Reproductive Endocrinology of the Florida Manatee (Trichechus Manatus Latirostris): Estrous Cycles, Seasonal Patterns and Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Endocrinology of the Florida Manatee (Trichechus Manatus Latirostris): Estrous Cycles, Seasonal Patterns and Behavior REPRODUCTIVE ENDOCRINOLOGY OF THE FLORIDA MANATEE (TRICHECHUS MANATUS LATIROSTRIS): ESTROUS CYCLES, SEASONAL PATTERNS AND BEHAVIOR By ISKANDE LIEVE VANDEVELDE LARKIN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2000 To Roger Reep, for inspiring and encouraging me; my mom, for reminding me I have what it takes; and my husband, who has shown me how to appreciate what life offers. ACKNOWLEDGMENTS I thank my committee members for guiding me through this process and providing unique perspectives that broadened my learning and introduced me to new ideas and ways of thinking. Roger Reep was a very reassuring mentor that proved to be the calm in the midst of many storms. Tim Gross provided the bulk of my guidance in radioimmunoassays and technical support, without which this project could not have been accomplished. I thank Tom Vickroy for being there to answer questions at a moment’s notice and remind me to look at things objectively. Dan Odell and John Eisenberg were figures of inspiration to learn about new species, scientific subjects and perspectives I otherwise would have neglected. Bob Bonde was an ever-cheerful face and allowed me to join him in the field to meet wild manatees for the first time. Bob always kept me up to date on new observations in the field and allowed me to attend many small meetings and workshops on manatees. Last but not least, Lynn Lefebvre was there when I needed her to step in and join the committee cheerfully. I would like to give a special thanks to all the people and the many organizations that came together in helping me accomplish this study because they saw the importance in learning more about manatee reproduction. I thank our lab technician, Maggie Stoll, who spent a whole year getting up at the wee hours of the morning to collect fecals for me. At Homosassa Springs State Wildlife Park, I thank Tom Linley for allowing us to conduct our study there, Sally Lieb for trusting that not iii all graduate students are made the same, and the staff for being so friendly. Randy Runnels and staff at SeaWorld Florida provided as much help as possible despite their busy schedules. Mark Barringer and staff at the Living Seas in Epcot went above and beyond any of my hopes and expectations by collecting all of the samples from each of their three males for the duration of the study time. I thank Dr. Dave Murphy and Debbie Halin for collecting samples from their manatees at Lowry Park Zoo in Tampa for as long as they were able. Dr. Greg Bossart, Dr. Maya Menchaca, Nerva and staff at Miami Seaquarium were very helpful with their advice and calls to update me on the status of their animals and collections of samples. I am sorry we did not have enough funds to analyze the many samples they collected for this study. I would like to extend the same apology to Jessica Koelsch at Mote Marine Laboratories who provided boundless energy in collecting many samples from the wild manatees in Sarasota Bay. Finally, I would like to thank the many veterinary students, teachers and volunteers that that joined me in my behavioral observations, fecal collections and lab work. Seeing their excitement in my work was most rewarding. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS........................................................................................iii LIST OF TABLES.................................................................................................viii LIST OF FIGURES..................................................................................................ix ABSTRACT……………………………………………………………………..….xiv 1 INTRODUCTION AND BACKGROUND REVIEW............................................1 Introduction...........................................................................................................1 Objectives..........................................................................................................2 Hypotheses........................................................................................................3 Background Review..............................................................................................5 Conservation......................................................................................................5 Evolution...........................................................................................................6 Distribution.......................................................................................................9 Manatee Reproduction.....................................................................................10 Other Mammalian Reproductive Patterns.........................................................14 Elephant Reproduction.....................................................................................21 Seasonality......................................................................................................29 General mammalian patterns........................................................................29 Seasonality in Sirenians...............................................................................32 Measurement of Hormones..............................................................................33 Captive Versus Wild Conditions......................................................................34 2 FECAL RADIOIMMUNOASSAY