Generic Concepts in Nectriaceae

Total Page:16

File Type:pdf, Size:1020Kb

Generic Concepts in Nectriaceae available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 80: 189–245. Generic concepts in Nectriaceae L. Lombard1*, N.A. van der Merwe2, J.Z. Groenewald1, and P.W. Crous1,3,4* 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands; 2Department of Genetics, Forestry and Agricultural Biotechnology Centre (FABI), University of Pretoria, Pretoria, 0002, South Africa; 3Forestry and Agricultural Biotechnology Centre (FABI), University of Pretoria, Pretoria, 0002, South Africa; 4Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands *Correspondence: L. Lombard, [email protected]; P.W. Crous, [email protected] Abstract: The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), β-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1- alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae. Key words: Generic concepts, Nectriaceae, Phylogeny, Taxonomy. Taxonomic novelties: New family: Tilachlidiaceae L. Lombard & Crous; New genera: Aquanectria L. Lombard & Crous, Bisifusarium L. Lombard, Crous & W. Gams, Coccinonectria L. Lombard & Crous, Paracremonium L. Lombard & Crous, Rectifusarium L. Lombard, Crous & W. Gams, Xenoacremonium L. Lombard & Crous; New species: Mariannaea humicola L. Lombard & Crous, Neocosmospora rubicola L. Lombard & Crous, Paracremonium inflatum L. Lombard & Crous, P. contagium L. Lombard & Crous, Pseudonectria foliicola L. Lombard & Crous, Rectifusarium robinianum L. Lombard & Crous, Xenoacremonium falcatus L. Lombard & Crous, Xenogliocladiopsis cypellocarpa L. Lombard & Crous; New combinations: Aquanectria penicillioides (Ingold) L. Lombard & Crous, A. submerse (H.J. Huds.) L. Lombard & Crous, Bisifusarium biseptatum (Schroers, Summerbell & O'Donnell) L. Lombard & Crous, B. delphinoides (Schroers, Summerbell, O'Donnell & Lampr.) L. Lombard & Crous, B. dimerum (Penz.) L. Lombard & Crous, B. domesticum (Fr.) L. Lombard & Crous, B. lunatum (Ellis & Everh.) L. Lombard & Crous, B. nectrioides (Wollenw.) L. Lombard & Crous, B. penzigii (Schroers, Summerbell & O'Donnell) L. Lombard & Crous, Calonectria candelabra (Viegas) Rossman, L. Lombard & Crous, C. cylindrospora (Ellis & Everh.) Rossman, L. Lombard & Crous, Clonostachys apocyni (Peck) Rossman, L. Lombard & Crous, C. aurantia (Penz. & Sacc.) Rossman, L. Lombard & Crous, C. blumenaviae (Rehm) Rossman, L. Lombard & Crous, C. gibberosa (Schroers) Rossman, L. Lombard & Crous, C. manihotis (Rick) Rossman, L. Lombard & Crous, C. parva (Schroers) Rossman, L. Lombard & Crous, C. tonduzii (Speg.) Rossman, L. Lombard & Crous, C. tornata (Höhn.) Rossman, L. Lombard & Crous, Coccinonectria pachysandricola (B.O. Dodge) L. Lombard & Crous, C. rusci (Lechat, Gardiennet & J. Fourn.) L. Lombard & Crous, Hydropisphaera fusigera (Berk. & Broome) Rossman, L. Lombard & Crous, Ilyonectria destructans (Zinssm.) Rossman, L. Lombard & Crous, I. macroconidialis (Brayford & Samuels) Rossman, L. Lombard & Crous, Mariannaea catenulatae (Samuels) L. Lombard & Crous, Nectriopsis rexiana (Sacc.) Rossman, L. Lombard & Crous, Neocosmospora ambrosia (Gadd & Loos) L. Lombard & Crous, N. falciformis (Carrion) L. Lombard & Crous, N. illudens (Berk.) L. Lombard & Crous, N. ipomoeae (Halst.) L. Lombard & Crous, N. monilifera (Berk. & Broome) L. Lombard & Crous, N. phaseoli (Burkh.) L. Lombard & Crous, N. plagianthi (Dingley) L. Lombard & Crous, N. ramosa (Bat. & H. Maia) L. Lombard & Crous, N. solani (Mart.) L. Lombard & Crous, N. termitum (Höhn.) L. Lombard & Crous, N. tucumaniae (T. Aoki, O'Donnell, Yos. Homma & Lattanzi) L. Lombard & Crous, N. virguliformis (O'Donnell & T. Aoki) L. Lombard & Crous, Neonectria candida (Ehrenb.) Rossman, L. Lombard & Crous, Penicillifer diparietisporus (J.H. Miller, Giddens & A.A. Foster) Rossman, L. Lombard & Crous, Rectifusarium ventricosum (Appel & Wollenw.) L. Lombard & Crous, Sarcopodium flavolanatum (Berk. & Broome) L. Lombard & Crous, S. mammiforme (Chardon) L. Lombard & Crous, S. oblongisporum (Y. Nong & W.Y. Zhuang) L. Lombard & Crous, S. raripilum (Penz. & Sacc.) L. Lombard & Crous, Sphaerostilbella penicillioides (Corda) Rossman, L. Lombard & Crous, S. aurifila (W.R. Gerard) Rossman, L. Lombard & Crous, Volutella asiana (J. Luo, X.M. Zhang & W.Y. Zhuang) L. Lombard & Crous, Xenoacremonium recifei (Le~ao & L^obo) L. Lombard & Crous; New name: Mariannaea pinicola L. Lombard & Crous; Typification: Epitypification (basionyms): Rectifusarium ventricosum Appel & Wollenw., Xenogliocladiopsis eucalyptorum Crous & W.B. Kendr.. Published online 29 January 2015; http://dx.doi.org/10.1016/j.simyco.2014.12.002. Hard copy: March 2015. INTRODUCTION and are of great importance to agriculture and medicine. They have been extensively exploited in industrial and commercial The order Hypocreales (Hypocreomycetidae, Sordariomycetes, applications (Rossman 1996). These fungi are generally char- Pezizomycotina, Ascomycota) includes approximately 2 700 acterised by the production of lightly to brightly coloured, ostio- fungal species from 240 genera, which are divided over eight late, perithecial ascomata, containing unitunicate asci with families (Kirk et al. 2008, Crous et al. 2014), with some genera hyaline ascospores; asexual morphs, the form most frequently still classified as incertae sedis (Lumbsch & Huhndorf 2007). encountered in nature, are moniliaceous and phialidic (Rogerson Members of this order are globally found in various environments 1970, Samuels & Seifert 1987, Rossman 1996, 2000, Rossman Studies in Mycology Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre. Copyright © 2014, CBS-KNAW Fungal Biodiversity Centre. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/3.0/). 189 LOMBARD ET AL. et al. 1999). The taxonomic importance of these asexual morphs DNA isolation, amplification and analyses has only been recognised relatively recently (Rossman 2000, Seifert & Samuels 2000). The morphology of asexual forms is Total genomic DNA was extracted from 7-d-old single-conidial often crucial for the morphological identification of these fungi. cultures growing on 2 % (w/v) malt extract agar (MEA) using The family Nectriaceae is characterised by uniloculate the method of Damm et al. (2008). Partial gene sequences were ascomata that are white, yellow, orange-red or purple. These determined for the 28S large subunit (LSU) nrDNA, the internal ascomata change colour in KOH, and are not immersed in a transcribed spacer region and intervening 5.8S nrRNA gene well-developed stroma. They are associated with phialidic (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA asexual morphs producing amerosporous to phragmosporous polymerase II largest subunit (rpb1), RNA polymerase II second conidia (Rossman et al. 1999, Rossman 2000). This family largest subunit (rpb2), β-tubulin (tub2), histone H3 (his3), includes around 55 genera that were originally based on translation elongation factor 1-alpha (tef1), calmodulin (cmdA) asexual or sexual morphs. The genera include approximately and α-actin (act) using the primers and PCR protocols listed in 900 species (www.mycobank.org; www.indexfungorum.org). Table 2. Integrity of the sequences was ensured by sequencing The majority of these species are soil-borne saprobes or weak the amplicons in both directions using the same primer pairs as to virulent, facultative or obligate plant pathogens, while some were used for amplification. A consensus sequence for each are facultatively fungicolous or insecticolous (Rossman et al. locus was assembled in MEGA v. 6 (Tamura et al. 2013) and 1999, Rossman 2000, Chaverri et al. 2011, Gr€afenhan et al. additional sequences were obtained from GenBank (Table 1). 2011, Schroers et al. 2011). Several species have also been Subsequent alignments for each locus were generated in reported as important opportunistic pathogens of humans MAFFT v. 7 (Katoh & Standley 2013) and manually corrected (Chang et al. 2006, de Hoog et al. 2011, Guarro
