Chapter 26 Phylogeny and the Tree of Life

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Lecture Outline Overview: Investigating the Tree of Life Evolutionary biology is about both process and pattern. o The processes of evolution are natural selection and other mechanisms that change the genetic composition of populations. o These processes lead to evolutionary patterns, the products that evolution has produced over time. Phylogeny is the evolutionary history of a species or group of species. To reconstruct phylogeny, scientists use systematics, an analytical approach to classifying the diversity and determining the evolutionary relationships of living and extinct organisms. o Evidence used to reconstruct phylogenies can be obtained from the fossil record and from morphological, biochemical, and genetic similarities between organisms. Scientists are working to construct a universal tree of all life, which will be refined as new data are collected. Concept 26.1 Phylogenies show evolutionary relationships. Organisms share homologous characteristics due to common descent. o Organisms share genes, metabolic pathways, and structural pathways with their close relatives. The scientific discipline of taxonomy determines how organisms are named and classified. Taxonomy employs a hierarchical system of classification. The Linnaean system, first formally proposed by Carolus Linnaeus in the 18th century, has two main characteristics. 1. Each species has a two-part name. 2. Species are organized hierarchically into broader and broader groups of organisms. Under the binomial system, each species is assigned a two-part Latinized name, a binomial. The first part of the name, the genus, is the closest group to which a species belongs. o The second part, the specific epithet, refers to one species within each genus. o The first letter of the genus name is capitalized, and both the genus and species names are italicized and Latinized. o For example, Linnaeus assigned to humans the optimistic scientific name Homo sapiens, which means “wise man.” A hierarchical classification groups species into increasingly inclusive taxonomic categories. Lecture Outline for Campbell/Reece Biology, 9th Edition, © Pearson Education, Inc. 26-1 Species that appear to be closely related are grouped into the same genus. o For example, the leopard, Panthera pardus, belongs to a genus that includes the African lion (Panthera leo) and the tiger (Panthera tigris). Genera are grouped into progressively broader categories: family, order, class, phylum, kingdom, and domain. Each taxonomic level is more comprehensive than the previous one. o As an example, all species of cats are mammals, but not all mammals are cats. The named taxonomic unit at any level is called a taxon. o For example, Panthera is a taxon at the genus level, and Mammalia is a taxon at the class level that includes all of the many orders of mammals. Higher classification levels are not defined by some measurable characteristic, such as the reproductive isolation that separates biological species. As a result, the larger categories are not comparable between lineages. o An order of snails does not necessarily exhibit the same degree of morphological or genetic diversity as an order of mammals. Classification and phylogeny are linked. The evolutionary history of a group of organisms can be represented in a diagram called a phylogenetic tree. The branching of the tree may match the hierarchical classification of groups nested within more inclusive groups. o In other cases, similarities between organisms may have led taxonomists to place a species in other than the group to which it is most closely related. ○ Such species may be renamed so that their classification accurately reflects evolutionary history. The difficulty of aligning Linnaean classification with phylogeny has led systematists to propose that classification be based entirely on evolutionary relationships. Phylocode only names groups that include a common ancestor and all its descendents. o If this system were adopted, most taxonomic names would be unchanged. However, ranks such as family, order, and class would be abandoned. o Some commonly recognized groups would become part of other groups previously of the same rank. o Because birds descended from a taxon of reptiles, Aves (a Linnaean class) would be considered a subgroup of the Reptilia (another Linnaean class). A phylogenetic tree represents a hypothesis about evolutionary relationships. Evolutionary relationships are often represented as a series of dichotomies, or two-way branch points. o Each branch point represents the divergence of two evolutionary lineages from a common ancestor. Sister taxa are groups of organisms that share an immediate common ancestor and are each other’s closest relatives. A rooted tree includes the most recent common ancestor to all taxa in the tree. The term basal taxon refers to a lineage that diverges early in the history of a group, lying on a branch that originates near the common ancestor of the group. Lecture Outline for Campbell/Reece Biology, 9th Edition, © Pearson Education, Inc. 26-2 A polytomy, or branch point from which more than two descendent groups emerge, indicates our limited understanding of certain evolutionary relationships. Three key points about phylogenetic trees should be emphasized. 