VALIDATION FOR THE FLORIDA MANATEE.............................................................................................................36 Introduction.........................................................................................................36 Materials and Methods........................................................................................38 Subjects...........................................................................................................38 Fecal Collections.............................................................................................40 Experiment One: Gut Transit Time Collections................................................41 Experiment Two: Fecal Handling Collections..................................................43 Experiment Three: Plasma and Necropsy Collections......................................44 Radioimmunoassay..........................................................................................45 v 17b-estradiol...............................................................................................47 Progesterone................................................................................................48 Testosterone.................................................................................................49 Analysis of Hormonal Parameters....................................................................51 Results.................................................................................................................53 Experiment One: Fecal Marker/Gut Transit Times...........................................53 Experiment Two: Fecal Handling....................................................................54 Experiment Three: Fecal Comparisons with Plasma and Tissue Samples.........55 Plasma and fecal..........................................................................................55 Fecal and necropsy tissue.............................................................................58 Experiment Four: A Comparison of Gender, Location, Age and Individuals....59 Gender and location.....................................................................................59 Age..............................................................................................................61 Discussion...........................................................................................................62 Experiment One: Fecal Marker/Gut Transit Time............................................62 Experiment Two: Fecal Handling....................................................................65 Experiment Three: Fecal Comparisons with Plasma and Tissue Samples.........67 Experiment Four: A Comparison of Gender, Location, Age and Individuals....70 Conclusions.........................................................................................................72 3 SEASONAL AND ESTROUS PATTERNS OF THE FLORIDA MANATEE....94 Introduction.........................................................................................................94 Methods..............................................................................................................97 Experiment Five: Fecal Collections for Estrous Cycle Data.............................97 Experiment Six: Fecal Collections for Seasonality Data...................................98 Analysis...........................................................................................................98 Results.................................................................................................................99 Experiment Five: Individual Hormone Profiles and Estrous Patterns................99 Individual hormone profiles.........................................................................99 Estrous patterns..........................................................................................100 Experiment Six: Seasonality..........................................................................103 Seasonality at different locations................................................................103
Recommended publications
  • Contributions from the Museum of Paleontology the University of Michigan
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL. 29.. No. 3. PP. 69-87 November 30. 1994 PROTOSIREN SMITHAE, NEW SPECIES (MAMMALIA, SIRENIA), FROM THE LATE MIDDLE EOCENE OF WADI HITAN, EGYPT BY DARYL P. DOMNING AND PHILIP D. GINGERICH MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Philip D. Gingerich, Director This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals on request. A list of the separate issues may also be obtained by request. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48 109-1079. VOLS. 2-29. Parts of volumes may be obtained if available. Price lists are available upon inquiry. PROTOSIREN SMITHAE, NEW SPECIES (MAMMALIA, SIRENIA), FROM THE LATE MIDDLE EOCENE OF WADI KITAN, EGYPT Abstract-Protosiren smithae is a new protosirenid sirenian described on the basis of associated cranial and postcranial material from the late middle Eocene (latest Bartonian) Gehannam Formation of Wadi Hitan (Zeuglodon Valley), Fayum Province, Egypt. The new species is similar to Protosiren fraasi Abel, 1907, from the earlier middle Eocene (Lutetian) of Egypt, but it is younger geologically and more derived morphologically. P. smithae is probably a direct descendant of P. fraasi. The postcranial skeleton of P. imithae- includes well-developed hindlimbs, which suggest some lingering amphibious tendencies in this otherwise aquatically-adapted primitive sea cow.
