Geology of the Grove Mountains in East Antarctica Üünew Evidence for the Final Suture of Gondwana Land

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Grove Mountains in East Antarctica Üünew Evidence for the Final Suture of Gondwana Land Vo l. 4 6 No . 4 SCIENCE IN CHINA (Series D) April 2003 Geology of the Grove Mountains in East Antarctica üüNew evidence for the final suture of Gondwana Land LIU Xiaohan ()1,ZHAOYue(Ф)2, LIU Xiaochun ()2 & YU Liangjun (Ђυ )1 1. Laboratory of Lithosphere Tectonic Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China Correspondence should be addressed to Liu Xiaohan (email: [email protected]) Received July 17, 2002 Abstract Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granu- lite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geo- chemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single 5 granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800k,9.3D10 5 Pa; M2 800810k,6.4D10 Pa ; and M3 650k have been recognized. The U-Pb age data from representative granitic gneiss indicate (529B14) Ma of peak metamorphism, (534B5) Ma of gran- ite emplacement, and (501B7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage. Keywords: East Antarctic Shield, Grove Mountains, Pan-African orogen, Gondwana Land, final suture. As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, being welded by Grenville aged mobile belts during 1400900 Ma, while the Pan-African tectonism ü was demonstrated only as local magmatism with low-grade metamorphism[1 9]. However, some early Paleozoic thermo-tectonic event records have been reported from the Larsemann Hills (LHs) ü in 1992[10 12], and the hypotheses that Pan-African tectonism should be the key event for the achievement of Gondwana aggregation, has been proposed by Chinese geologists[13,14]. The re- cords of Pan-African age were subsequently recognized in Prydz Bay (PB), Lützow-Holm Bay, ü Dronning Maud Land, and Denman Glacier regions (Obruchev Hills)[15 17].Incomparisonwith 306 SCIENCE IN CHINA (Series D) Vol. 46 the Ross orogenic belt in the Trans-Antarctic Mountains, and equivalent aged orogenic belts in east Ghats (India), Sri Lanka, Madagascar and Darling mobile belt (west Australia), the concept that Pan-African tectonism played the key role for the achievement of Gondwana Land is widely ü accepted[2,4,7,9,18 22]. The outline of other super continentRodinia paleocontinent, which had existed before the Gondwana Land, was gradually described in the same period. Regarding the East Antarctic Shield, some geologists thought that it has remained as a coherent block during ü Rodinia breakup and the later assembly of the East Gondwana[18 22]. This hypothesis is mainly based on the so-called Grenville aged Circum-East Antarctic mobile belt (fig. 1(a)), while the margin between the West and East Gondwana blocks is the Mozambique suture, extending be- tween eastern Africa and the Great India southwards to the East Antarctica, connecting Dronning Maud Land via Lützow-Holm Bay (fig. 1(b)). In this view, there should not be any mobile belt younger than Grenville age inside the East Antarctic Shield. The discovery of Pan-African aged belt in PB-LHs makes a new blue print, which shows an offshoot belt branching from Mozam- bique belt at Lützow-Holm Bay, extending eastwards, via PB-LHs, to the Leewin Complex in ü western Australia[15 17] (fig. 1(c)). Some new challenges to the tectonic significance of Mozambique suture were recently pro- posed. In contrast to that East Antarctica Shield remained as a coherent block, Fitzsimons points out that it was amalgamated during Pan-African orogen with 3 different Grenville aged continen- tal blocks[23]. Based on the preliminary results from the first investigation in the Grove Mountains (GMs) during 19981999, Zhao and Liu have proposed that the geochronological data of GMs indicate that the PB belt may have extended inland to GMs rather than along the coast, spanning over the northern Prince Charles Mountains (nPCM) linked with Lützow-Holm Bay. Also the East Antarctic Shield could have been assembled by several continental blocks in collage, long after Rodinia super continent broke up1—3). Zhao et al. reported the U-Pb SHRIMP ages of Pan-African from GMs at the 31st International Geological Congress in August, 2000, then Boger et al[24] re- ported a new Pan-African record in southern Prince Charles Mountains (sPCM), and proposed that the