1. Phylogenetic trees are intended to show patterns of descent, not phenotypic similarity. Closely related organisms may resemble one another due to common ancestry, but may not if their lineages have evolved at different rates or faced very different environmental conditions. 2. The sequence of branching in a tree reflects patterns of descent and does not indicate the absolute ages of particular species. 3. A taxon in a phylogenetic tree did not evolve from an adjacent taxon. Rather, both taxa evolved from a common ancestor. A species’ phylogeny can provide useful information. o From a phylogeny of corn based on DNA data, researchers have identified two closely related species of wild grasses that may serve as “reservoirs” of beneficial alleles. These alleles may be transferred to cultivated corn by plant breeding or genetic engineering. o Phylogenetic trees played a role in demonstrating that “whale meat” sold in Japan was illegally harvested from protected species. Concept 26.2 Phylogenies are inferred from morphological and molecular data. Phenotypic and genetic similarities due to shared ancestry are called homologies. Organisms that share similar morphologies or DNA sequences are likely to be more closely related than organisms without such similarities. Morphological divergence between closely related species can be small or great, because morphological diversity may be controlled by relatively few genetic differences. o Consider the Hawaiian silversword plants, which vary from tall, twiggy trees to dense, ground- hugging shrubs. These phenotypic differences are based on small molecular divergences that arose over the last 5 million years, when the oldest of the Hawaiian Islands formed. Similarity due to convergent evolution is called analogy. o When two organisms from different evolutionary lineages experience similar environmental pressures, natural selection may result in convergent evolution. o For example, marsupial and eutherian moles are very similar in external appearance. However, they last shared a common ancestor 140 million years ago, when marsupial and eutherian mammals diverged. o This common ancestor was not mole-like. Analogous similarities evolved independently in these two mole lineages as they adapted to similar lifestyles. Distinguishing homology from analogy is critical in the reconstruction of phylogeny. o For example, both birds and bats have adaptations that allow them to fly. o A close examination of a bat’s wing shows a greater similarity to a cat’s forelimb than to a bird’s wing. o Fossil evidence also documents that bat and bird wings arose independently from walking forelimbs of different ancestors. o Thus, a bat’s wing is homologous to other mammalian forelimbs but is analogous in function to a bird’s wing. Analogous structures that have evolved independently are also called homoplasies. Lecture Outline for Campbell/Reece Biology, 9th Edition, © Pearson Education, Inc. 26-3 In general, the more elements that are similar in two complex structures, the more likely it is that they evolved from a common ancestor. o For example, the skulls of an adult human and an adult chimpanzee are formed by the fusion of many bones. o The two skulls match almost perfectly, bone for bone. o It is highly unlikely that such complex structures have separate origins. o More likely, the genes involved in the development of both skulls were inherited from a common ancestor. The same argument applies to comparing genes, which are sequences of nucleotides. o If the genes in two organisms have very similar nucleotide sequences, it is highly likely that the genes are homologous. It may be difficult to carry out molecular comparisons of nucleic acids. The first step in molecular comparisons is to align nucleic acid sequences from the two species being studied. o In closely related species, sequences may differ at only one or a few sites. o Distantly related species may have many differences or sequences of different length. Over evolutionary time, insertions and deletions may accumulate, altering the lengths of the gene sequences. Deletions or insertions may shift the remaining sequences, making it difficult to recognize closely matching nucleotide sequences.
