Stations in Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Stations in Antarctica Bird Island 0° Produced by the Australian Antarctic Data Centre Stations as listed at http://www.comnap.aq/facilities Hillshading from RAMP DEM v2 STATIONS IN ANTARCTICA Coastline from ADD v5 - 10m Published August 2009 Map Catalogue No 13690 6 0 ° Orcadas (Argentina) S Signy (UK) Troll Dakshin Gangotri (India) Neumayer (Germany) (Norway) Maitri (India), Novolazarevskaya (Russia) SANAE IV (South Africa) Tor Asuka (Japan) See inset Aboa (Finland) (Norway) Syowa (Japan) Wasa (Sweden) Princess Molodezhnaya Kohnen Elisabeth (Russia) (Germany) (Belgium) Mizuho Brown (Argentina) Halley (UK) (Japan) Gabriel González Videla (Chile) Melchior Yelcho (Chile) Belgrano II (Argentina) Mawson Palmer Vernadsky (Ukraine) (Argentina) Dome Fuji (Japan) (Australia) (USA) San Martín (Argentina) Rothera (UK) Soyuz (Russia) RONNE Sobral (Argentina) Luis Carvajal ICE SHELF Druzhnaya 4 (Russia) (Chile) Law - Racovita (Australia/Romania) Davis Proposed station (India) Progress 2 (Russia) (Australia) Kunlun (China) Zhongshan (China) Arturo Parodi (Chile) 90° W Amundsen-Scott (USA) Australian Antarctic 90° E Territory (AAT) Mirny (Russia) Vostok (Russia) Concordia Casey ROSS (France/Italy) ICE SHELF (Australia) Russkaya Scott Base McMurdo (USA) (Russia) (NZ) Gondwana (Germany) AAT Legend Mario Zucchelli (Italy) Year-round station Dumont d'Urville Seasonal station Leningradskaya (France) Closed station (Russia) Proposed station Year-round stations Seasonal stations 1 Comandante Ferraz (Brazil) 15 Macchu Picchu (Peru) 2 Arctowski (Poland) 16 Dallman (Germany) 3 Jubany (Argentina) 17 Julio Ripamonti (Chile) 4 King Sejong (Korea) 18 Maldonado (Ecuador) Petrel 5 Artigas (Uruguay) 19 Guillermo Mann (Chile) (Argentina) 6 Bellingshausen (Russia) 20 Juan Carlos I (Spain) 1,15 2 13, 24 7 Eduardo Frei (Chile) 21 Ohridiski (Bulgaria) 5,6,7,8, 3,4,16 8 Julio Escudero (Chile) 22 Decepcíon (Argentina) 9,10,17 12 14 9 Estación marítima Antártica (Chile) 23 Gabriel de Castilla (Spain) 11,17, 11 25 10 Great Wall (China) 24 T/N Ruperto ElMichaicriqbueaheritey I(sUlarungduay) 18,26 11 Arturo Prat (Chile) 25 Gregor Mendel (Czech Republic) 19 20,21 12 Bernado O'Higgins (Chile) 13 Esperanza (Argentina) Closed station 22,23 14 Marambio (Argentina) 26 Luis Risopatron (Chile) Primavera Matienzo (Argentina) (Argentina) 180°.
Recommended publications
  • Wastewater Treatment in Antarctica
    Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Antarctic Peninsula
    Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno.
    [Show full text]
  • Level 1 Geography (91010) 2020
    91010R 1 Level 1 Geography 2020 91010 Apply concepts and basic geographic skills to demonstrate understanding of a given environment 2.00 p.m. Wednesday 18 November 2020 Credits: Four RESOURCE BOOKLET Refer to this booklet to answer the questions for Geography 91010. Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank. YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION. © New Zealand Qualifications Authority, 2020. All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the New Zealand QualificationsAuthority. 2 RESOURCE A: Introducing Ross Island, Antarctica Ross Island is located in Antarctica. The island has been formed by four volcanoes, and the largest of these, Mt Erebus, is the world’s southernmost active volcano. Ross Island is extremely important to New Zealand as it is home to Scott Base, New Zealand’s scientific research station in Antarctica. Scott Base was established at the island’s southern point – Hut Point Peninsula – by Edmund Hillary in 1957. Scott Base is run by Antarctica New Zealand, and its main function is to support scientists as they carry out their vital research on the continent over the summer months. New Zealand has a close relationship with the USA’s McMurdo Station, which is located nearby. During the winter months the island is in Research complete 24-hour darkness and temperatures can drop to –36 °C, which makes outside activities extremely dangerous. Ross Island played a significant part in the incredible exploration era of the early 1900s, when famous explorers such as Robert Scott and Ernest Shackleton used the island as a base as they tried to be the first to reach the South Pole.