PB-LHs belt extended southward inland, being linked with sPCM, bisecting the coherent East Antarctic Shield (fig. 1(d)). Further key information needed to reconstruct this global scale tec- tonic framework should be the geometric expansion of Pan-African orogenic belt, and its succes- sive relationship with Grenville aged belt. Being located on the right coast of the Lambert Rift, within 72°20h73°10hS and 73°50h 75°40hE, 450 km to the south of the Chinese Zhongshan Station (LHs), GMs expose a group 1) Zhao Yue, Liu Xiaochun, Fanning, C. M. et al., The Grove Mountains, a segment of a Pan-African orogenic belt in East Antarctica, in Abstract Volume of 31st I.G.C., 9-7 session (CD), Rio de Janerro, Brazil, 2000. 2) Liu Xiaohan, Zhao Yue, Liu Xiaochun et al., Grove Mountains: A segment in the collage during East Antarctic Shield forming? Journal of Conference Abstracts, Strasbourg, France: E.U.G. XI, 2001, 374. 3) Liu Xiaochun, Zhao Yue, Liu Xiaohan, The Pan-African granulite facies metamorphism and syn-tectonic magmatism in the Grove Mountains, East Antarctica, Journal of Conference Abstracts, Strasbourg, France: E.U.G. XI, 2001, 379. No. 4 GROVE MOUNTAINSüüFINAL SUTURE OF GONDWANA 307 Fig. 1. (a) Reconstruction of Rodinia (after Hoffman, 1991)[18]. AMAZ, Amazonia; AUSTRA, Australia; BALT, Bal- tica; CEAMB, Circum-East Antarctic mobile belt; CON, Congo; EANT, East Antarctica; IND, India; KAL, Kalahari (Kaapvaal Zimbabwe craton); NAME, North America; SIBE, Siberia; WAFR, west Africa. ((b)ü(d)) locality of the Mozambique suture and PB Pan-African belt proposed by different scientists (after Boger, 2001)[24].AFR,Africa;AUST, Australia; EANT, East Antarctica; GIND, Great India; GMs, Grove Mountains; LE, Leewin Complex (west Australia); LHB, Lützow-Holm Bay; PB, Prydz Bay; SAME, South America; sPCMs, southern Prince Charles Mountains. of isolated nunataks in the inland of Antarctic ice sheet. Many geological contributions in adjacent regions have been made by Australia, Russia and Chinese scientists in recent 20 years, i.e. the Ar- chean nuclei discrete in Vestfold Hills[2], Rauer Islands[26] and sPCM[1,2,24]; the early Neoprotoro- zoic aged belts distribute in nPCM[1,25], Rauer Islands[3,27] and LHs[6]; the Pan-African belt crops ü out in PB, LHs[10 14],andsPCM[24]. Only the GMs rests as geologically unknown region between them, which has therefore received much attention. The first geological field investigation on 53 nunataks in GMs was made by 15th and 16th Chinese Antarctic Research Expeditions (CHINARE) during 19982000. This paper presents the preliminary results (fig. 2). 1 Regional geologic setting Totally 64 nunataks outcrop on the blue-ice and snowfield over an area of ~3200 km2,which are divided in 5 groups, forming a longitudinal valley-ridge landform in NEN trending, as a spiccato of island-chain shape. The general relative height of main nunataks is between 600 m and 800 m above blue ice-snow surface. Due to the north-westward flowing of glaciers, the snow lines on the south-east slope of nunataks are asymmetrically higher. The other sides are generally sharp bluffs, resulting from ice-sheet flowing scrape and normal faulting. The GMs is composed mainly of upper amphibolite to granulite facies metamorphic rocks, 308 SCIENCE IN CHINA (Series D) Vol. 46 Fig. 2. Locality map of Grove Mountains, showing the study area and distribution of nunataks. A, Area where the main granitic gneiss, granite and mafic granulite outcrop; B, area where the main felsic granulite, charnokite, granite and mafic granulite outcrop. 1, Neoproterozoic-Early Paleozoic mobile belt; 2, Archean nuclei. syn-orogenic to late orogenic granite, post tectonic granodioritic aplite and pegmatite. The high grade complex includes light colored felsic granulite, dark colored mafic and ultramafic granulite, charnockite and gneissic granite. Whole area can be divided into two parts along NEN-SWS di- rection. The felsic granulite and charnockite expose dominantly in the east part, and the granitic gneiss in west part (A and B in fig. 2, and table 1). Table 1 Metamorphic rock types in Grove Mountains Protolith Rock types Occurrence felsic granulite, thick to medium layer, regional low angle gneissosity mafic granulite, (Pl-Hbl granulite, Hbl-2 Py Thin interlayers and lens of a few centimeters to 5 m occur granulite, Bio-Hbl- 2 Py granulite) ultramafic in both of felsic granulite and granitic gneiss.
