresoen cuencaspluvio-nivales ChilenodelaSociedadChilena crust movements. Tartu: Estonian SSRAcademy ofScience, pp. 633–642.(inRussian) percepciУn ysosteniilidad //BoletindelaA.G.E.N.N30.P. 69–84. (Geol Rundsch).N102.Р.235–264. Sciences graphic, ofEarth magmatic Journ. andmountainbuildingevolution //Intern. Chileandwest centralBolivia:implicationsfor paleogeo- Central Andesinnorthern volcanic zone oftheChileanAndes:areview // Tectonophysics, N471,pp. 96–113. English summary). //Recordsin SouthAmerica ofGlaciological Studies, Iss. 88,pp. 50–55.(inRussianwith San Juan,Argentina //Environ Geol. N55.Р.107–111.

95 ENVIRONMENT 96 ENVIRONMENT Perov V.F. 272 p. MSUGeographic (in department, (2012).Mudflow studies//Moscow: 35. Pararas-Carayannis G.(1974).Aninvestigation oftsunami source mechanismoffthecoast 34. aplicadoaldiagnуstico Novoa J. M.,Moreno I.etal(1988).Anбlisismorfodinбmico E.,Meza 33. Novoa J.E., Araya A.A.,Fernбndez R.M.,Araya M.C.(1995).Potential tsunamieffects inLa 32. Novoa J.E landmovements onslopesanditsinfluencethe (2013).Mass Western 31. Novoa J. sistema deplayas E.(1993).Eficaciageomorfolуgica ydunasBahнadeCoquim- 30. climatology. Sh.E.(2011).Dryland Univ. Cambridge Nicholson Press. 516p. 29. D.; BalcoG., Montgomery Willett S.(2001).Climate, tectonics, ofthe andthemorphology 28. Marcato G.,Pasuto F.R. A.,Rivelli Grande movements intheRio (2009).Mass Valley (Que- 27. Uchpedgiz, 467p. (inRussian). //Moscow: E.N.(1958).SouthAmerica Lukashova 26. Levin B.W., Sasorova E.V. intheAndesand ofearthquakes (2009).Latitudinaldistribution 25. Lebedeva E.V. (2013).Naturalandanthropogenic basisofgeomorphologic processes in- 24. A.M.,Korobov Korotkiy V.V., G.P. Skrylnik (2011).Anomalousnaturalprocesses anditsinflu- 23. M.E.(2008).Reliefdevelopment andrelief-forming processes Kladovschikova ofmarginal 22. N.A.(2000)Possible mechanismofformation ofseismogenicavalanches Kazakov //Re- 21. Russian). of Central Peru Geology. //Marine V. 17.Amsterdam: Elsevier. P.235–247. y Desarrollo. N2, pp.303–330. (Quito, ySanCarlos naturalesenlossistemas deLaGasca de riegos Ecuador)//Geografнa plication to present andfuture conditions. Chile, Antofagasta. 12p. coastalrecords ofrapidchange:Ap- Chile/Late Quaternary Serena area North-Central summary). (Chile)//Geomorpology,Andes morphogenesis N2,pp. 81–96.(inRussianwithEnglish Chilena deCienciasGeogrбficas. N1,pp.26–33. bo (IVRegiуn, discusionmetodolуgica Chilesemбrido): yresultados //AnalesSociedad Andes //Geology. N29(7),pp.579–582. //Advancesthe risk inGeosciences. N22,pp.59–65. Argentina): amethodologicalbrada deHumahuaca,Northwestern approach to reduce //Advances inGeosciences.its peculiarity N22,pp. 139–145. intheAndes//Geomorpology,tensity N4,pp. 58–71(inRussianwithEnglishsummary). p. (inRussianwithEnglishsummary). inthesouthofRussianFarence ongeosystems stability East// 265 Dalnauka, Vladivostok: p.Geographic 24.(inRussianwithEnglishsummary). department, MSU continental mountains(theAndescase)//Author’s ofathesis, Moscow: abstract cords ofGlaciological Studies, Iss. 88,pp. 102–106(inRussianwithEnglishsummary). 4 . Zavgorodnaya geomorphologic processes for anditsinventory S.S.(1996).Modern eco- 47. M.P. Zhidkov suture zones ofPacific ofcontinental-oceanic (1985).Morphostructure Rim 46. G.F. Ufimtsev (relief ofthePeruvian andmorphotectonics (2011).Andesdiary Andes)// 45. Troshkina N.L.(2000).Newdataontheavalanche modemountainous E.S.,Kondakova 44. TillingR.I.(2009). Volcanism andassociated hazards: //Advances theAndeanperspective 43. Orogeny. TheAndes:Active Subduction (2006).Springer-Verlag Heidelberg. Berlin 440p. 42. Tect 41. Stillwell D. (1992).Naturalhazards //NaturalHazards. anddisasters inLatinAmerica N6, 40. Sergio A.Sepъlveda, AlejandraSerey, Lara.etal. (2010).Landslidesinducedbythe Marisol 39. E.Y., Rantsman centres natural –placesofextreme M.P(2004).Morphostructural Glasko 38. Porter M.,Savigny K.W. (2002).Naturalhazard managementfor andrisk SouthAmerican 37. //Geomorphol- ingeomorphology Phillips J. (2011).Emergence andpseudo-equilibrium 36. MSU, 43p. (inRussian). logic andcommercial inEcuador//Author’s purposes ofathesis. Moscow-Quito: abstract IGRAS,27p.Author’s (inRussian). ofathesis. Moscow: abstract west// ofSouthAmerica) placesforecast (Kamchatka, earthquakes powerful concerning Scientific World,Moscow: 164p. (inRussian). (in RussianwithEnglishsummary). areas Hemisphere oftheSouthern //Records ofGlaciological Studies, Iss. 88,pp. 92–101 in Geosciences. N22,pp.125–137. pp. 131–159. 10.1007/s10346-010-0203-2. ChileanPatagonia. 2007AysйnApril Fjord earthquake, LandslidesN7,pp. 483–492.DOI 223p. Media-PRESS, (inRussian). phenomena //Moscow: Canada. IPC02-27235.8p. pipelines //Proceedings ofIPC2002:4 ogy. N132(3–4),pp.319–326. onic Evolution of South America (2000) // 31° Intern. Geol. Congress,onic Evolution(2000)//31°Intern. ofSouthAmerica de Janeiro. Rio 650p. Ekaterina V. Lebedeva scientific papers. Australia.America, Sheistheauthor ofapproximately 100 European SouthandCentral Russia,SouthandEastAfrica, geomorphological problems. Regions ofResearch: Far Eastand ofgeomorphological processes,intensity ecologic- conditions andundertheinfluence ofanthropogenic factors, in 1992.Herscientificinterest: relief evolution inchanging natural from theLomonosov State andreceived University Moscow PhD ofGeography oftheInstitute Geomorphology RAS.Shegraduated th International Pipeline International Conference. Calgary, is Senior Researcher of the Laboratory of isSeniorResearcher oftheLaboratory