    [Show full text]
  • Pleistocene Mammals and Paleoecology of the Western Amazon
    PLEISTOCENE MAMMALS AND PALEOECOLOGY OF THE WESTERN AMAZON By ALCEU RANCY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1991 . To Cleusa, Bianca, Tiago, Thomas, and Nono Saul (Pistolin de Oro) . ACKNOWLEDGMENTS This work received strong support from John Eisenberg (chairman) and David Webb, both naturalists, humanists, and educators. Both were of special value, contributing more than the normal duties as members of my committee. Bruce MacFadden provided valuable insights at several periods of uncertainty. Ronald Labisky and Kent Redford also provided support and encouragement. My field work in the western Amazon was supported by several grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) , and the Universidade Federal do Acre (UFAC) , Brazil. I also benefitted from grants awarded to Ken Campbell and Carl Frailey from the National Science Foundation (NSF) I thank Daryl Paul Domning, Jean Bocquentin Villanueva, Jonas Pereira de Souza Filho, Ken Campbell, Jose Carlos Rodrigues dos Santos, David Webb, Jorge Ferigolo, Carl Frailey, Ernesto Lavina, Michael Stokes, Marcondes Costa, and Ricardo Negri for sharing with me fruitful and adventurous field trips along the Amazonian rivers. The CNPq and the Universidade Federal do Acre, supported my visit to the. following institutions (and colleagues) to examine their vertebrate collections: iii . ; ; Universidade do Amazonas, Manaus
    [Show full text]
  • Mamiferosacuat/Cosdel Mioceno Medio Y Tardio De Argentina
    UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO MAMIFEROSACUAT/COSDEL MIOCENO MEDIO Y TARDIO DE ARGENTINA SISTEMATICA, EVOLUCION Y BIOGEOGRAFIA por Mario Alberto COZZUOL Trabajo de Tesis para optar al Título de '~\ ,-- DOCTOR EN CIENCIAS NATURALES Director de Tesis: Dr. Rosendo PASCUAL La Plata -1993- A mis padres, Ruggero y N elly, porque siempre entendieron, me apoyaron y nunca cuestionaron mi decisión de elegir esta carrera. y A Tere, mi esposa, porque siempre estuvo allí, y porque aún está aquí. j i 1 ii : : ; ¡ .: RESUMEN Algunos de los mamíferos acuáticos del Mioceno tardío de Argentina se cuentan entre los primeros vertebrados fósiles en ser descriptos en el país, pese a lo cual la atención que estos grupos recibieron fue comparativamente escasa en relación a los mamíferos terrestres. En el presente trabajo se reestudian las especies previamente descriptas, y se describen varios nuevos taxones. El estudio se ha dividido en especies procedentes de sedimentitas marinas informalmente agrupadas bajo el nombre de "Entrerriense", y aquellas especies procedentes de aguas continentales, de sedimentitas agrupadas en el Piso/Edad Mesopotamiense, por primera vez propuesto aquí de manera formal. Dentro de las especies procedentes de sedimentitas marinas se han reconocido dos asociaciones consideradas diacrónicas. Las más antigua, referida · al Mioceno medio, procede de los afloramientos del ·"Entrerriense" de Patagonia, agrupandó seis especies, en su mayoría descriptas aquí por primera vez: Patagophyseter rionegrensis (Gondar) nueva combinación (Cetacea, Physeteridae); Notoziphius bruneti gen. y esp. nuevos (Cetacea, Ziphiidae); Goos valdesensis gen. y esp. nuevos (Cetacea, Balenidae); "Plesiocetus" notopelagicus Cabrera, 1926 (Cetacea, Cetotheriidae); Kawas benegasii gen.
    [Show full text]
  • Evolução, Hegemonia E Desaparecimento Dos Sirénios Dos Mares Europeus Ao Longo Do Cenozoico
    Universidade de Lisboa Faculdade de Ciências Departamento de Geologia Evolução, hegemonia e desaparecimento dos sirénios dos mares europeus ao longo do Cenozoico causas endógenas (alterações climáticas globais) ou exógenas (ambiente galáctico)? Gonçalo Abreu Prista Dissertação Mestrado em Ciências do Mar 2012 Universidade de Lisboa Faculdade de Ciências Departamento de Geologia Evolução, hegemonia e desaparecimento dos sirénios dos mares europeus ao longo do Cenozoico causas endógenas (alterações climáticas globais) ou exógenas (ambiente galáctico)? Gonçalo Abreu Prista Dissertação Mestrado em Ciências do Mar Orientadores: Professor Doutor Mário Albino Cachão Professor Doutor Rui Jorge Agostinho 2012 EVOLUÇÃO, HEGEMONIA E DESAPARECIMENTO DOS SIRÉNIOS DOS MARES EUROPEUS AO LONGO DO CENOZOICO causas endógenas (alterações climáticas globais) ou exógenas (ambiente galáctico)? GONÇALO ABREU PRISTA ORIENTAÇÃO CIENTÍFICA: PROF. DOUTOR MÁRIO ALBINO PIO CACHÃO Professor Auxiliar Agregado do Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa Membro do Centro de Geologia da Universidade de Lisboa PROF. DOUTOR RUI JORGE AGOSTINHO Professor Auxiliar Agregado do Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Membro do Centro de Astronomia e Astrofísica da Universidade de Lisboa Director do Observatório Astronómico de Lisboa iii "Graças aos descobrimentos da Paleontologia, a História Natural é História, no sentido literal da palavra" Albert Gaudry (1827 - 1908). "O azoto no nosso DNA, o cálcio nos nossos dentes, o ferro no nosso sangue, o carbono nas nossas tartes de maçã foram feitos no interior de estrelas em colapso. Nós somos feitos de material estelar" Carl Sagan (1934 - 1996) iv AGRADECIMENTOS Primeiro aos meus pais, pois sem o seu apoio, a todos os níveis, este mestrado e esta dissertação não seriam possíveis.