Recommended publications
  • Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R
    Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R. J. PANKHURST (CHIEF EDITOR) P. DOYLE E J. GREGORY J. S. GRIFFITHS A. J. HARTLEY R. E. HOLDSWORTH A. C. MORTON N. S. ROBINS M. S. STOKER J. P. TURNER Special Publication reviewing procedures The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted. Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satis- factory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees' forms and comments must be available to the Society's Book Editors on request. Although many of the books result from meetings, the editors are expected to commission papers that were not pre- sented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book. Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.
    [Show full text]
  • Mount Harding, Grove Mountains, East Antarctica
    MEASURE 2 - ANNEX Management Plan for Antarctic Specially Protected Area No 168 MOUNT HARDING, GROVE MOUNTAINS, EAST ANTARCTICA 1. Introduction The Grove Mountains (72o20’-73o10’S, 73o50’-75o40’E) are located approximately 400km inland (south) of the Larsemann Hills in Princess Elizabeth Land, East Antarctica, on the eastern bank of the Lambert Rift(Map A). Mount Harding (72°512 -72°572 S, 74°532 -75°122 E) is the largest mount around Grove Mountains region, and located in the core area of the Grove Mountains that presents a ridge-valley physiognomies consisting of nunataks, trending NNE-SSW and is 200m above the surface of blue ice (Map B). The primary reason for designation of the Area as an Antarctic Specially Protected Area is to protect the unique geomorphological features of the area for scientific research on the evolutionary history of East Antarctic Ice Sheet (EAIS), while widening the category in the Antarctic protected areas system. Research on the evolutionary history of EAIS plays an important role in reconstructing the past climatic evolution in global scale. Up to now, a key constraint on the understanding of the EAIS behaviour remains the lack of direct evidence of ice sheet surface levels for constraining ice sheet models during known glacial maxima and minima in the post-14 Ma period. The remains of the fluctuation of ice sheet surface preserved around Mount Harding, will most probably provide the precious direct evidences for reconstructing the EAIS behaviour. There are glacial erosion and wind-erosion physiognomies which are rare in nature and extremely vulnerable, such as the ice-core pyramid, the ventifact, etc.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic refer to tables, and those in bold to figures. accretionary orogens, defined 23 Namaqua-Natal Orogen 435-8 Africa, East SW Angola and NW Botswana 442 Congo-Sat Francisco Craton 4, 5, 35, 45-6, 49, 64 Umkondo Igneous Province 438-9 palaeomagnetic poles at 1100-700 Ma 37 Pan-African orogenic belts (650-450 Ma) 442-50 East African(-Antarctic) Orogen Damara-Lufilian Arc-Zambezi Belt 3, 435, accretion and deformation, Arabian-Nubian Shield 442-50 (ANS) 327-61 Katangan basaltic rocks 443,446 continuation of East Antarctic Orogen 263 Mwembeshi Shear Zone 442 E/W Gondwana suture 263-5 Neoproterozoic basin evolution and seafloor evolution 357-8 spreading 445-6 extensional collapse in DML 271-87 orogenesis 446-51 deformations 283-5 Ubendian and Kibaran Belts 445 Heimefront Shear Zone, DML 208,251, 252-3, within-plate magmatism and basin initiation 443-5 284, 415,417 Zambezi Belt 27,415 structural section, Neoproterozoic deformation, Zambezi Orogen 3, 5 Madagascar 365-72 Zambezi-Damara Belt 65, 67, 442-50 see also Arabian-Nubian Shield (ANS); Zimbabwe Belt, ophiolites 27 Mozambique Belt Zimbabwe Craton 427,433 Mozambique Belt evolution 60-1,291, 401-25 Zimbabwe-Kapvaal-Grunehogna Craton 42, 208, 250, carbonates 405.6 272-3 Dronning Mand Land 62-3 see also Pan-African eclogites and ophiolites 406-7 Africa, West 40-1 isotopic data Amazonia-Rio de la Plata megacraton 2-3, 40-1 crystallization and metamorphic ages 407-11 Birimian Orogen 24 Sm-Nd (T DM) 411-14 A1-Jifn Basin see Najd Fault System lithologies 402-7 Albany-Fraser-Wilkes