97 ENVIRONMENT 98 ENVIRONMENT Argentina, Peru andBolivia. andruralplanningstrategiesto urban inmountain,coastal, andfluvialecosystems ofChile, theoretical environments modelsandstudiesinarid related to physical geography oriented Jos Dmitry Dmitry V. Mikhalev Mariya E. Kladovschikova the research development andoperationalimplementationof South America. During last two decades, lasttwo During hewasresponsibleSouth America. for long career inresearch andteaching inphysical geography in resources environments. planninginarid Dr. Novoa hashada hazards, climaticchange, appliedclimatology, andnatural geography (from localto regional scale)related to natural researchUnion (IGU).His interests are inappliedphysical Geographyand NaturalDisaster Chapter oftheInternational Physical Geography Program, oftheRisk Member andSteering Advances Zones ChairofApplied StudiesinArid (CEAZA-Chile), ofLaSerena,University Research oftheCenter Member for He istheauthorofapproximately 70scientificpapers. Russian Arctic, Australia. SouthandCentral America, SouthAfrica, processes, andgeoecology.cryogenic The regions ofresearch: interest: isotope geocryology, paleogeography, paleoclimatology, University. Hereceived hisPhD in1990. The area ofhisscientific oftheLomonosov State Moscow Geoecology oftheNorth Mountains, Andes, andSino-Tibetan Mountains. inKhibiny,experience Greater Caucasus, SouthUrals, Crimean byherprofessional and culturallandscapes issupported in dynamicmountainousranges, anthropogenic geomorphology, 2009. Heracademicinterest encompasses geomorphologic hazard of theAndes. ofGeography She joined thestaffofInstitute in processesterrain development inmarginal continentalmountains ofProfessorState in2008undersupervision University G.Anan’ev on of Sciences. SheobtainedherPhD from theLomonosov Moscow ofGeography oftheInstitute Geomorphology ofRussianAcademy é E. Novoa Jerez is Senior Researcher of the Laboratory of of isSeniorResearcher oftheLaboratory , PhD, isProfessor inPhysical Geography, is Researcher of the Department of of isResearcher oftheDepartment Merged Lkhagvasuren Choijinjav 1 the Altairegion. cross-borderinternational cooperationin inthescope ofthe indecision-making GIS-based Atlas. The Atlascan beused version andaweb-based ofthe support demonstrates theneedfor geoinformation and themainthemesofitsmaps. The paper its structure(nature, history, andculture), of product,themainsections cartographic facilitate thedevelopment ofthisunique The paperdiscussesthepreconditions that Greater Altairegion.on thetransboundary current, andaccurate spatialinformation to reliable, community the international to ensure themaximalpossibleaccessof Altai. oftheAtlasisThe mainobjective AtlasofGreatera specialinterdisciplinary concept andapproaches to thecreation of ATLAS“THE OF GREATER ALTAI: Anar B. Myrzagaliyeva 7 6 5 4 3 * 2 Irina N.Rotanova of Kazakhstan; e-mail: [email protected] e-mail: of Kazakhstan; 070020,Republic st.,Ust-Kamenogorsk, 55,Kazakhstan Relations Department, [email protected] e-mail: Munajtpasov st.,13,Astana, 010000,RepublicofKazakhstan; Moscow, [email protected] 119991,Russia;e-mail: [email protected]: e-mail: chenxi@ms e-mail: Beijing Road,818 South 830011,Urumqi,Xinjiang, China; 14/3, Peace av., Ulaanbaatar, [email protected] e-mail: 210646,Mongolia; ABSTRACT. OF SUSTAINABLE DEVELOPMENT AS THE FOUNDATION FOR MODELS NATURE, HISTORY, CULTURE” INTERNATIONAL MAPPING PROJECT Corresponding author The National Ulaanbaatar University of Mongolia, School GeographyThe School NationalUlaanbaatarUniversity ofMongolia, andGeology, Amanzholov East Kazakhstan State University,Amanzholov EastKazakhstan Research Affairs andInternational Gumilev Eurasian NationalUniversity, Faculty ofNaturalSciences, Lomonosov Moscow State University, Faculty ofGeography, Gory, Leninskie Altai State University, Faculty ofGeography, 61,Lenina av., Barnaul, 656049,Russia; Hovd State University, [email protected] Hovd, e-mail: 213500,Mongolia; ofEcologyXinjiang Institute andGeography, ChineseAcademy ofSciences, The paperpresents the 1 . xjb , Vladimir S. Tikunov, Vladimir . ac 4 , ChenXi . cn 5 , Nyamdavaa Gendenjav 7 2* , GuldzhanM.Dzhanaleeva Russia, Kazakhstan, Mongolia, and Mongolia, Russia, Kazakhstan, ofEurasia.Fourheart countries, namely Altai isamountainsystem located inthe development. Greater Altairegion for itseffective spatial information on thetransboundary to reliable,community current, andaccurate maximal possibleaccessoftheinternational oftheAtlasistomain objective ensure the teamby aninternational ofscientists. The modelthatisbeingdeveloped cartographic Culture” unique isaninterdisciplinary AtlasofGreater Altai:Nature, History, “The region, AtlasofGreater Altai,GIS,web-atlas. INTRODUCTION KEY WORDS:

Altai, GreaterAltai, theAltai 6 , 3 ,

99 SUSTAINABILITY 100 SUSTAINABILITY Kazakhstan, China, and Mongolia. In the In China,andMongolia. Kazakhstan, used bymany millionsofpeople inRussia, Ob, andHovd; are theserivers i.e., Irtysh, glaciers are thesource of thelargest rivers, Asia. vast areas ofCentral andNorth The Altai region; theseprocesses thenspread over processesatmospheric are formed inthis in theregion. Climatic, hydrological, and phenomenon studied itasacharacteristic considered bymany researchers whohave has thesignificant geographical uniqueness ofavastcontinent located intheheart The Altainaturalmountainformation 2013]. relations intheregion [Rotanova, Ivanov, role in strengthening international important “Our Common HomeAltai”, whichplays an Coordinatingthe International Council 1993,thenear-border createdIn districts inhabiting thiswidegeographical area. and cooperationofthenumerous peoples “Greater Altai” symbolizes community, unity, Ulgii andHovd Aimags(Mongolia). The name Autonomous Region (China),andBayan- XinjiangUyghur Oblast (Kazakhstan), and AltaiRepublic(Russia),EastKazakhstan divisions:AltaiKrai administrative-territorial and migration ties. Currently, there are six political,cultural, ethnic, trade-economic, hasbeenunifiedby 30 thousandsq. km.) centuries, thisvastmountainregion (about the Altairegion roots. hashistorical For cross-borderinternational cooperation in China, share theAltairegion (Fig. 1). The Fig. 1 Fig. World Natural andCulturalobject, Heritage soon become the international, four-lateral, the area ofAltai”“Golden Mountains may and Teletskoe that isnoteworthy It Lake. the NaturalPark Quite Area Ukok”,“The Nature theNaturalPark Reserves, “Belukha”, State Biosphere the AltaiandKatun thisareaHeritage; consists offive clusters: the Listof World Cultural andNatural area ofAltai”“Golden Mountains (Russia)in bytheinclusionof been confirmed of naturalandculturalvaluesAltaihas and isbeingimplemented. The importance NationalPark hasbeensigned Karagaisky andtheKaton- Biosphere Reserve Katun reserve transboundary “Altai” basedonthe to establish a the RepublicofKazakhstan Governments oftheRussianFederation and protection. The agreement the between the ecoregional approach to environmental implementationof region ofthepriority complexes. Greater Altairepresents the natural parks, andwildlife andrefuge the state nationaland naturalreserves, natural areas (SPNA). includes The network ofspeciallyprotected network functional in theGreater Altaiborder areas, there isa environmental allthecountries issues. In andother ofbiodiversity preservation Altai, isenvironmental activities, including ofGreaterimplemented byallcountries areas ofcooperation, One ofthepriority statusofecoregions.international (“Global–200”),whichreceived the Earth hundred virgin orlittlealtered regions ofthe the endofXX forthe crucialfactors theinclusionofAltai,at state were littleaffected byhumanactivities ofmuchthelandscapeina preservation levels and ofbiodiversity and fauna.High of thespeciesandcommunitiesflora setoffeaturesexposition, definesarich mountain andbasinlandforms, altitude, and ofclimaticconditions,Diversity created by elements. earth a fullrangeofnon-ferrous metalsandrare almost theentire table, periodic including have beenexplored. The region contains mineral resourcesdepths ofAltai,therich th century, inthelistoftwo and foreign fundamental cartographic ofthebestexamples ofRussian continuity and computer mapping, whilemaintaining history, culturalstudies, geoinformatics, etc.) of science(geography, biology, ecology, and technological advancesofdifferent areas scientific-methodologicalanalysis ofmodern The Atlaswillbebasedonthestudiesand Altai. programs ofGreater runninginthecountries systems (GIS)for environmental andtarget thematic maps, andgeographic information volume ofinformation indifferent databases, of researchers whoaccumulated alarge the results ofyears ofdifferent ofwork groups The ideaofdeveloping theAtlasarose from environmental well-being oftheregion. andthesituationof of eachcountry potential andutilizes naturalattractiveness mainly basedontheecological andnatural located is intheregion.in allcountries It currently, hassomelevel ofdevelopment withinGreater Altai, industry The tourism including international/cross-border tourism. region for andrecreational tourism activities, and, promising primarily, activity asavery Altai from thepositionsofmany spheres of explain theincreased interest to Greater andfactors facts The above-mentioned consolidation. of Eurasianethno-cultural peacefully. Altaitoday represents thecenter Islam, andtraditionalshamaniccultscoexist unique: Christians, Buddhists, followers of The religious situationinGreater Altaiisalso groups comeinto intercultural interaction. Slavic, Turkic, andChineseethnic Mongolian, way oflife ofitspeoples. Within thisregion, cultural diversity, traditional andtheextant historical, andculturalvalues, ethnicand Greater inarchaeological, Altaiisrich Rotanova 2012]. Rotanova, 2011;Badenkov, Andreeva, [Badenkov, andKazakhstan China, Mongolia, countries: to theneighboring extended OF THE ATLASOF THE THE CONCEPTUAL FRAMEWORK will beusedto represent thethematicmaps of atlasmapping developed inthepractice Several methodological approaches defined (local). divisionsare the administrative-territorial wherebya matrix, theblocksofmapsat local levels. Finally, thethird approach is macro-regional) level to theregional and the transitionfrom thenational(state, Altai).The secondapproach incorporates mapsofGreater model elements(summary at themacro-regional level withthenetwork the analytical(comparative) representation information representation. The mainoneis Atlas willusethree approaches for the historical, cultural, dynamic, etc. The scientific approaches: comprehensive, the Atlaswillbebasedonmodern The compilationofthethematicmaps the concept. geographic information implementationof substantially improved inthecourseof the lastdecades. This information willbe have beenaccumulated anddeveloped in cartography,theoretical andpractical which its implementation,utilizes theadvancesin concept, inthesameway asallphasesof area ofGreater Altai. transboundary The of thebalanceddevelopment ofthe The Atlasconceptisbasedontheidea solutions andtheAtlasprograms. is thephaseofdevelopment ofconceptual wasestablished.countries The year of2014 compilation oftheAtlasinparticipating coordination system for underthe work conceptualization. Atthisstage, a The year of2013wasthephase system of symbols, andacommondesign. generalization,acoherentto cartographic projections andscales, asingleapproach and individualmaps, appropriate choiceof ofthesections complementarity, andlinkage of theAtlasisensured bycomparability, thematic structure. unityThe internal by theconceptualprovisions oftheoriginal Atlas ofGreater Altai” are predetermined works. anduniquenessof Novelty “The