    [Show full text]
  • Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
    THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr.
    [Show full text]
  • A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(S): Richard C
    A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(s): Richard C. Hulbert, Jr., Richard M. Petkewich, Gale A. Bishop, David Bukry and David P. Aleshire Source: Journal of Paleontology , Sep., 1998, Vol. 72, No. 5 (Sep., 1998), pp. 907-927 Published by: Paleontological Society Stable URL: https://www.jstor.org/stable/1306667 REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/1306667?seq=1&cid=pdf- reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms SEPM Society for Sedimentary Geology and are collaborating with JSTOR to digitize, preserve and extend access to Journal of Paleontology This content downloaded from 131.204.154.192 on Thu, 08 Apr 2021 18:43:05 UTC All use subject to https://about.jstor.org/terms J. Paleont., 72(5), 1998, pp. 907-927 Copyright ? 1998, The Paleontological Society 0022-3360/98/0072-0907$03.00 A NEW MIDDLE EOCENE PROTOCETID WHALE (MAMMALIA: CETACEA: ARCHAEOCETI) AND ASSOCIATED BIOTA FROM GEORGIA RICHARD C. HULBERT, JR.,1 RICHARD M. PETKEWICH,"4 GALE A.
    [Show full text]
  • The Giant Sea Mammal That Went Extinct in Less Than Three Decades
    The Giant Sea Mammal That Went Extinct in Less Than Three Decades The quick disappearance of the 30-foot animal helped to usher in the modern science of human-caused extinctions. JACOB MIKANOWSKI, THE ATLANTIC 4/19/17 HTTPS://WWW.THEATLANTIC.COM/SCIENCE/ARCHIVE/2017/04/PLEIST OSEACOW/522831/ The Pleistocene, the geologic era immediately preceding our own, was an age of giants. North America was home to mastodons and saber-tooth cats; mammoths and wooly rhinos roamed Eurasia; giant lizards and bear-sized wombats strode across the Australian outback. Most of these giants died at the by the end of the last Ice Age, some 14,000 years ago. Whether this wave of extinctions was caused by climate change, overhunting by humans, or some combination of both remains a subject of intense debate among scientists. Complicating the picture, though, is the fact that a few Pleistocene giants survived the Quaternary extinction event and nearly made it intact to the present. Most of these survivor species found refuge on islands. Giant sloths were still living on Cuba 6,000 years ago, long after their relatives on the mainland had died out. The last wooly mammoths died out just 4,000 years ago. They lived in a small herd on Wrangel Island north of the Bering Strait between the Chukchi and East Siberian Seas. Two-thousand years ago, gorilla-sized lemurs were still living on Madagascar. A thousand years ago, 12-foot-tall moa birds were still foraging in the forests of New Zealand. Unlike the other long-lived megafauna, Steller’s sea cows, one of the last of the Pleistocene survivors to die out, found their refuge in a remote scrape of the ocean instead of on land.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Atypicat Molecular Evolution of Afrotherian and Xenarthran B-Globin
    Atypicat molecular evolution of afrotherian and xenarthran B-globin cluster genes with insights into the B-globin cluster gene organization of stem eutherians. By ANGELA M. SLOAN A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology University of Manitoba Winnipeg, Manitoba, Canada @ Angela M. Sloan, July 2005 TIIE I]MVERSITY OF' MANITOBA FACULTY OF GRADUATE STT]DIES ***** - COPYRIGHTPERMISSION ] . Atypical molecular evolution of afrotherian and xenarthran fslobin cluster genes with insights into thefglobin cluster gene organization òf stem eutherians. BY Angela M. Sloan A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfill¡nent of the requirement of the degree of Master of Science Angela M. Sloan @ 2005 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the fiIm, and to University Microfïlms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright ownér. ABSTRACT Our understanding of p-globin gene cluster evolutionlwithin eutherian mammals .is based solely upon data collected from species in the two most derived eutherian superorders, Laurasiatheria and Euarchontoglires. Ifence, nothing is known regarding_the gene composition and evolution of this cluster within afrotherian (elephants, sea cows, hyraxes, aardvarks, elephant shrews, tenrecs and golden moles) and xenarthran (sloths, anteaters and armadillos) mammals.