Recommended publications
  • Mémoire De Master
    الجمهىريت الجسائريت الديمقراطيت الشعبيت République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra MÉMOIRE DE MASTER Sciences de la Nature et de la Vie Sciences Agronomiques Protection des Végétaux Réf. : ………………………… Présenté et soutenu par : Melle. Malak Filali Etude du pouvoir suppressif d’un sol vis-à-vis de Fusarium oxysporum f.sp. lycopersici race 1, agent causal de la flétrissure de la tomate Jury : M. Khechai Salim MAA Mohammed Khider - Biskra Président M. Mehaoua Mohammed Seghir MCA Mohammed Khider - Biskra Examinateur M. Djekiref Laâla MAA Mohammed Khider - Biskra Rapporteur Année universitaire : 2019 - 2020 DEDICACES Je dédie ce travail à mes très chers parents que Dieu les bénissent. A ma Mère Elle a tout le mérite au long de mes études sa bienveillance et ses conseils ont été très précieux A mon Père Qui a œuvré pendant des années à notre bien être et qui a consenti de bien lourds efforts pour nous permettre de mener à bien nos études. A mon cher frère et ma chère sœur et ma chère cousine Asma REMERCIEMENTS Tout d’abord je remercie très vivement M. Djekiref laâla, promoteur de ce travail, pour avoir accepté et pour l’intéressant sujet, pour m’avoir guidée, de m’avoir fait bénéficier de ses connaissances et conseils en phytopathologie et qui a assuré le suivi scientifique de ce travail avec son expérience et ses encouragements. Je tiens également à remercier les membres du jury. Un vif remerciement à M. Khechai salim, pour toute son aide et ses conseils judicieux et son guide précieux et ses encouragements.
    [Show full text]
  • Illuminating Type Collections of Nectriaceous Fungi in Saccardo's
    Persoonia 45, 2020: 221–249 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.09 Illuminating type collections of nectriaceous fungi in Saccardo’s fungarium N. Forin1, A. Vizzini 2,3,*, S. Nigris1,4, E. Ercole2, S. Voyron2,3, M. Girlanda2,3, B. Baldan1,4,* Key words Abstract Specimens of Nectria spp. and Nectriella rufofusca were obtained from the fungarium of Pier Andrea Saccardo, and investigated via a morphological and molecular approach based on MiSeq technology. ITS1 and ancient DNA ITS2 sequences were successfully obtained from 24 specimens identified as ‘Nectria’ sensu Saccardo (including Ascomycota 20 types) and from the type specimen of Nectriella rufofusca. For Nectria ambigua, N. radians and N. tjibodensis Hypocreales only the ITS1 sequence was recovered. On the basis of morphological and molecular analyses new nomenclatural Illumina combinations for Nectria albofimbriata, N. ambigua, N. ambigua var. pallens, N. granuligera, N. peziza subsp. ribosomal sequences reyesiana, N. radians, N. squamuligera, N. tjibodensis and new synonymies for N. congesta, N. flageoletiana, Sordariomycetes N. phyllostachydis, N. sordescens and N. tjibodensis var. crebrior are proposed. Furthermore, the current classifi- cation is confirmed for Nectria coronata, N. cyanostoma, N. dolichospora, N. illudens, N. leucotricha, N. mantuana, N. raripila and Nectriella rufofusca. This is the first time that these more than 100-yr-old specimens are subjected to molecular analysis, thereby providing important new DNA sequence data authentic for these names. Article info Received: 25 June 2020; Accepted: 21 September 2020; Published: 23 November 2020. INTRODUCTION to orange or brown perithecia which do not change colour in 3 % potassium hydroxide (KOH) or 100 % lactic acid (LA) Nectria, typified with N.