101 SUSTAINABILITY 102 SUSTAINABILITY development and coordination. The titleof of theAtlasare currently atthestage of The structure, content, andthematic division China,andMongolia. Kazakhstan, intheRussianFederation,data collected isassociated withdifferencesdifficulty inthe (mapcompilation),etc.structural The greatest availability, reliabilityofthe mappeddata), based format, etc.), informational (uniformity, (design oftheinformational structure, GIS- scientific-procedural ofpriorities); selection development, conceptual apparatus, of research: methodological (concept a numberofissuesatdifferent levels The tasksoftheAtlasrequire addressing modeling. mathematical-cartographic isolate clusters, andpresent theresults of zoning, reflecttypological mapped objects, ofintegral ofthe derivation characteristics individual parameters andwillfacilitate mainly ontheintegration ofanumber phenomena. The syntheticmapswillrely and dynamicsofcovered and objects relationships,and exploring interactions, of theregion, butwillalsohelpanalyzing multifaceted (polythematic)characteristics integrated mapswillrender notonly from ofnumerous anarray features. The and phenomenaofthemappedterritory ofobjects and/orcharacteristics properties of individualandthemostimportant maps willenabletheisolationandrendering integrated, andsynthetic. The analytical of aggregation ofinformation: analytical, atthree levels willbeperformed Mapping and Mongolia. China, of theRussianFederation, Kazakhstan, Altai inrelation to otheradministrative units for therepresentation offeatures ofGreater The comparative methodiswidelyapplicable well rendered images.very asanamorphic different scales)levels. somecases, theyare In (state), regional, andlocal(respectively, at atthenational of phenomenaandobjects the Atlaswillutilize multi-level mapping most completely andexpressively. Thus, THE STRUCTURE OFTHE STRUCTURE THE ATLAS  subsections: Section “Nature” willhave three major the Altaimountainsystem. entities ofthefour located within countries of thenear-border administrative-territorial economic, social, andculturaldevelopment is perceived astheconsequenceof century. oftheenvironmentThe quality Greater Altaiinthebeginning oftheXXI environment, andenvironmental in quality onthenatural conditions, economic impact temporal information onthenatural Section “Nature” willcontainspatial- Altai andspaceimagesoftheregion. divisionsofGreater administrative-territorial borders andthenear-border ofthecountries will containgeographic information onthe that section preceded bytheintroductory andCulture.History, willbe These sections to thenamesofAtlastitle:Nature, oftheAtlascorresponds the mainsections  development ofthelandscapes, agricultural of naturalresource use, agricultural level of of thecultureof thepopulation,maintypes ofsettlements, types age-structure functional population density, population, urban thematic maps:population distribution, the environment” willhave thefollowing Subsection on ofeconomicactivity “Impact uniquenesscoefficient. biodiversity of thevegetation types,biodiversity, and thawing), soilzoning, bioclimaticmapping temperature, seasonalfreezing thickness, and and mudflows, permafrost (distribution, hydrologicalcomfort, areas, glaciers the environment, climaticzoning, climatic following areas: of landscapes, sustainability Subsection “Natural conditions” willcover the 