    [Show full text]
  • Estrous Cycle in Equine and Camels
    Prepared by- Dr. S. K. Sheetal Assistant Professor cum Jr. Scientist Department of Veterinary Gynaecology and Obstetrics, Bihar Veterinary College, Bihar Animal Sciences University, Patna-800014 1 Estrous Cycle of Mare 2 Terminology "Estrous" or Ostrous refers to the entire cycle. "Estrus" or Oestrus refers to the "heat" stage of that cycle when the mare is receptive to the stallion "Diestrus" (diœstrus) Period in between the estrus phases when the mare is not receptive to the stallion "Anestrus" (anœstrus) Compete absence of estrus. Long Day Breeder The mare is a "seasonally polyestrus" animal undergoes regular estrus cycles during a portion of the year (late spring, summer and early fall) Not in winter. This is nature's way of preventing the arrival of a foal during bad weather. 3 Signs of Estrus • Vulva become large and swollen, scarlet or orange colour, wet, glossy, covered with mucous. • Labial folds Loose • Vaginal mucosa highly vascular • Tail raised. • Urine expelled in small amount frequently • Clitoris is exposed by prolonged rhythmic contraction Known as Winking of clitoris • Ovulatory Cycle 21 days • Luteal phase= 14 days • Follicular or estrous phase = 7 days 4 Long Duration Estrus in Mare It may be due to Ovary surrounded by serous coat and takes longer time for migration of follicles to reach the ovulation fossa to rupture. Preovulatory follicle requires longer time to reach maximal size (due to less sensitiveness of ovary with exogenous FSH) Low level of LH delays ovulation 5 Ovulation • Most ovulations days 3, 4,or 5 of estrus, 24 to 48 hours before the end of behavioral estrus • Time of ovulation is more closely related to the end than to the onset of estrus.
    [Show full text]
  • Marine Mammals from the Miocene of Panama
    Journal of South American Earth Sciences 30 (2010) 167e175 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Marine mammals from the Miocene of Panama Mark D. Uhen a,*, Anthony G. Coates b, Carlos A. Jaramillo b, Camilo Montes b, Catalina Pimiento b,c, Aldo Rincon b, Nikki Strong b, Jorge Velez-Juarbe d a George Mason University, Fairfax, VA 22030, USA b Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Panama c Department of Biology, University of Florida, Gainesville, FL, USA d Laboratory of Evolutionary Biology, Department of Anatomy, Howard University, WA 20059, USA article info abstract Article history: Panama has produced an abundance of Neogene marine fossils both invertebrate (mollusks, corals, Received 1 May 2009 microfossils etc.) and vertebrate (fish, land mammals etc.), but marine mammals have not been previ- Accepted 21 August 2010 ously reported. Here we describe a cetacean thoracic vertebra from the late Miocene Tobabe Formation, a partial cetacean rib from the late Miocene Gatun Formation, and a sirenian caudal vertebra and rib Keywords: fragments from the early Miocene Culebra Formation. These finds suggest that Central America may yet Panama provide additional fossil marine mammal specimens that will help us to understand the evolution, and Neogene particularly the biogeography of these groups. Miocene Ó Pliocene 2010 Elsevier Ltd. All rights reserved. Cetacea Sirenia 1. Introduction archipelago, Panama (Fig. 1A). The Tobabe Formation is the basal unit of the Late Miocene-Early Pliocene (w7.2ew3.5 Ma) Bocas del Central America includes an abundance of marine sedimentary Toro Group, an approximately 600 m thick succession of volcani- rock units that have produced many fossil marine invertebrates clastic marine sediments (Fig.
    [Show full text]