    [Show full text]
  • A Five-Gene Phylogeny of Pezizomycotina
    Mycologia, 98(6), 2006, pp. 1018–1028. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 A five-gene phylogeny of Pezizomycotina Joseph W. Spatafora1 Burkhard Bu¨del Gi-Ho Sung Alexandra Rauhut Desiree Johnson Department of Biology, University of Kaiserslautern, Cedar Hesse Kaiserslautern, Germany Benjamin O’Rourke David Hewitt Maryna Serdani Harvard University Herbaria, Harvard University, Robert Spotts Cambridge, Massachusetts 02138 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Wendy A. Untereiner Department of Botany, Brandon University, Brandon, Franc¸ois Lutzoni Manitoba, Canada Vale´rie Hofstetter Jolanta Miadlikowska Mariette S. Cole Vale´rie Reeb 2017 Thure Avenue, St Paul, Minnesota 55116 Ce´cile Gueidan Christoph Scheidegger Emily Fraker Swiss Federal Institute for Forest, Snow and Landscape Department of Biology, Duke University, Box 90338, Research, WSL Zu¨ rcherstr. 111CH-8903 Birmensdorf, Durham, North Carolina 27708 Switzerland Thorsten Lumbsch Matthias Schultz Robert Lu¨cking Biozentrum Klein Flottbek und Botanischer Garten der Imke Schmitt Universita¨t Hamburg, Systematik der Pflanzen Ohnhorststr. 18, D-22609 Hamburg, Germany Kentaro Hosaka Department of Botany, Field Museum of Natural Harrie Sipman History, Chicago, Illinois 60605 Botanischer Garten und Botanisches Museum Berlin- Dahlem, Freie Universita¨t Berlin, Ko¨nigin-Luise-Straße Andre´ Aptroot 6-8, D-14195 Berlin, Germany ABL Herbarium, G.V.D. Veenstraat 107, NL-3762 XK Soest, The Netherlands Conrad L. Schoch Department of Botany and Plant Pathology, Oregon Claude Roux State University, Corvallis, Oregon 97331 Chemin des Vignes vieilles, FR - 84120 MIRABEAU, France Andrew N. Miller Abstract: Pezizomycotina is the largest subphylum of Illinois Natural History Survey, Center for Biodiversity, Ascomycota and includes the vast majority of filamen- Champaign, Illinois 61820 tous, ascoma-producing species.
    [Show full text]
  • Ascospore Diversity of Bryophilous Hypocreales and Two New Hepaticolous Nectria Species
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: http://www.tandfonline.com/loi/umyc20 Ascospore diversity of bryophilous Hypocreales and two new hepaticolous Nectria species Peter Döbbeler To cite this article: Peter Döbbeler (2005) Ascospore diversity of bryophilous Hypocreales and two new hepaticolous Nectria species, Mycologia, 97:4, 924-934 To link to this article: http://dx.doi.org/10.1080/15572536.2006.11832784 Published online: 27 Jan 2017. Submit your article to this journal View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=umyc20 Download by: [University of Newcastle, Australia] Date: 28 March 2017, At: 09:31 Mycologia, 97(4), 2005, pp. 924±934. q 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Ascospore diversity of bryophilous Hypocreales and two new hepaticolous Nectria species Peter DoÈbbeler1 tinct microniches on their hosts, such as ventral leaf Ludwig-Maximilians-UniversitaÈt MuÈnchen, FakultaÈt borders or perianths in Jungermanniales or adaxial fuÈr Biologie, Systematische Botanik und Mykologie, surfaces of leaves in Polytrichales. Several species reg- Menzinger Straûe 67, D-80638 MuÈnchen, Germany ularly develop ascomata on the ventral side of foliose hepatics and perforate host leaves. Ascomata are glo- bose or pyriform, setose or nonsetose, nonstromatic Abstract: Hypocreales represents one of the most perithecia of varying size, and color varies from successful orders of ascomycetes on mosses and he- orange-red to hyaline. Excipulum structures repre- patics, and more than 30 obligately bryophilous spe- sent a variety of tissue types. Hyphae offer additional cies belonging to seven genera of Bionectriaceae and important diagnostic features.