Recommended publications
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Oldest Known Dinosaurian Nesting Site and Reproductive Biology of the Early Jurassic Sauropodomorph Massospondylus
    Oldest known dinosaurian nesting site and reproductive biology of the Early Jurassic sauropodomorph Massospondylus Robert R. Reisza,1, David C. Evansb, Eric M. Robertsc, Hans-Dieter Suesd, and Adam M. Yatese aDepartment of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; bRoyal Ontario Museum, Toronto, ON M5S 2C6, Canada; cSchool of Earth and Environmental Sciences, James Cook University, Townsville, 4811 QLD, Australia; dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013; and eBernard Price Institute for Palaeontological Research, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa Edited by Steven M. Stanley, University of Hawaii, Honolulu, HI, and approved December 16, 2011 (received for review June 10, 2011) The extensive Early Jurassic continental strata of southern Africa clutches and recognition of the earliest known dinosaurian nesting have yielded an exceptional record of dinosaurs that includes complex at the Rooidraai locality. scores of partial to complete skeletons of the sauropodomorph Massospondylus, ranging from embryos to large adults. In 1976 an Results incomplete egg clutch including in ovo embryos of this dinosaur, Our work at the Rooidraai locality has yielded multiple in situ the oldest known example in the fossil record, was collected from clutches of eggs as well as fragmentary eggshell and bones, all from a road-cut talus, but its exact provenance was uncertain. An exca- a 2-m-thick interval of muddy siltstone 25 m from the top of the vation program at the site started in 2006 has yielded multiple in Lower Jurassic Upper Elliot Formation (“Stormberg Group,” situ egg clutches, documenting the oldest known dinosaurian Karoo Supergroup) (11).
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • (= Amphioxus) Branchiostoma Floridae
    MARINE ECOLOGY PROGRESS SERIES Vol. 130: 71-84,1996 Published January 11 Mar Ecol Prog Ser Larval settlement, post-settlement growth and secondary production of the Florida lancelet (= amphioxus) Branchiostoma floridae M. D. Stokes* Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA ABSTRACT A population of Branch~ostomaflondae in Tampa Bay, Flonda, USA was sieved from the substratum frequently (often daily) from June 1992 through September 1994 Body lengths were mea- sured for 54264 luvenlle and adult lancelets The breedlng season lasted each year from early May through early September and newly metamorphosed lancelets settled as luveniles from late May through mid October, dunng this period of the year dlstinct settlements occurred approxmately every 1 to 3 wk Post-settlement growth was followed as changes in modal length on size-frequency histo- grams Changes in cohort growth over this peliod were compared to several different simple and seasonally oscillating growth models The von Bertalanffy functlon in smple and oscillating forms provided the best estmates of lancelet growth The lancelets grew in summer (almost 0 5 mm d-' in recently settled luveniles), but growth slowed and almost ceased durlng wlnter B flondae can llve at least 2 yr and can reach a maxlmum length of 58 mm The maximal secondary productlon was 61 53 g m-' yrrl (ash-free dry welght) and the productlon to biomass ratio was 11 64 Population den- sities at the study site ranged from about 100 to 1200 lancelets m ' KEY WORDS: Lancelet . Amphioxus . Branchiostorna flondae . Growth . Production . Breeding season .
    [Show full text]
  • 18.4 Bacteria and Archaea Kingdom Eubacteria Domain Bacteria
    18.4 Bacteria and Archaea Kingdom Eubacteria Domain Bacteria 18.4 Bacteria and Archaea Description Bacteria are single-celled prokaryotes. 18.4 Bacteria and Archaea Where do they live? Prokaryotes are widespread on Earth. ( Est. over 1 billion types of bacteria, and over 1030 individual prokaryote cells on earth.) Found in all land and ocean environments, even inside other organisms! 18.4 Bacteria and Archaea Common Examples • E. Coli • Tetanus bacteria • Salmonella bacteria • Tuberculosis bacteria • Staphylococcus • Streptococcus 18.4 Bacteria and Archaea Modes Of Nutrition • Bacteria may be heterotrophs or autotrophs 18.4 Bacteria and Archaea Bacteria Reproduce How? • by binary fission. • exchange genes during conjugation= conjugation bridge increases diversity. • May survive by forming endospores = specialized cell with thick protective cell wall. TEM; magnification 6000x • Can survive for centuries until environment improves. Have been found in mummies! 18.4 Bacteria and Archaea • Bacteria Diagram – plasmid = small piece of genetic material, can replicate independently of the chromosome – flagellum = different than in eukaryotes, but for movement – pili = used to stick the bacteria to eachpili other or surfaces plasma membrance flagellum chromosome cell wall plasmid This diagram shows the typical structure of a prokaryote. Archaea and bacteria look very similar, although they have important molecular differences. 18.4 Bacteria and Archaea • Classified by: their need for oxygen, how they gram stain, and their shapes 18.4 Bacteria and Archaea Main Groups by Shapes – rod-shaped, called bacilli – spiral, called spirilla or spirochetes – spherical, called cocci Spirochaeta: spiral Lactobacilli: rod-shaped Enterococci: spherical 18.4 Bacteria and Archaea • Main Groups by their need for oxygen.