    [Show full text]
  • Paleomagnetic and Geochronological Studies of the Mafic Dyke Swarms Of
    Precambrian Research 198–199 (2012) 51–76 Contents lists available at SciVerse ScienceDirect Precambrian Research journa l homepage: www.elsevier.com/locate/precamres Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleogeographic reconstructions a,∗ a b a c Vimal R. Pradhan , Joseph G. Meert , Manoj K. Pandit , George Kamenov , Md. Erfan Ali Mondal a Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL 32611, USA b Department of Geology, University of Rajasthan, Jaipur 302004, Rajasthan, India c Department of Geology, Aligarh Muslim University, Aligarh 202002, India a r t i c l e i n f o a b s t r a c t Article history: The paleogeographic position of India within the Paleoproterozoic Columbia and Mesoproterozoic Received 12 July 2011 Rodinia supercontinents is shrouded in uncertainty due to the paucity of high quality paleomagnetic Received in revised form 6 November 2011 data with strong age control. New paleomagnetic and geochronological data from the Precambrian mafic Accepted 18 November 2011 dykes intruding granitoids and supracrustals of the Archean Bundelkhand craton (BC) in northern Penin- Available online 28 November 2011 sular India is significant in constraining the position of India at 2.0 and 1.1 Ga. The dykes are ubiquitous within the craton and have variable orientations (NW–SE, NE–SW, ENE–WSW and E–W). Three dis- Keywords: tinct episodes of dyke intrusion are inferred from the paleomagnetic analysis of these dykes. The older Bundelkhand craton, Mafic dykes, Central ◦ NW–SE trending dykes yield a mean paleomagnetic direction with a declination = 155.3 and an incli- India, Paleomagnetism, Geochronology, ◦ ◦ − Ä ˛ Paleogeography nation = 7.8 ( = 21; 95 = 9.6 ).
    [Show full text]
  • U-Th-Pb Monazite and Sm-Nd Dating of High-Grade Rocks from the Grove Mountains, East Antarctica: Further Evidence for a Pan-African-Aged Monometamorphic Terrane
    • Article• Advances in Polar Science doi: 10.13679/j.advps.2018.2.00108 June 2018 Vol. 29 No. 2: 108-117 U-Th-Pb monazite and Sm-Nd dating of high-grade rocks from the Grove Mountains, East Antarctica: further evidence for a Pan-African-aged monometamorphic terrane 1* 2 3 LIU Xiaochun , LING Xiaoxiao & JAHN Bor-ming 1 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 3 Department of Geological Sciences, National Taiwan University, Taipei 10699, China Received 4 April 2018; accepted 14 June 2018 Abstract The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we carried out a combined U-Th-Pb monazite and Sm-Nd mineral-whole-rock dating on para- and orthogneisses from bedrock in the Grove Mountains. U-Th-Pb monazite dating of a cordierite-bearing pelitic paragneiss yields ages of 523 4 Ma for the cores and 508 6 Ma for the rims. Sm-Nd mineral-whole-rock isotopic analyses yield isochron ages of 536 3 Ma for a coarse-grained felsic orthogneiss and 507 30 Ma for a fine-grained quartzofeldspathic paragneiss. Combined with previously published age data in the Grove Mountains and adjacent areas, the older age of ~530 Ma is interpreted as the time of regional medium- to low-pressure granulite-facies metamorphism, and the younger age of ~510 Ma as the cooling age of the granulite terrane.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • Terminal Suturing of Gondwana Along the Southern Margin of South China Craton: Evidence from Detrital Zircon U-Pb Ages and Hf Is