Natural conditions environment. onthe ofeconomicactivity The impact environment. Protection andoptimizationofthenatural Sustainable development oftheterritories. th plants andcommunities, ranges distribution Red-Book rare speciesof anddisappearing following areas: rangesofthe distribution of thenaturalenvironment” willcover the the territories. Protection andoptimization Subsection “Sustainable development of situations.mitigation ofemergency of midges),andorganization ofprevention and –pestsofforestsinsects andcrops, distribution animals, diseases ofhumansandfarm spread of (natural focal infectious, parasitic, andother made processes, biological andsocialhazards manifestation ofhazardous naturalandman- oftechnogenic situations,risk synergetic processes and phenomena, hazard and means ofmitigationhazardous natural ofwildfires,risks monitoring, methodsand processes (floods, flashfloods),hazards and hazards ofhydrological andrisks hurricanes), fog, blackiceandicing, thunderstorms, hail, airtemperatures,extreme snow, blizzards, drought, climate extremes, (desertification, ofmeteorologicaland risks processes flooding, permafrost processes), hazards subsidence, erosion,mudslides, karst, avalanches, glacialactivity, landslides, of endogenousprocesses (earthquakes, of naturalemergencies, hazards andrisks biological andsocialrisks, hazards andrisks the following maps:natural, technological, of thenaturalenvironment” willinclude of territories. Protection andoptimization development “Sustainable Subsection economic map. levels,territorial andenvironmental- innaturalresourceconflicts useatdifferent solid municipalwaste oflarge settlements, forest forests, fires, secondary volume of forest cover,gas transport, forest logging, toxic waste, hazards from oilandnatural ontheenvironment, of theminingindustry water, pollutionofsurface extreme impact wastewater, wastewater composition, sources,from emissionsstructure, stationary cover, emissionsofpollutants atmospheric soil-forming processes, pollutionofthesnow environment, anthropogenic changesofthe onthe ofeconomicactivities impact land, anthropogenic loadonthelandscapes, information andthedevelopment sharing of of aboutthelaws and practice knowledge created information usingmodern and globally. willbe The mapsofthesection cultural development ofGreater Altai andsocio- thesocio-economic determine resourcesis oneofthemostmodern that branch ofthesocialsphere. Cultural heritage is seenasasocialphenomenonand culture.the other–to themodern Culture ofGreater culturalheritage the rich Altaiand oneof whichisdedicatedsubsections, to Section “Culture” willbecomposed oftwo events related to Greater Altai. dates and chronological tableofimportant anda ofterms will concludewithaglossary Kontev, 2006;Special...,1998].Thesection [Barnaul, 2006;Borodayev,past centuries of works cartographic extant present known of travelers andscientists, etc. will The section trailsofdiscoverersconflicts, andexpeditions of heritage, archaeological sites, military of settlementsandpopulation,objects in thestate borders, changesinthestructure peoples, emergence ofstatehoods, changes sites ofprimitivepeople, habitatsofthe settlement development oftheterritory: stagesofsettlementand maps describing ofinterrelated willincludeaseries section oftheregion. heritage the historical This spatial andtemporal information about to thepresentantiquity andto provide developmenthistorical ofGreater Altaifrom to consistently reveal thecourseof ofsection The mainpurpose “History” is protections. cooperationinenvironmentalinternational Greater Altai(Greenpeace, WWF, etc.), and environmental organizations operatingin public organizations, international public organizations, youth andchildren environmental monitoring, environmental optimization ofthenaturalenvironment, sustainable development ofterritories, development oftheenvironmental network, entities (onsoils, plants, andanimals),SPNAs, Russian Federation andofitsadministrative species ofanimals, theRed-Booksof of theRed-Bookrare anddisappearing

103 SUSTAINABILITY 104 SUSTAINABILITY transboundary region andcouldbecometransboundary and demographic situationinthe Altai assessing thenatural, economic, social, oftheAtlaswillallowThe GIS-component versionbe anelectronic oftheAtlas. and coherence ofthemaps. Thus, there will ensure thesystemic ofitscontent integrity with theuseofGIS-technology, whichwill format;printed however, itwillbecreated The Atlaswillbepresented inthetraditional content. for thelogical interconnection ofthemap the Atlasandmaplayouts andwillprovide and coordination willbethefoundation of through selected mutualeffort subsections These themesofthemaps, and sections, roadside infrastructureandservices. ofAltai”,Ring aswell astheinformation onthe potential route tourist international “Golden maps willbethesystematized dataonthe sector.tourism Thus, thethemeofone showing theuseofculturalfacilitiesin dedicated to cognitive andexcursions tourism The Atlaswillhave aseparate blockofmaps education inthefieldofculture. archives, clubs, andinstitutions ofhigher institutions: theaters, museums, libraries, cultural ofvarious andtheactivities network crafts, etc.). The mapswillalsoshowthe stone, bone, glass, weaving, andknitting (wood, andcrafts metal,locations offolk arts formsother various ofmonumentalart, The mapswillalsoshowmonumentsand inAltai). those whoworked and famouspeople(natives ofAltaiand music, museum, library, culturalheritage, are: publiceducation,literature, theater, culture themes ofthemapscontemporary environment ofGreater Altai. The main andrestoration ofthecultural conservation and prospectsfor cooperationinthe and folklore, andtheirexistingrelationships regional andnationalcultures, ethnography OF THE ATLASOF THE GEOINFORMATION SUPPORT phenomena. for mapping ofdifferent geographical use mapswillrepresent theframework bases for theregion. Landscapeandland and created as thedigital topographic to acommongeodeticcoordinate system digital mapping. They shouldbebrought for framework theestablish thenecessary to willbeundertaken Special activities accessible to users. the nature ofphenomena;andmustbe with otherdata;mustadequately reflect be spatiallyaccurate; mustbecompatible must have asufficientdegree of detail;must the samepointintimefor allitsparameters; i.e., thequantitative datastored must have it mustbeuniform oftime-scale, interms be basedonthefollowing requirements: versionof theelectronic oftheAtlaswill general, thethematicdatabase (TDB) In of thebordering countries, etc.). 000 (Greater Altaiwithintheterritories 000, 1:20001:30001:50001:8 etc.), theinter-regional ormacro –1:1000 000 (Altai Hovd Republic, Aimag, AltaiKrai, 1:1 500 000, 1:20005001:3 000 regions, Somons); regional –1:1000000, 1:100 000,1:200000(administrative 1:25 000,1:50000(cities);sub-regional – to local–1:10000, thesize oftheterritories: be doneatdifferent scalesthatcorrespond The electronicmappingofGreater Altaiwill Altai. sound sustainabledevelopment ofGreater creating astrategy for theenvironmentally thenature ofchangesandhelp tracking ofthefour countries. parts This willalso the region withother incomparison for thefullintegral of characterization willprovidesmall filmwithasoundtrack, slides,graphics, and, possibly, hypertext, a a hypermedia system capableofrendering into asingle GISdatabaseanddesigned as dataconsolidatedaerial-space, andtext addition,themapping, In the Internet. systemmonitoring available for useover creation geoinformation ofapermanent the framework for thesubsequent considered as part of thedigital atlas ofconsidered as part The Atlasof Greater Altai canbe Greater 1). Altai(Table divisionof of theadministrative-territorial geographical locationsandboundaries willrelatedigital mapsofthissection the information containedinthe Atlas. The presented belowisanexampleofthe oftheAtlas section of theintroductory scales The listofthethemesandworking conditions. processes, andtheassessmentofcurrent ofthecoveredcharacter phenomena and economic conditionsofthemappedterritory, andsocio- reflect thephysical-geographic The TDB anditsthematiccoverage will Atlas. of Greater Altaiinthedigital version ofthe elements possible numberofthegeo-system provide for ofthemaximal thecharacteristics oftheGIS-based The structure TBD will CONCLUSION pc mgr fGetrAti1:20000000 1:50000 1:50000 1:50000 1:50000 1:50000 1:50000 1:1000 ofGreater Altai Space imagery 1:10000 1:2500000 1:30000 1:20000 Oblast –the capitaloftheEastKazakhstan Ust-Kamenogorsk 1:5000 ofChina Altai –thecapitalofDistrict Bayan-Ulgii –thecapitalofBayan-Ulgii Aimag 1:3000 Hovd –thecapitalofHovd Aimag, Mongolia –thecapitalofAltai Gorno-Altaisk 1:1000 –thecapitalofAltaiKrai Barnaul 1:5000 The divisionofGreater administrative-territorial Altai, divisionofGreater Altai,theRussianpart The administrative-territorial Federal oftheSiberian ofGreater Altaiaspart District The Russianpart ofGreater China,andKazakhstan AltaionthemapofMongolia, part The Mongolian ofGreater AltaionthemapofRussia The Russianpart andMongolia Greater AltaionthemapsofRussia,China,Kazakhstan, oftheCentral AsianGreater region Altaiaspart The Greater Altairegion map ontheworld ofGreater Altai andChineseparts Kazakhstan, Mongolian, ofGreater Altai Russian part ofGreaterStructure andboundaries Altai Table 1. The maps of the introductory section of "The Atlas of Greater Altai: Nature, History, Culture" History, Nature, Altai: Greater of Atlas "The of section introductory the Table of 1. maps The a hmsScale Map themes the Mongolian, Kazakhstan, and the Mongolian,Kazakhstan, Greater Altai. thedevelopmentissues determining of informed decisions on awiderangeof users to stay current and, thus, make sectors.oriented The Atlaswillhelpits development of environmentally business structuresfor theintegrated for resource mobilization,including and itsparts. The Atlas willbeuseful forinnovation activities theentire region oftheregionattractiveness andenhance Atlas may helpraisingtheinvestment wide.extremely The mapsofthe The potential rangeofitsusersis resources inRussia. development ofthenationalinformation significantlybut alsocontributes to the Asia,largest formations ofNorth territorial representationcartographic ofonethe notonlyfor theelectronic- important the managementsystem. The Atlasis for development andimprovement of present aunifiedgeoinformation space Federation, isto whose mainpurpose sustainable development oftheRussian  Chinese parts 1: 2500000