    [Show full text]
  • Abstract Introduction
    Marine and Freshwater Miscellanea III KEY TRAITS OF AMPHIOXUS SPECIES (CEPHALOCHORDATA) AND THE GOLT1 Daniel Pauly and Elaine Chu Sea Around Us, Institute for the Oceans and Fisheries University of British Columbia, Vancouver, B.C, Canada Email: [email protected] Abstract Major biological traits of amphioxus species (Cephalochordata) are presented with emphasis on the size reached by their 32 valid species in the genera Asymmetron (2 spp.), Branchiostoma (25 spp.), and Epigonichthys (5 spp.) and on related features, i.e., growth parameters and size at first maturity. Overall, these traits combined with features of their respiration, suggest that the cephalochordates conform to the Gill Oxygen Limitation Theory (GOLT), which relates the growth performance of water-breathing ectotherms to the surface area of their respiratory organ(s). Introduction The small fish-like animals know as ‘lancelet‘ or ‘amphioxius’ belong the subphylum Cephalochordata, which is either a sister group, or related to the ancestor of the vertebrate animals (see Garcia-Fernàndez and Benito-Gutierrez 2008). The cephalochordates consist of 3 families (the Asymmetronidae, Epigonichthyidae and Branchiostomidae), with one genus each, Asymmetron (2 spp.), Branchiostoma (24 spp.) and Epigonichthys (6 spp.), as detailed in Table 1 and SeaLifeBase (www.sealifebase.org). This contribution is to assemble some of the basic biological traits of lancelets (Figure 1), notably the maximum size each of their 34 species can reach, which is easily their most important attribute, though it is often ignored (Haldane 1926). Finally, reported lengths at first maturity of cephalochordates were related to the corresponding, population-specific maximum length, to test whether these animals mature as predicted by the Gill- Oxygen Limitation Theory (GOLT; see Pauly 2021a, 2021b).
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • The Unicellular and Colonial Organisms Prokaryotic And
    The Unicellular and Colonial Organisms Prokaryotic and Eukaryotic Cells As you know, the building blocks of life are cells. Prokaryotic cells are those cells that do NOT have a nucleus. They mostly include bacteria and archaea. These cells do not have membrane-bound organelles. Eukaryotic cells are those that have a true nucleus. That would include plant, animal, algae, and fungal cells. As you can see, to the left, eukaryotic cells are typically larger than prokaryotic cells. Today in lab, we will look at examples of both prokaryotic and eukaryotic unicellular organisms that are commonly found in pond water. When examining pond water under a microscope… The unpigmented, moving microbes will usually be protozoans. Greenish or golden-brown organisms will typically be algae. Microorganisms that are blue-green will be cyanobacteria. As you can see below, living things are divided into 3 domains based upon shared characteristics. Domain Eukarya is further divided into 4 Kingdoms. Domain Kingdom Cell type Organization Nutrition Organisms Absorb, Unicellular-small; Prokaryotic Photsyn., Archaeacteria Archaea Archaebacteria Lacking peptidoglycan Chemosyn. Unicellular-small; Absorb, Bacteria, Prokaryotic Peptidoglycan in cell Photsyn., Bacteria Eubacteria Cyanobacteria wall Chemosyn. Ingestion, Eukaryotic Unicellular or colonial Protozoa, Algae Protista Photosynthesis Fungi, yeast, Fungi Eukaryotic Multicellular Absorption Eukarya molds Plantae Eukaryotic Multicellular Photosynthesis Plants Animalia Eukaryotic Multicellular Ingestion Animals Prokaryotic Organisms – the archaea, non-photosynthetic bacteria, and cyanobacteria Archaea - Microorganisms that resemble bacteria, but are different from them in certain aspects. Archaea cell walls do not include the macromolecule peptidoglycan, which is always found in the cell walls of bacteria. Archaea usually live in extreme, often very hot or salty environments, such as hot mineral springs or deep-sea hydrothermal vents.