    [Show full text]
  • Phylogeny and Systematics of the Genus Calonectria
    available online at www.studiesinmycology.org Studies in Mycology 66: 31–69. 2010. doi:10.3114/sim.2010.66.03 Phylogeny and systematics of the genus Calonectria L. Lombard1*, P.W. Crous2, B.D. Wingfield3 and M.J. Wingfield1 1Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; 2CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 3Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa *Correspondence: Lorenzo Lombard, [email protected] Abstract: Species of Calonectria are important plant pathogens, several of which have a worldwide distribution. Contemporary taxonomic studies on these fungi have chiefly relied on DNA sequence comparisons of the β-tubulin gene region. Despite many new species being described, there has been no phylogenetic synthesis for the group since the last monographic study almost a decade ago. In the present study, the identity of a large collection of Calonectria isolates from various geographic regions was determined using morphological and DNA sequence comparisons. This resulted in the discovery of seven new species; Ca. densa, Ca. eucalypti, Ca. humicola, Ca. orientalis, Ca. pini, Ca. pseudoscoparia and Ca. sulawesiensis, bringing the total number of currently accepted Calonectria species to 68. A multigene phylogeny was subsequently constructed for all available Calonectria spp., employing seven gene regions, namely actin, β-tubulin, calmodulin, histone H3, the internal transcribed spacer regions 1 and 2 and the 5.8S gene of the ribosomal RNA, 28S large subunit RNA gene and translation elongation 1-alpha.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Novel Species of Cylindrocarpon (Neonectria) and Campylocarpon Gen
    STUDIES IN MYCOLOGY 50: 431–455. 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.) Francois Halleen1, Hans-Josef Schroers2,3*, Johannes Z. Groenewald3 and Pedro W. Crous3 1ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), P. Bag X5026, Stellen- bosch, 7599, and the Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Matieland 7602, South Africa; 2Agricultural Institute of Slovenia, Hacquetova 17, p.p. 2553, 1001 Ljubljana, Slovenia; 3Centraalbureau voor Schimmelcul- tures, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands *Correspondence: Hans-Josef Schroers, [email protected] Abstract: Four Cylindrocarpon or Cylindrocarpon-like taxa isolated from asymptomatic or diseased Vitis vinifera plants in nurseries and vineyards of South Africa, New Zealand, Australia, and France were morphologically and phylogenetically compared with other Neonectria/Cylindrocarpon taxa. Sequences of the partial nuclear large subunit ribosomal DNA (LSU rDNA), internal transcribed spacers 1 and 2 of the rDNA including the 5.8S rDNA gene (ITS), and partial ȕ-tubulin gene introns and exons were used for phylogenetic inference. Neonectria/Cylindrocarpon species clustered in mainly three groups. One monophyletic group consisted of three subclades comprising (i) members of the Neonectria radicicola/Cylindrocarpon destructans complex, which contained strains isolated from grapevines in South Africa, New Zealand, and France; (ii) a Neonectria/Cylindrocarpon species isolated from grapevines in South Africa, Canada (Ontario), Australia (Tasmania), and New Zealand, described here as Cylindrocarpon macrodidymum; and (iii) an assemblage of species closely related to strains identified as Cylindrocarpon cylindroides, the type species of Cylindrocarpon.
    [Show full text]
  • Molecular Phylogeny, Detection and Epidemiology of Nectria Galligena Bres
    Molecular Phylogeny, Detection and Epidemiology of Nectria galligena Bres. the incitant of Nectria Canker on Apple By Stephen Richard Henry Langrell April, 2000 Department of Biological Sciences Wye College, University of London Wye, Ashford, Kent. TN25 5AH A thesis submitted in partial fulfillment of the requirements governing the award of the degree of Doctor of Philosophy of the University of London (2) Abstract Nectria canker, incited by Nectria galligena (anamorph Cylindrocarpon heteronema), is prevalent in apple and pear orchards in all temperate growing areas of the world where it causes loss of yield by direct damage to trees, and rotting in stored fruit. Interpretation of the conventional epidemiology, from which current control measures are designed, is often inconsistent with the distribution of infections, particularly in young orchards, and may account for poor control in some areas, suggesting many original assumptions concerning pathogen biology and spread require revision. Earlier work has implicated nurseries as a source of infection. This thesis describes experiments designed to test this hypothesis and the development and application of molecular tools to examine intra- specific variation in N. galligena and its detection in woody tissue. Two experimental trials based on randomised block designs were undertaken. In the first, trees comprising cv. Queen Cox on M9 rootstocks from five UK and five continental commercial nurseries were planted at a single site in East Kent. The incidence of Nectria canker over the ensuing five years was monitored. Significant differences in percentage of trees with canker between nurseries were observed, indicating a source effect. Analysis of data from a second experiment, comprising M9 rootstocks from three nurseries, budded with cv.