    PUBLICATIONS Tectonics RESEARCH ARTICLE Terminal suturing of Gondwana along the southern 10.1002/2014TC003748 margin of South China Craton: Evidence from detrital Key Points: zircon U-Pb ages and Hf isotopes in Cambrian • Sanya of Hainan Island, China was linked with Western Australia in and Ordovician strata, Hainan Island the Cambrian • Sanya had not juxtaposed with South Yajun Xu1,2,3, Peter A. Cawood3,4, Yuansheng Du1,2, Zengqiu Zhong2, and Nigel C. Hughes5 China until the Ordovician • Gondwana terminally suture along the 1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of southern margin of South China Geosciences, Wuhan, China, 2State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, China, 3Department of Earth Sciences, University of St. Andrews, St. Andrews, UK, Supporting Information: 4Centre for Exploration Targeting, School of Earth and Environment, University of Western Australia, Crawley, Western • Readme Australia, Australia, 5Department of Earth Sciences, University of California, Riverside, California, USA • Figure S1 • Figure S2 • Table S1 • Table S2 Abstract Hainan Island, located near the southern end of mainland South China, consists of the Qiongzhong Block to the north and the Sanya Block to the south. In the Cambrian, these blocks were Correspondence to: separated by an intervening ocean. U-Pb ages and Hf isotope compositions of detrital zircons from the Y. Du, Cambrian succession in the Sanya Block suggest that the unit contains detritus derived from late [email protected] Paleoproterozoic and Mesoproterozoic units along the western margin of the West Australia Craton (e.g., Northampton Complex) or the Albany-Fraser-Wilkes orogen, which separates the West Australia and Citation: Mawson cratons.
    [Show full text]
  • Geochemistry and Geochronology of High-Grade Rocks from the Grove
    Precambrian Research 158 (2007) 93–118 Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: Evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle Xiaochun Liu a,∗, Bor-Ming Jahn b,c, Yue Zhao a, Guochun Zhao d, Xiaohan Liu e a Institute of Geomechanics, Chinese Academy of Geological Sciences, 11 Minzudaxue Nanlu, Beijing 100081, China b Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan c Department of Geological Sciences, National Taiwan University, Taipei 106, Taiwan d Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong e Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Received 30 May 2006; received in revised form 8 April 2007; accepted 24 April 2007 Abstract The Grove Mountains of East Antarctica are an inland continuation of the Prydz Belt. The high-grade metamorphic complex in this area is composed of felsic orthogneisses and mafic granulites, with minor paragneisses and calc-silicate rocks. U–Pb zircon analyses using SHRIMP and LA-ICP-MS techniques reveal that the protoliths of mafic granulites and felsic orthogneisses were emplaced during a short time interval of ca. 920–910 Ma. Mafic granulites can be divided into low- and high-Ti groups. They have t initial εNd values [εNd(T)] ranging from +0.8 to −1.9. TiO2 is positively correlated with FeO /MgO and La/Nb ratios, whereas it shows a negative correlation with εNd(T) values, indicating that the petrogenesis of their protoliths involved partial melting of a weakly enriched subcontinental lithospheric mantle and fractional crystallization of the magma accompanied by minor crustal contamination.