    [Show full text]
  • Biology Chapter 19 Kingdom Protista Domain Eukarya Description Kingdom Protista Is the Most Diverse of All the Kingdoms
    Biology Chapter 19 Kingdom Protista Domain Eukarya Description Kingdom Protista is the most diverse of all the kingdoms. Protists are eukaryotes that are not animals, plants, or fungi. Some unicellular, some multicellular. Some autotrophs, some heterotrophs. Some with cell walls, some without. Didinium protist devouring a Paramecium protist that is longer than it is! Read about it on p. 573! Where Do They Live? • Because of their diversity, we find protists in almost every habitat where there is water or at least moisture! Common Examples • Ameba • Algae • Paramecia • Water molds • Slime molds • Kelp (Sea weed) Classified By: (DON’T WRITE THIS DOWN YET!!! • Mode of nutrition • Cell walls present or not • Unicellular or multicellular Protists can be placed in 3 groups: animal-like, plantlike, or funguslike. Didinium, is a specialist, only feeding on Paramecia. They roll into a ball and form cysts when there is are no Paramecia to eat. Paramecia, on the other hand are generalists in their feeding habits. Mode of Nutrition Depends on type of protist (see Groups) Main Groups How they Help man How they Hurt man Ecosystem Roles KEY CONCEPT Animal-like protists = PROTOZOA, are single- celled heterotrophs that can move. Oxytricha Reproduce How? • Animal like • Unicellular – by asexual reproduction – Paramecium – does conjugation to exchange genetic material Animal-like protists Classified by how they move. macronucleus contractile vacuole food vacuole oral groove micronucleus cilia • Protozoa with flagella are zooflagellates. – flagella help zooflagellates swim – more than 2000 zooflagellates • Some protists move with pseudopods = “false feet”. – change shape as they move –Ex. amoebas • Some protists move with pseudopods.
    [Show full text]
  • Sponges Cnidarians Chordates Brachiopods Annelids Molluscs Ediacaran Arthropods 635 Cambrian PALEOZOIC PROTEROZOIC 605 Time (Mil
    © 2014 Pearson Education, Inc. 1 Sponges Cnidarians Echinoderms Chordates Brachiopods Annelids Molluscs Arthropods PROTEROZOIC PALEOZOIC Ediacaran Cambrian 635 605 575 545 515 485 0 Time (millions of years age) © 2014 Pearson Education, Inc. 2 Food particles in mucus Choanocyte Collar Flagellum Choanocyte Phagocytosis of Amoebocyte food particles Pores Spicules Water flow Amoebocytes Azure vase sponge (Callyspongia plicifera) © 2014 Pearson Education, Inc. 3 (a) Hydrozoa (b) Scyphozoa (c) Anthozoa © 2014 Pearson Education, Inc. 4 15 µm 75 µm (a) Valeria (800 mya): (b) Spiny acritarch roughly spherical, no (575 mya): about five structural defenses, times larger than soft-bodied Valeria and covered in hard spines © 2014 Pearson Education, Inc. 5 (a) Radial symmetry (b) Bilateral symmetry © 2014 Pearson Education, Inc. 6 Body cavity Body covering (from ectoderm) Tissue layer lining body cavity and suspending Digestive tract internal organs (from endoderm) (from mesoderm) © 2014 Pearson Education, Inc. 7 Porifera Metazoa Ctenophora ANCESTRAL Eumetazoa PROTIST Cnidaria Deuterostomia Hemichordata 770 million Echinodermata years ago 680 million Chordata years ago Lophotrochozoa Lophotrochozoa Platyhelminthes Bilateria Rotifera Ectoprocta Brachiopoda 670 million years ago Mollusca Ecdysozoa Annelida Nematoda Arthropoda © 2014 Pearson Education, Inc. 8 © 2014 Pearson Education, Inc. 9 Notochord Dorsal, hollow nerve cord Muscle segments Mouth Anus Post-anal tail Pharyngeal slits or clefts © 2014 Pearson Education, Inc. 10 (a) Lancelet (b) Tunicate