    [Show full text]
  • Station Sharing in Antarctica
    IP 94 Agenda Item: ATCM 7, ATCM 10, ATCM 11, ATCM 14, CEP 5, CEP 6b, CEP 9 Presented by: ASOC Original: English Station Sharing in Antarctica 1 IP 94 Station Sharing in Antarctica Information Paper Submitted by ASOC to the XXIX ATCM (CEP Agenda Items 5, 6 and 9, ATCM Agenda Items 7, 10, 11 and 14) I. Introduction and overview As of 2005 there were at least 45 permanent stations in the Antarctic being operated by 18 countries, of which 37 were used as year-round stations.i Although there are a few examples of states sharing scientific facilities (see Appendix 1), for the most part the practice of individual states building and operating their own facilities, under their own flags, persists. This seems to be rooted in the idea that in order to become a full Antarctic Treaty Consultative Party (ATCP), one has to build a station to show seriousness of scientific purpose, although formally the ATCPs have clarified that this is not the case. The scientific mission and international scientific cooperation is nominally at the heart of the ATS,ii and through SCAR the region has a long-established scientific coordination body. It therefore seems surprising that half a century after the adoption of this remarkable Antarctic regime, we still see no truly international stations. The ‘national sovereign approach’ continues to be the principal driver of new stations. Because new stations are likely to involve relatively large impacts in areas that most likely to be near pristine, ASOC submits that this approach should be changed. In considering environmental impact analyses of proposed new station construction, the Committee on Environmental Protection (CEP) presently does not have a mandate to take into account opportunities for sharing facilities (as an alternative that would reduce impacts).
    [Show full text]
  • Application of a New Polarimetric Filter to Radarsat-2 Data of Deception Island (Antarctic Peninsula Region) for Surface Cover Characterization
    APPLICATION OF A NEW POLARIMETRIC FILTER TO RADARSAT-2 DATA OF DECEPTION ISLAND (ANTARCTIC PENINSULA REGION) FOR SURFACE COVER CHARACTERIZATION a b c a S. Guillaso ,∗ T. Schmid , J. Lopez-Mart´ ´ınez , O. D’Hondt a Technische Universitat¨ Berlin, Computer Vision and Remote Sensing, Berlin, Germany - [email protected] b CIEMAT, Madrid, Spain - [email protected] c Universidad Autonoma´ de Madrid, Spain - [email protected] KEY WORDS: SAR, Antarctica, Surface characterization, Geomorphology, Soils, Polarimetry, Speckle Filtering, Image interpretation ABSTRACT: In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results. 1. INTRODUCTION Ice-free land surfaces of the Northern Antarctica Peninsula region are under the influence of freeze-thaw cycling effects on differ- ent parent materials. This is mainly due to the particular climatic conditions of the so called Maritime Antarctica and because this region is one the the fastest warming areas of the southern hemi- sphere.
    [Show full text]
  • Development Pressures on the Antarctic Wilderness
    XXVIII ATCM – IP May 2004 Original: English Agenda Items 3 (Operation of the CEP) and 4a (General Matters) DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS Submitted to the XXVIII ATCM by the Antarctic and Southern Ocean Coalition DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS 1. Introduction In 2004 the Antarctic and Southern Ocean Coalition (ASOC) tabled information paper ATCM XXVII IP 094 “Are new stations justified?”. The paper highlighted proposals for the construction of no less than five new Antarctic stations in the context of at least 73 established stations (whether full year or summer only), maintained by 26 States already operating in the Antarctic Treaty Area. The paper considered what was driving the new station activity in Antarctica, whether or not it was necessary or desirable, and what alternatives there might be to building yet more stations. Whilst IP 094 focused on new station proposals, it noted that there were other significant infrastructure projects underway in Antarctica, which included substantial upgrades of existing national stations, the development of air links to various locations in Antarctica and related runways, and an ice road to the South Pole. Since then, ASOC has become aware of additional proposals for infrastructure projects. This paper updates ASOC’s ATCM XXVII IP 094 to include most infrastructure projects planned or currently underway in Antarctica as of April 2005, and discusses their contribution to cumulative impacts. The criteria used to select these projects are: 1. The project’s environmental impact is potentially “more than minor or transitory”; 2. The project results in a development of infrastructure that is significant in the Antarctic context; 3.