105 SUSTAINABILITY 106 SUSTAINABILITY . SpeciallyProtected Areas (1998)/P.I. andSites oftheAltaiKrai Dianov, I.N.Rotanova,L.V. 6. Rotanova,I.N.,Ivanov, A.V. cooperationin theAltairegion (2013)International –10years of 5. Borodaev, V.B., Kontev, A.V. materials Cartographic AtlasoftheAltaiKrai: (2006)Historical 4. Barnaul. Scientific-Reference Atlas(2006)/I.N.Rotanova,B.V. Borodaev, V.I. Bulatov, 3. V.G. Badenkov, Yu.P., Rotanova,I.N.(2011)Newnature protections initiatives andapproaches 2. Badenkov, Yu.P.,1. Andreeva, I.V., Rotanova,I.N.(2012)Nature protection inthe projects REFERENCES published works, including 10monographs (withco-authors). Environmental Award 2007” for ofwater-environmental aseries maps. She hasover 600 member ofagroup ofauthors),andtheDiplomarecipient oftheCompetition “National authors), theNationalEnvironmental Award ofthe Vernadsky Foundation in2006(asa She isalaureate oftheEnvironmental Award “Ecomir–2006” (asamemberofgroup of Coordination for theInternational Council is ascientificexpert “Our Common HomeAltai”. Geographical Association. Society. She Cartographic Sheisa memberoftheInternational BranchoftheRussian Protection.Heritage oftheAltaiKrai SheisScientificSecretary whichreceivedthe AltaiKrai, theDiplomaofAll-RussianCompetition for theNatural environmental thematicmapsincludingthemapofSpeciallyProtected Areas and Sites of andscientificeditor Basin,etc. ofseveral co-authors She isoneoftheprincipal Ob-Irtysh System ofIntegrated UseandProtectionsMunicipalities oftheAltaiKrai, of Waters ofthe Protected Systems of inSiberia, Environmental Reserves Territorial Planning ofthe Pestova, L.N.Purdik –1:1000000.Map. –Moscow. 2013) /G.Ya. Press, (Ch.Ed.) AltaiUniversity –Barnaul: Baryshnikov 298p. –pp. 211–214. 23–26September Scientific-Practical ConferenceInternational –Gorno-Altaisk, (Barnaul of Environment andNaturalResources ofGreat oftheCountries Altai; Proceedings ofthe oftheMultinationalCoordinationactivities Council “Our Common HomeAltai” //Protection 119p. Azbuka, –Barnaul: beginning ofthe21stcentury). Region (from to the theantiquity oftheUpperObRegion andtheIrtysh on thehistory Vedukhina, etc. FSUE -Novosibirsk: “PE Engeodesia” Roskartografia. in theAltai-Sayanecoregion. //Polzunov Herald, №.4–2,pp. 34–38. Press,Altai University pp. 12–23. source Proceedings UseofSiberia: /Prof. G.Ya. (Ch.Ed.). –Issue14.Barnaul: Baryshnikov //Geography andlandscapediversity of managementsustainablebio- andNaturalRe- Altai-Sayan region ofadaptationto climate inthecontext changebasedontheconcept Hydroelectric Station,development ofthesystem ofSpecially Hydroelectric Irina N.Rotanova,Irina assessment of impacts ontheenvironment assessment ofimpacts oftheKatun andledresearch under largeparticipated projects: efforts of SBRAS “Environmental ofSiberia”. Mapping Shedirectly programscontracts, ofRASandSBRAS,includingtheProgram inseveral federalcharge andparticipated programs and for Water andEnvironmental Problems, SBRAS.She wasin ofHydrology andGeoinformatics oftheInstitute the Laboratory Leading Scientistof Research oftheAltaiState Sector University; (Faculty ofGeography) andScientificResearcher oftheScientific- ofPhysical GeographyDepartment andGeoinformation Systems Ph.D ingeography, isAssociate Professor, 100 works, including8 monographs, textbooks, andtutorials. Geographic Society. has publishedmore than A.Myrzagaliyeva and amember oftheKazakh published over (including6monographs 250works intheRepublicofKazakhstan. andtutorials) Shehas founding oftheRepublicKazakhstan. memberoftheNationalGeographical Society applied problems ofgeography. Council oftheMESRKanda SheisamemberoftheExpert monographs, texbooks, andin14languages. oftheworld andmanualsin28countries natural-resources atlasesofRussia.Hepublishedover 500scientificworks, including14 Technology oftheRussianFederation Governmentfor thedevelopment ofenvironmental and modeling.mathematical cartographic Heisalsoarecipient oftheAward inScienceand place bothinRussiaandabroad. Heisarecipient oftheAnuchinAward for in hiswork InterGIS of “Sustainable Development Territories: GIS andPractical Experience”Theory thattake universities. Hehasbeenorganizing, conferences since1994,annualinternational InterCarto- journals.of 9Russianandinternational Helecturedatanumberofnationalandinternational GuldzhanM.Dzhanaleeva S. Vladimir several scientificconferences international ontheoretical and published inforeign magazines(inEnglish).Shehasadministered defended Sheistheauthorofseveral papers theirdissertations. advising, 16candidates ofsciences ofsciencesand2doctors Under heracademic Protection oftheRepublicKazakhstan. ofEnvironmental andtheMinistry (MESRK) Republic ofKazakhstan ofEducationandSciencethe scientific projectsoftheMinistry ofGeographyInstitute andGeoecology. Shehasledanumberof Eurasian NationalUniversity, Director oftheScientific-Research ofPhysical andEconomicGeographyDepartment oftheGumilev Geographical Union. He has been a member of the editorial boards Geographical boards Union.Hehasbeenamemberoftheeditorial Commission onGeographic ScienceoftheInternational Information Association andamemberofthe Cartographic International President and, currently, oftheCommission ofthe isChairman – Autonomous District of theKhanty-Mansi Yugra, etc. Hewas Vice- ofRussia,Atlas Development Atlas ofRussia,Socio-Economic of atlases: NationalAtlasofRussia(editor-in-chief Vol. 3),Environmental Geography. research His hasbeenusedinmany thematicmapsand University, andDirector oftheCenter ofthe World DataSystem for Laboratory, Faculty ofGeography, Lomonosov State Moscow AnarB. Myrzagaliyeva Corresponding Member of the Russian Academy of Natural Sciences Corresponding oftheRussianAcademy Member of NaturalSciences in research to thedevelopment andcontribution ofscience. Sheis for Kazakhstan Talented Young Scientistsfor involvement heractive ofEducationandScience theRepublicof grant oftheMinistry commercial stocks. received A.Myrzagaliyeva thestate research rangesofmedicinalplantsformingmap onthedistribution large Altay. The results were ofthiswork usedinthecompilationof studied vegetation andplantresources ofKazakhstan oftheridges environmental issuesandstudyofmedicinalplantsresources. She State University. SheisinvolvedKazakhstan inresearch on work RelationsoftheAmanzholovEast Research AffairsandInternational