    [Show full text]
  • New Records of the Lancelet Branchiostoma Lanceolatum in Scottish Waters
    The Glasgow Naturalist (online 2019) Volume 27, Part 1 New records of the lancelet Branchiostoma lanceolatum in Scottish waters M. O’Reilly1, S. Nowacki1, M. Baptie1, E. Gerrie1 & M. MacKenzie2 1Scottish Environment Protection Agency, Angus Smith Building, 6 Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ 2Scottish Environment Protection Agency, Graesser House, Fodderty Way, Dingwall IV15 9XB 1E-mail: [email protected] ABSTRACT New records of the lancelet Branchiostoma lanceolatum from Scottish waters are presented. Most of the records originate from sublittoral monitoring around fish farms from Orkney, Shetland, the Western Isles, the Isles of Skye and Mull, but also from a distillery discharge in the Firth of Clyde and a plankton survey in the Sea of the Hebrides. Lancelets were recovered in sediment grab samples from 6 - 60 m depth. Some recent accounts of intertidal lancelets are also cited. The lancelets appear to prefer coarser sediments and in the fish farm surveys were found predominantly at reference sites, away from the immediate influence of farm deposition. INTRODUCTION The lancelet Branchiostoma lanceolatum (Pallas, 1774) is an obscure, vaguely fish-like creature, up to 8 cm long, which lives buried in sand or coarse sediments in British seas. Its body is laterally compressed, pinkish white in colour, and pointed at both ends with a lance- like tail fin (Fig. 1). There are no paired fins, nor eyes, nor even a well-defined head, and it has only a small mouth surrounded by cirri, used to filter organic matter from the surrounding water. It has a dorsal notochord and segmented muscle blocks allowing it to swim in a sinusoidal fish-like manner, but no backbone, and it is therefore classified as an invertebrate (Barnes, 2015).
    [Show full text]
  • Structural Biology of the C-Terminal Domain Of
    STRUCTURAL BIOLOGY OF THE C-TERMINAL DOMAIN OF EUKARYOTIC REPLICATION FACTOR MCM10 By Patrick David Robertson Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences August, 2010 Nashville, Tennessee Approved: Brandt F. Eichman Walter J. Chazin James G. Patton Hassane Mchaourab To my wife Sabrina, thank you for your enduring love and support ii ACKNOWLEDGMENTS I would like to begin by expressing my sincerest gratitude to my mentor and Ph.D. advisor, Dr. Brandt Eichman. In addition to your excellent guidance and training, your passion for science has been a source of encouragement and inspiration over the past five years. I consider working with you to be a great privilege and I am grateful for the opportunity. I would also like to thank the members of my thesis committee: Drs. Walter Chazin, Ellen Fanning, James Patton, and Hassane Mchaourab. My research and training would not have been possible without your insight, advice and intellectual contributions. I would like to acknowledge all of the members of the Eichman laboratory, past and present, for their technical assistance and camaraderie over the years. I would especially like to thank Dr. Eric Warren for his contributions to the research presented here, as well for his friendship of the years. I would also like to thank Drs. Benjamin Chagot and Sivaraja Vaithiyalingam from the Chazin laboratory for their expert assistance and NMR training. I would especially like to thank my parents, Joyce and David, my brother Jeff, and the rest of my family for their love and encouragement throughout my life.
    [Show full text]