    [Show full text]
  • 4: Potential Mineral Resources in Antarctica
    Chapter 4 Potential Mineral Resources in Antarctica Photo credit: U.S. Geological Survey Byrd Glacier CONTENTS Page SUMMARY . 93 INTRODUCTION . 93 GEOLOGICAL ASSOCIATIONS . 96 Relationship to Adjacent Continents . 99 Offshore Shelf Areas . 102 ANTARCTICA IN THE CONTEXT OF FUTURE MINERALS SUPPLY . 103 Prospecting and Exploration in Antarctica . 105 Probabilities of Discovering Antarctic Mineral Deposits . 110 SELECTED MINERAL RESOURCES ● . 111 Oil and Gas . .. 111 coal . .114 Uranium . 114 Chromium . .115 Copper . 116 Gold . 117 Iron . .118 Molybdenum . .119 Platinum-Group Metals . .119 Rare-Earth Metals . .120 Diamonds . .. 122 Boxes Box Page 4-A. Mineral Resources and Reserves . 95 4-B. Geologic Time Scale . 98 4-C. Icebergs . 121 Figures Figure Page 4-1. Antarctic Mineral Occurrences . 97 4-2. Geologic Provinces of Antarctica and Their Relationship to Adjacent Gondwana Continents . 100 4-3. Reconstruction of Gondwana in Early Cretaceus Time . 103 4-4. Exposed Rock Outcrop in Antarctica . .. 106 4-5. What Antarctica Would Look Like If the Ice Were Removed . 107 4-6. Multichannel Seismic Data . .. 108 4-7. Sedimentary Basins in Antarctica . ,.. , 112 Tables Table Page 4-1. Desirable Research for Evaluating Resource Potential of Antarctica . 110 4-2. Research Required To Ensure That Petroleum Resources Are Safely and Efficiently Recovered With Minimum Environmental Impact . 110 4-3. Estimated Number of Major Mineral Deposits in Antarctica . 112 Chapter 4 Potential Mineral Resources in Antarctica SUMMARY The offshore sedimentary basins surrounding Antarctica offer the best prospects for petroleum Scientists have discovered occurrences (small exploration. The Weddell and Ross embayments in amounts) of several minerals in Antarctica, but West Antarctica, and Prydz Bay and the Wilkes there are no known mineral deposits of commer- Basin in East Antarctica are among the basins most cial interest.
    [Show full text]
  • Petrofacies and Paleotectonic Evolution of Permo-Carboniferous Gondwanan Sequences of the Bengal Basin, Bangladesh
    Petrofacies and Paleotectonic Evolution of Permo-Carboniferous Gondwanan Sequences of the Bengal Basin, Bangladesh by Md. Iftekhar Alam A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2011 Keywords: Gondwanaland, Petrofacies, Paleotectonic, Permo-Carboniferous, Bangladesh Copyright 2011 by Md. Iftekhar Alam Approved by Ashraf Uddin, Chair, Professor of Geology Charles E. Savrda, Professor of Geology David T. King, Jr., Professor of Geology Willis E. Hames, Professor of Geology Abstract The Indian subcontinent, along with Australia and Antarctica, constituted Eastern Gondwananland. Permo-Carboniferous Gondwanan sequences have been reported from several isolated basins of the Peninsular India. These siliciclastic sequences were drilled in intra-cratonic basins in northwest Bengal Basin. This ~1-km-thick sequence consists primarily of massive and trough cross-bedded sandstones and laminated mudstones, with localized conglomerate and coal layers. Sandstone petrography, heavy mineral assemblage studies, heavy mineral geochemistry, and detrital geochronology were used in this study to decipher provenance history of Gondwanan sediments at two localities (Khalashpir and Barapukuria) from the Bengal Basin of Bangladesh. Petrographic studies suggest that these sequences are mostly immature and poorly sorted arkosic sandstones (Khalashpir-Qt58F30L12, Barapukuria-Qt52F31L17), with some compositions ranging from quartzarenite to litharenite. Although monocrystalline quartz is dominant, considerable polycrystalline quartz fragments have also been found. K-feldspars dominate over plagioclase feldspars. Among lithic fragments, sedimentary types are abundant. Significant amounts of chert are observed. Heavy minerals are volumetrically rare and of low diversity in sediments of northwest Bangladesh. However, samples from Khalashpir have higher heavy mineral concentrations than ii those from Barapukuria.