Tikunov is Professor, HeadoftheIntegrated Mapping isProfessor, of Director oftheDepartment isD.Sc. inGeography, Professor ofthe

107 SUSTAINABILITY 108 News and Reviews monographs inthree andtextbooks languages. Editor ofthe Journal of Arid Lands.Journal ofArid Nyamdavaa Gendenjav Merged Lkhagvasuren Choijinjav proceedings. Heistheauthorof70scientificpresentations. published 85scientificworks, including12booksandscientific ForKhural. 8years, oftheHovd hewasGovernor Aimag. He University. State Great Hewasamember oftheMongolian 6years andfor during activities 8years hewasPresident ofHovd consultant on5research projects. Hewasengaged inteaching in4researchparticipated projectsand wasaleaderand graduate studentssuccessfullyreceived theirdegrees. He 23undergraduate and Underhisscientificsupervision Mongolia. School ofGeography and Geology, of NationalUniversity textbooks. professional journals, including6monographs and12books published over 100research papersinnationalandforeign organizing committee oftheState Geographical Olympiad. He Geographicalthe Mongolian Association, andamember ofthe and researcher ofjointresearch projects, aleadingmemberof research andinnovation. Hehasbeenaleader, administrator, President’sand theUniversity Advisor incharge ofscientific ChenXi editorial boardseditorial andChief ofseveral journals international Association for Remote Sensing. Hehasbeenamemberof for NaturalResources ofChinaandPresident oftheXinjiang Resources inChina.Hewas Vice-President oftheAssociation ofEnvironmentalSustainable Development andNatural Science and Technology oftheChinaGovernment for projects inChinaandEU. Heisarecipient oftheAward in Ecosystems inCentral Asia. Hehasled40UNDPandUNEP Sciences andDirector oftheCenter ofEnvironment and of EcologyandGeography oftheChineseAcademy of Hepublishedover 200scientificworks, including18 isProfessor, Director GeneraloftheXinjiangInstitute , Ph.D. (geography), isProfessor ofthe isProfessor ofHovd University population, inhabiting highlatitudes, on governments, academia, business, andthe to seekconsensusbetween stakeholders wasto ofall unite purpose theefforts Its “Environmental inthe Arctic”. Security The themeoftheIII Forum was SeaRoute. the Northern of corridor andthetransport airports, ports, development ofnavigation, polaraviation, region.the Arctic The Forum addressed the as thefoundation for the development of system the formation oftheArctictransport 100 journalists. The Forum wasdedicated to and theArctic-region states, andmore than than 400delegates from Russia,theArctic University. The Forum brought together more (Arctic) Federal andtheNorthern the RGS andwasjointlyorganized by Arkhangelsk, Forum took placeinSeptember 2011,in 300 participants. Arctic The IIInternational the region, wasattended bymore than well asto thesustainabledevelopment of economic andinfrastructureprojects, as environment, secure implementationof oftheArctic the problems ofpreservation in theArctic. The IForum, dedicated to of peacefulandsustainabledevelopment of theRussianinitiative to discussissues 2010, inMoscow, thebeginning andmarked Territory ofDialogue” washeldinSeptember ForumThe IInternational “Arctic –the region of viewsontheissuesrelating to theArctic platform for exchangepolitical andexpert (RGS). Society The Forum isthelargest oftheRussianGeographical the support “Arctic –the Territory ofDialogue” heldwith ArcticForumhosted the IIIInternational Yamal-Nenets Russia) Autonomous District, On (the September 24–25,2013,Salekhard OF DIALOGUE” FORUM “ARCTIC – TERRITORY THE of indigenous peoples(thenumberof customs, and traditionaleconomicactivities ofculture, thepreservation principles: the region are based onthree fundamental in hestated thatallactivities participants, hisaddress to In theForumDistrict. Governor ofthe Yamal-Nenets Autonomous The secondpresenter was balanced environmental intheArctic. policy one oftheexamplesresponsible and The Yamal-Nenets is Autonomous District Yamal Peninsula isthegateway to theArctic. on themostpressing issuesintheArctic. The Forum isto provide afree andopendialogue He stated ofthe thatthemainobjective Academy ofSciences, openedtheForum. Corresponding oftheRussian Member and Russia,First Vice President oftheRGS, Artur Chilingarov Artur scientific, andothersectors. intheeconomic,projects environmental, has beenimplementingmany large-scale Also, the Yamal-Nenets Autonomous District on thedevelopment oftheArctic region. oftheRussianFederationnational policy the forefront oftheimplementation of Yamal wasnotaccidental, sinceitisat were accredited to theForum. The selection from dozens ofdifferent mediasources More than100journalists United Kingdom. theNetherlands, Spain,andthe Bulgaria, Georgia, Germany, Norway, Italy, Azerbaijan, Finland, Poland, USA,Serbia, China,Denmark, from including more than250participants There were more than700participants, Cultural andBusinessCenter ofSalekhard. change. The IIIForum inthe wasconducted andglobalclimateeconomic activity ofincreasingand mitigationofimpacts oftheArcticenvironmentthe preservation , Hero oftheSovietUnion Dmitry Kobylkin Dmitry ,