    [Show full text]
  • Southern Hemisphere Mid- and High-Latitudinal AOD, CO, NO2, And
    Ahn et al. Progress in Earth and Planetary Science (2019) 6:34 Progress in Earth and https://doi.org/10.1186/s40645-019-0277-y Planetary Science RESEARCH ARTICLE Open Access Southern Hemisphere mid- and high- latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations Dha Hyun Ahn1, Taejin Choi2, Jhoon Kim1, Sang Seo Park3, Yun Gon Lee4, Seong-Joong Kim2 and Ja-Ho Koo1* Abstract To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005–2016).
    [Show full text]
  • CCN Measurements at the Princess Elisabeth Antarctica Research
    bs CCN measurements at the Princess Elisabeth Antarctica Research Station during three austral summers Paul Herenz1, Heike Wex1, Alexander Mangold2, Quentin Laffineur2, Irina V. Gorodetskaya3,4, Zoë L. Fleming5, Marios Panagi5, and Frank Stratmann1 1Leibniz Institute for Tropospheric Research, Leipzig, Germany 2Royal Meteorological Institute of Belgium, Brussels, Belgium 3Centre for Environmental and Marine Studies, Department of Physics, University of Aveiro, Aveiro, Portugal 4Department of Earth and Environmental Sciences, KU Leuven, Belgium 5National Centre for Atmospheric Science, Department of Chemistry, University of Leicester, Leicester, UK Correspondence to: Heike Wex ([email protected]) Abstract. For three austral summer seasons (2013-2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE), in Dronning Maud Land in East Antarctica were characterized. in terms 5 ofThis included number concentrations of total aerosol particles (NCN) and cloud condensation nuclei (NCCN), the particle number size distribution (PNSD), the aerosol particle hygroscopicity and the influence of the air mass origin on NCN and −3 −3 NCCN. In general NCN was found to range from 40 to 6700 cm with a median of 333 cm , while NCCN was found to cover a range between less than 10 and 1300 cm−3 for supersaturations (SS) between 0.1 and 0.7 %. It is shown that the aerosol is Aitken mode dominated and is , being characterized by a significant amount of freshly, small, and therefore likely secondarily
    [Show full text]
  • The Antarctic Treaty
    The Antarctic Treaty Measures adopted at the Thirty-ninth Consultative Meeting held at Santiago, Chile 23 May – 1 June 2016 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty November 2017 Cm 9542 © Crown copyright 2017 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH ISBN 978-1-5286-0126-9 CCS1117441642 11/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK by the APS Group on behalf of the Controller of Her Majestyʼs Stationery Office MEASURES ADOPTED AT THE THIRTY-NINTH ANTARCTIC TREATY CONSULTATIVE MEETING Santiago, Chile 23 May – 1 June 2016 The Measures1 adopted at the Thirty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Final Report of the XXXIII ATCM
    Rapport fi nal de la trente-troisième Réunion consultative du Traité sur l’Antarctique RÉUNION CONSULTATIVE DU TRAITÉ SUR L’ANTARCTIQUE Rapport fi nal de la trente-troisième Réunion consultative du Traité sur l’Antarctique Punta del Este, Uruguay 3 – 14 mai 2010 Secrétariat du Traité sur l’Antarctique Buenos Aires 2010 Réunion consultative du Traité sur l’Antarctique (33e : 2010 : Punta del Este) Rapport nal de la trente-troisième Réunion consultative du Traité sur l’Antarctique, Uruguay, 3 – 14 mai 2010. Buenos Aires : Secrétariat du Traité sur l’Antarctique, 2010. 410 p. ISBN 978-987-1515-14-1 1. Droit international – Questions liées à l’environnement. 2. Système du Traité sur l’Antarctique. 3. Droit environnemental – Antarctique. 4. Protection de l’environnement – Antarctique ISBN 978-987-1515-14-1 Contenu VOLUME 1 (en format papier et CD) Sigles et abréviations 9 PREMIÈRE PARTIE – RAPPORT FINAL 11 1. Rapport nal 13 2. Rapport du CPE XIII 133 3. Appendices 259 L’Accord de siège pour le Secrétariat du Traité sur l’Antarctique 261 Ordre du jour provisoire pour la XXXIVe RCTA 273 DEUXIÈME PARTIE – MESURES, DÉCISIONS ET RÉSOLUTIONS 275 1. Mesures 277 Mesure 1 (2010) Zone spécialement protégée de l’Antarctique nº 101 (Taylor Rookery, Terre Mac.Robertson) : Plan de gestion révisé 279 Mesure 2 (2010) Zone spécialement protégée de l’Antarctique nº 102 (îles Rookery, baie Holme, Terre Mac.Robertson) : Plan de gestion révisé 281 Mesure 3 (2010) Zone spécialement protégée de l’Antarctique nº 103 (îles Ardery et Odbert, côte Budd, Terre Wilkes)
    [Show full text]