    [Show full text]
  • Age and Isotopic Evidence from Glacial Igneous Clasts, and Links With
    $FFHSWHG0DQXVFULSW 3URWHUR]RLFFUXVWDOHYROXWLRQRIFHQWUDO(DVW$QWDUFWLFD$JHDQGLVRWRSLFHYL GHQFHIURPJODFLDOLJQHRXVFODVWVDQGOLQNVZLWK$XVWUDOLDDQG/DXUHQWLD -RKQ:*RRGJH&0DUN)DQQLQJ&KULVWRSKHU0)LVKHU-HIIUH\'9HUYRRUW 3,, 6 ; '2, KWWSG[GRLRUJMSUHFDPUHV 5HIHUHQFH 35(&$0 7RDSSHDULQ Precambrian Research 5HFHLYHG'DWH )HEUXDU\ 5HYLVHG'DWH -XO\ $FFHSWHG'DWH -XO\ 3OHDVHFLWHWKLVDUWLFOHDV-:*RRGJH&0DUN)DQQLQJ&0)LVKHU-'9HUYRRUW3URWHUR]RLFFUXVWDOHYROXWLRQ RIFHQWUDO(DVW$QWDUFWLFD$JHDQGLVRWRSLFHYLGHQFHIURPJODFLDOLJQHRXVFODVWVDQGOLQNVZLWK$XVWUDOLDDQG /DXUHQWLDPrecambrian Research GRLKWWSG[GRLRUJMSUHFDPUHV 7KLVLVD3')ILOHRIDQXQHGLWHGPDQXVFULSWWKDWKDVEHHQDFFHSWHGIRUSXEOLFDWLRQ$VDVHUYLFHWRRXUFXVWRPHUV ZHDUHSURYLGLQJWKLVHDUO\YHUVLRQRIWKHPDQXVFULSW7KHPDQXVFULSWZLOOXQGHUJRFRS\HGLWLQJW\SHVHWWLQJDQG UHYLHZRIWKHUHVXOWLQJSURRIEHIRUHLWLVSXEOLVKHGLQLWVILQDOIRUP3OHDVHQRWHWKDWGXULQJWKHSURGXFWLRQSURFHVV HUURUVPD\EHGLVFRYHUHGZKLFKFRXOGDIIHFWWKHFRQWHQWDQGDOOOHJDOGLVFODLPHUVWKDWDSSO\WRWKHMRXUQDOSHUWDLQ Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia John W. Goodge 1*, C. Mark Fanning2, Christopher M. Fisher3† and Jeffrey D. Vervoort3 1 Department of Earth and Environmental Sciences, University of Minnesota, Duluth, MN 55812 USA (correspondence: [email protected]) 2 Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 Australia ([email protected]) 3 School of the Environment, Washington State University, Pullman, WA 99164, USA ([email protected],
    [Show full text]
  • Geosciences Research in East Antarctica (088888E–6088888E): Present Status and Future Perspectives
    Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 Geosciences research in East Antarctica (088888E–6088888E): present status and future perspectives M. SATISH-KUMAR1, T. HOKADA2, T. KAWAKAMI3 & DANIEL J. DUNKLEY2 1Institute of Geosciences, Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan (e-mail: [email protected]) 2National Institute of Polar Research, Kaga, Itabashi-ku, Tokyo 173-8515, Japan 3Department of Geology and Mineralogy, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Abstract: In both palaeoenvironmental and palaeogeographical studies, Antarctica plays a unique role in our understanding of the history of the Earth. It has maintained a unique geographical position at the South Pole for long periods. As the only unpopulated continent, the absence of political barriers or short-term economic interests has allowed international collaborative science to flour- ish. Although 98% of its area is covered by ice, the coastal Antarctic region is one of the well- studied regions in the world. The integrity and success of geological studies lies in the fact that exposed outcrops are well preserved in the low-latitude climate. The continuing programme of the Japanese Antarctic Research Expedition focuses on the geology of East Antarctica, especially in the Dronning Maud Land and Enderby Land regions. Enderby Land preserves some of the oldest Archaean rocks on Earth, and the Mesoproterozoic to Palaeozoic history of Dronning Maud Land is extremely important in understanding the formation and dispersion of Rodinia and subsequent assembly of Gondwana. The geological features in this region have great signifi- cance in defining the temporal and spatial extension of orogenic belts formed by the collision of proto-continents.
    [Show full text]