109 News and Reviews 110 News and Reviews and Linge At theopeningsessionofForum, asexperts). communities act hearings, where representatives oftundra oil andgascompaniesmustpasspublic of and indigenouspeoples(eachproject theinterestsbetween ofenergy companies ofharmony andbalance and preservation ofthe tenth km Yamal Peninsula isareserve); environmental safety oftheregion (every in thelast10years by11%);insuranceof peoplehasincreased indigenous northern made welcoming speeches. BranchoftheRAS, oftheSiberian Chairman was moderated by for theArcticEnvironmental Protection” The secondthematicsession “Legal Regime in theArcticregion. of spaceandheliophysical onhealth factors Russia, madeapresentation ontheimpact Antarctic Research Institute”, Roshydromet, Head ofPolar Center, Medicine “Arctic and the Public Health). Center of International and I.I.Mechnikov Chashchin of University TromsШ, and Norway), (moderators: Safety andHealthoftheArcticPopulation” The firstthematicsection “Environmental Forum.peoples themainthemeofnext theissueofindigenous suggested making andtheFarPeople Siberia, oftheNorth, East, Chair oftheCouncil ofEldersIndigenous Ambassador-at-Large, Representative Susan Chatwood inthe discussion,e.g., took part participants on theHumanHealthinArctic”. Several “Environment andClimate ChangeEffects ofEconomicForecasting,Institute RAS,on and HumanPopulation HealthForecasting, oftheEnvironmental Quality the Laboratory Revich Canada) includedapresentation by Circumpolar HealthResearch, Yellowknife, and Research for Director of the Institute and the RGS, PresidentAcademician, Honorary of , Head of the Inuit Circumpolar Council,, HeadoftheInuit Alexander Aseyev , Doctor ofSciences,, Doctor Professor, Headof (Professor, Director ofR.Koch Susan Chatwood , Anne Husebekk Anne Vladimir KotlyakovVladimir Vladimir ShepovalnikovVladimir , RAS Vice-President, Anton VasilievAnton Sergei Kharyuchi , Executive (Rector, Aqqaluk , MFA Valery Boris , , , Timo Koivurova This sessionincludedpresentations by Kullerud of RussiaintheArcticCouncil, and between theArcticstates.between address theissuesbymutualagreements unilaterally anynot toand actions take have 2008,theArcticcountries agreedIn many agreements andaccords ontheArctic. VasilievAnton hisresponse toIn thequestion,Ambassador agreements the Arcticcountries. between on thefeasibility into ofentering new Environmental Committee, raisedaquestion oftheRussianState DumaChairman issues. were followed byalively debate onthe Peoples)”.of Indigenous The presentations (Security, Cooperation, NewIssues, theRole Governance andLegal IssuesintheArctic Iceland,of Akureyri, on “Environmental by Protection oftheArcticEnvironment” and Multilateral Environmental Agreements in Lapland, Finland, on Effectiveness of “The Law,Minority ArcticCenter, of University for Institute Environmental and Northern Lawson Brigham Duma Environmental Committee, and oftheRussianState Chairman Deputy (moderators: for theArcticDevelopment” took place thematic section “Environmental Safety On thesecondday oftheForum, thethird UArctic, signed acooperationagreement. Nikolay Kasimov At theendoffirstday oftheForum, 1992). Baltic SeaArea (Helsinki, Protection Environment oftheMarine ofthe by analogywiththeConvention for the into aconvention onpollutionintheArctic, suggested thattheArcticstates shouldenter State DumaEnvironmental Committee, Professor, former oftheRussian Chairman of Russia,and ofNaturalResources under theMinistry ofthePublic Chairman of theRGS, Council State University,Moscow First Vice President Faculty ofGeography, M.V. Lomonosov Natalia Lukasheva Mikhail Slipenchouk Mikhail , President ofUArctic, Norway. stated thatthere already exist Mikhail Slepenchuk Mikhail , Research Professor ofthe , Academician, ofthe Dean Lars Kullerud , Professor ofGeography , Professor, University , Professor, Deputy Tamara Zlotnikova ,President of , Professor, Lars , Ensuring EcologicalEnsuring Safety oftheArctic”. “Development of Resource Potential and Russian Federation, withapresentation and Environmental Protection ofthe Donskoy Pollution”. was speaker The fourth EnvironmentalRussian Arctic State and onthe spoke “Federal ofthe Monitoring Environmental (Roshydromet), Monitoring Federal for Hydrometeorology Service and in theArctic”. Situations ofEmergency Management made apresentation on “Prevention and of Consequences ofNaturalDisasters, Civil Defense, Emergencies, andElimination oftheRussian Federation forRussia /Ministry of Control ofEmergency Ministry Minister in theArctic. ofFinlandthe Hydrometeorological Service also presented of afilmabouttheactivities andArctic Areas”. inNorthern Security He Optimal UseofEnergy andEnvironmental Meteorological about Institute, talked “The Taalas hydrocarbons ontheArcticshelf. technical meansusedbyStatoil to produce aboutthelatest technologiesHe spoke and Challenges oftheArcticShelfDevelopment”. Russia, Norway, ontheissueof “Modern was Anchorage, USA). the North, The firstspeaker Fairbanks, SeniorFellow of oftheInstitute and ArcticPolicy ofAlaska, oftheUniversity Jan HelgeSkogen , Director GeneraloftheFinnish , Minister ofNaturalResources, Minister Alexander Chuprian Alexander Frolov , President ofStatoil , Headof , Deputy , Deputy Pettery Sergey Session of the III International Arctic Forum,Session ofthe III International To summarize theresults ofthePlenary been histor He alsopointed out thatalltheseissueshave the mostsensitive topics intheregion today. protection andclimate changeconstitute that theenvironment andbiodiversity geography hasbeenexpanding. Hestressed of theForum hasbeenincreasing andits noted thatthenumberofparticipants force the driving RGS, oftheForum, and onbehalfofthe welcomed theparticipants hisopeningremarks, he In of theRGS. Defense oftheRussianFederation, President Trustees oftheRGS Federation oftheBoard and Chairman of President theafternoon, In ofRussian moderated by sessionofthe secondday was The Plenary oftheArcticCouncil.activities oftheArcticregionof thecountries andthe problems cooperation intheinternational aboutthestate andtheexistingspoke Agency, EconomicDevelopment Northern President Officials, Arctic oftheCanadian Borbey Dialogue”) alsoaddressed theForum. in allthree Forums “Arctic –the Territory of Уlafur RagnarGrimsson Finland Arctic Forum. President oftheRepublic SessionoftheIIIInternational the Plenary , ChairoftheArctic Council’s Senior Sauli Niinistц Sauli ically inthefocus oftheRGS. Sergei Shoigu andPresident ofIceland Vladimir Putin Vladimir (who participated (whoparticipated , Minister of , Minister opened Patrick

111 News and Reviews 112 News and Reviews profitable eco-friendly productsfromprofitable the eco-friendly on theprospectsfor obtaininghighly of theSBRAS, Tyumen, Russia, focused Cryosphere oftheEarth of theInstitute MelnikovVladimir ofnaturearea intheArctic. ofpreservation inthe onthepriorities Canada), spoke Program ofthe World Wildlife Fund (WWF, Shestakov withintheAMAP.areas ofactivity groups, aboutpromisingworking andtalked environment bytheAMAP oftheArctic the latest publicationsonthestate ofthe Assessment Programme (AMAP), presented and Monitoring ofArctic the activities Trends, Assessments” Risk elaborated on Pollution intheArctic:Current Level, Secretariat, Norway, on “Environmental Reiersen Effects Forecast”. by The report intheArctic andEnvironmentalScenarios on well-illustrated report “Climate Change Hedeliveredof theRGS. aninformative and Kotlyakov first presentation wasmadeby on “Climate, Pollution, andBiodiversity”. The Nikolai Kasimov First Vice President Academician oftheRGS, Putin Sergei of theBoard of Trustees oftheRGS .

Shoigu , Executive Secretary, AMAP , Academician, Honorary President, Academician, Honorary , Director oftheGlobalArctic gave thefloorto theChairman opened the fourth session opened thefourth , Academician, Director Alexander Lars-Otto Lars-Otto Vladimir Vladimir Vladimir Vladimir the RGS grantthe RGS policy. University, together withother scientistsunder of Geography, Lomonosov State Moscow Risks” prepared bythescientistsofFaculty NaturalConditions andDevelopment Century: recently atlas printed ArcticoftheXXI “The V. Norway, signed anagreement. Academician Husebekk Anne Lomonosov State University, Moscow and Academician oftheForum,Under theframework continental shelfintheArcticregion. development ofhydrocarbon depositsonthe Problems,Gas SBRAS,focused onthestatusof ofOiland Director oftheInstitute RAS, Deputy Vasily Bogoyavlensky Environment Facility (GEF) “Arctic Agenda 2022”. on sixprojectsintheArcticunderGlobal Federation, spo ke Economic Dev Morgunov Boris speciesofbirds. ofmigratory conservation Council, aboutaprojectonthe talked of ArcticFlora andFauna oftheArctic the GroupWorking ontheConservation glass. diatom raw –ananalogofcellular material

Sadovnychy Yevgeny Syroechkovsky Viktor Sadovnichy presented A. , Rector of University of ofUniversity , Rector Tromsø, , Assistant to the Minister of , Assistant of to theMinister elopment oftheRussian about the status of work about thestatusofwork , Corresponding Member , Corresponding Member Nikolay G.Rybalsky Vladimir S.Tikunov Husebekk , Chairman of, Chairman , Rector ofthe , Rector a just ajust we encourage the authors to submit their photos and short CVs.we encouragethe authorsto submittheirphotos andshort 4. isto include information style about theauthor(s)ofanarticle. The GESJournal Therefore author willbepublished, unlessrequested otherwise. should beidentifiedasa addresses fax numbersande-mail to theappropriatelinked institutionsbytheuseof1,2,3etc superscript. theredone. ismore If thanoneinstitutioninvolved authors’ inthework, namesshouldbe and fullpostaladdress (includingpostalcode)ofthe each author, otherforenames beinggiven asinitialsfollowed andthename bythesurname) areto indicate asked their 3. Allauthorsofanarticle may beused. Papers inFrench are accepted Board. underthedecisionofEditorial 2. Papers are Englishspellingandpunctuation orAmerican accepted inEnglish.EitherBritish arematerials accepted Board. underthedecisionofEditorial published to Earlier thescopeofJournal, reviews articles. (onlysolicited) andbrief 1. Authors are scientificpapers according encouragedto submithigh-quality, original work: sustainable development. environment andhealth;educationfor andbiodiversity; problems; nature conservation informatics andenvironmental mapping;oilandgasexplorationenvironmental sustainable regional development; appliedgeographical andenvironmental studies;geo- global andregional environmental andclimate change;environmental regional planning; management; environment andnaturalresources; human(economic andsocial)geography; environmental science;fundamentals ofsustainabledevelopment; environmental there ofthejournal areAmong themainthematicsections basicsofgeography and environmental science. welcome, aswellare asthosedealingwithfieldstudiesinthe sphere particularly of geography etc. Publications thatare interdisciplinary, theoretical andmethodological education for sustainabledevelopment, GIStechnology, cartography, socialandpolitical geographers, ecologists, naturalresource specialistsinenvironmental use, conservation, changing world. Publications are ofthejournal aimedatforeign andRussianscientists– sphere ofgeography, andsustainabledevelopment inthe environmental conservation aims atinforming andcoveringtheresults ofresearch andglobalachievements inthe The scientificEnglishlanguagejournal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” GENERAL GUIDELINES AIMS AND SCOPE OF THE JOURNAL ENVIRONMENT, SUSTAINABILITY” CONTRIBUTING TO “GEOGRAPHY, FOR AUTHORSINSTRUCTIONS Corresponding Author oftheauthorscouldbepublished aswell. Oneauthor . address ofthecorresponding The e-mail establishment(s) names (withoneforename in fullfor where was thework Telephone and

113 GES 01|2014 114 GES 01|2014 2. The appropriate); references; andphoto) CV authors(brief appendices(as words; acknowledgments; key maintext; title;abstract; and contacts; shouldbecompiledinthefollowing 1. Manuscript layout oftables, citationofreferences etc. geogr.msu.ru/GESJournal/index.php themselves to familiarwiththegeneralformat, make Before preparing papers, athttp://www. authorsshouldconsultacurrent issueofthe journal disclosed to authors. The reviewers’ commentsare sentto authorsfor consideration. identifiedbytheassociate editors. reviewers Namesoftheselected and otherexperts are not reviewers from selected namessuggested byauthors, alistofreviewers maintainedbyGES, Board willviewthesenamesassuggestionsonly. Allpapersare reviewed byatleasttwo 7. We reviewers encourageauthorsto listthree intheirfield. potential expert The Editorial .pdf file. “full” electronicversionwithembeddedfigures oftheirmanuscript of “screen” asa quality 6. To facilitate assessmentandreviewing theeditorial process authorsshouldsubmit 8 000–10000words longcan beaccepted. (or request) Board oftheEditorial orreviews methodologicalupto andproblem articles 5. The optimumsize isabout3000–5000words. ofamanuscript Underthedecision 3. The three donotappearinthetitle, shouldbeprovided. objectives, theresults obtained, andtheimplications. Upto six summarize,briefly inoneparagraph (upto thegeneralproblem 1,500characters), and methods 6. Whenever possible, total numberof separate fileinoriginal format (MS Word, Excel, etc.). indicated inthecolumnheadings.should beclearly Eachtableshouldbesubmitted asa Parameterslines ofexplanation(ifnecessary). being measured, withunitsifappropriate, 5. Tables shouldbenumbered titlefollowed consecutively andincludeabrief byupto several B, C,etc. Figure captionsshouldbesubmitted asaseparate file. illustrations) intheorder oftheircitationinthetext. should benotlessthan300dpi.Please numberallfigures (graphs, photographs, charts, and original formats (CorelDraw, Adobe Photoshop, Adobe Resolutionofraster images Illustrator). 4. All clarity. The next-level subdivisionsare possiblefor ortheircombination. (c)and(d)sections references citations should be shortened to thefirstnamefollowedcitations should beshortened byetal. should bedifferentiated byletters a, b, cetc. For references with more authors, thantwo text Author2, 2008]. Two ormore references bythesame author(s)publishedinthesameyear and theyear ofpublicationthereference shouldbegiven insquare brackets,i.e. [Author1, have atleast onecorresponding reference oftheauthor thesurname the text In inthetext. MANUSCRIPT PREPARATION figures main body title ; (c) . It is often anadvantageto isoften combine(c)and(d)withgainsofconciseness . It should beconcisebutinformative to thegeneral reader. The (including photos oftheauthors)are required to besubmitted asseparate filesin results ofthepapershouldbedividedinto: (a) ; (d) discussion ; (e) references conclusion should not exceed 25–30. Each entry must should notexceed 25–30.Each entry Composite figures order ; (f) ; (f) acknowledgements : authorsnames;affiliations introduction keywords shouldbelabeledA, ; (b) , ofwhichatleast abstract ; (g) materials and numbered should should be sent as e-mail attachmentsto [email protected] should besentase-mail Authors are electronically. encouragedto submittheirmanuscripts Electronicsubmissions style”manuscript athttp://www.geogr.msu.ru/GESJournal/author.php for Authors10. As are Instructions to subjected changes, pleaseseethelatest “Example of must usethesymbol®or TM. authors 9. ortrademark, term toWhen usingaword beaproprietary whichisorasserted 8. Authors mustadhere to SIunits. Unitsare notitalicised. pages; nameofthepublisherandplacepublication. “In:” followed volume bybooktitle;initialsandname(s)ofeditor(s) numberand inbrackets; worksReferences tomulti-author booktitle;nameofthepublisherandplacepublication. brackets); References tobooks title;volume title;journal numberandpagenumbers. article brackets); Journal references (in Russian)etc. Original languagesotherthanEnglishshouldbeindicated intheendofreference, e.g. with Arabicnumbers. References to thesameauthor(s)shouldbeinchronological order. 7. MANUSCRIPT SUBMISSION References mustbelisted inalphabeticalorder attheendofpaperand numbered should include: author(s) surname(s) andinitials;year shouldinclude:author(s)surname(s) ofpublication(in should include: author(s) surname(s) andinitials;year shouldinclude:author(s)surname(s) ofpublication(in should include after theyearshould includeafter ofpublication:chapter title;

115 GES 01|2014 116 GES 01|2014 “GEOGRAPHY, ENVIRONMENT, Circulation 600ex. Digital print 9.43 p. sh. Format 70 Order Ngi114 07.02.2014 Sent into print www.eastview.com E-mail: [email protected] Phone +1.952.252.1201Fax +1.952.252.1202 10601 Wayzata Blvd, MN55305-1526USA Minneapolis, East View Services Information E-mail: [email protected] Fax 7-495-7703660 Phone 7-495-7703659 prospekt,Leninskiy 19,1 Moscow, 119071Russia, andPublishingAdvertising Agency “Advanced Solutions” E-mail: [email protected] Fax 7-495-9328836 Phone 7-495-9392923 Faculty ofGeography, 2108a Gory,Leninskie 119991Russia Moscow Lomonosov State University Moscow EDITORIAL OFFICE registration: ПИМФС77-29285,2007,August 30. in sphere ofmasscommunicationsand protection ofaculturalheritage. of The certificate ofthelegislation The magazineisregistered ofobservance inFederal onsupervision service magazine isThe published withfinancial oftheRussian support Geographical Society. ofGeography andInstitute University oftheRussianAcademy ofSciences FOUNDERS OF THE MAGAZINE: No. 01(v. 07)2014 ISSN 2071-9388 DISTRIBUTION DESIGN & SUSTAINABILITY” SOCIALLY SCIENTIFIC MAGAZINE ½ PRINTING 100cm/16 Faculty ofGeography, Lomonosov State Moscow