    [Show full text]
  • Cylindrocarpon Root Rot: Multi-Gene Analysis Reveals Novel Species Within the Ilyonectria Radicicola Species Complex
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications Mycol Progress DOI 10.1007/s11557-011-0777-7 ORIGINAL ARTICLE Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex Ana Cabral & Johannes Z. Groenewald & Cecília Rego & Helena Oliveira & Pedro W. Crous Received: 29 March 2011 /Revised: 2 July 2011 /Accepted: 11 July 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Ilyonectria radicicola and its Cylindrocarpon-like hosts, the most common being Cyclamen, Lilium, Panax, anamorph represent a species complex that is commonly Pseudotsuga, Quercus and Vitis. associated with root rot disease symptoms on a range of hosts. During the course of this study, several species could Keywords Cylindrocarpon root rot . Nectria-like fungi . be distinguished from I. radicicola sensu stricto based on Phylogeny. Systematics morphological and culture characteristics. DNA sequence analysis of the partial β-tubulin, histone H3, translation elongation factor 1-α and nuclear ribosomal RNA-Internal Introduction Transcribed Spacer (nrRNA-ITS) genes were employed to provide further support for the morphological species The genus Cylindrocarpon was introduced in 1913 by resolved among 68 isolates associated with root rot disease Wollenweber, with C. cylindroides as type. Cylindrocarpon symptoms. Of the various loci screened, nrRNA-ITS and Cylindrocarpon-like species have since been commonly sequences were the least informative, while histone H3 associated with root and decay of woody and herbaceous sequences were the most informative, resolving the same plants (Domsch et al. 2007).
    [Show full text]
  • Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
    available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N.
    [Show full text]
  • High-Throughput Sequencing of Fungal Communities Across the Perennial Ice Block of Scărisoara̦ Ice Cave
    Annals of Glaciology 59(77) 2018 doi: 10.1017/aog.2019.6 134 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. High-throughput sequencing of fungal communities across the perennial ice block of Scărisoara̦ Ice Cave Antonio MONDINI,1 Johanna DONHAUSER,2 Corina ITCUS,1 Constantin MARIN,3 Aurel PERȘOIU,1,4,5 Paris LAVIN,6,7 Beat FREY,2 Cristina PURCAREA1 1Department of Microbiology, Institute of Biology, Bucharest, Romania E-mail: [email protected] 2Swiss Federal Research Institute WSL, Birmensdorf, Switzerland 3Emil Racovita Institute of Speleology, Bucharest, Romania 4Stable Isotope Laboratory, Ștefan cel Mare University, Suceava, Romania 5Emil Racovită̦Institute of Speleology, Cluj-Napoca, Romania 6Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile 7Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile ABSTRACT. This survey presents the first high-throughput characterisation of fungal distribution based on ITS2 Illumina sequencing of uncultured microbiome from a 1500 years old perennial ice deposit in Scărisoara̦ Ice Cave, Romania. Of the total of 1 751 957 ITS2 sequences, 64% corresponded to 182 fungal operational taxonomic units, showing a low diversity, particularly in older ice strata, and a distinct temporal distribution pattern.
    [Show full text]
  • Tropical Mycology: Volume 2, Micromycetes
    Tropical Mycology: Volume 2, Micromycetes Tropical Mycology: Volume 2, Micromycetes Edited by Roy Watling, Juliet C. Frankland, A.M. Ainsworth, Susan Isaac and Clare H. Robinson CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi-publishing.org © CAB International 2002. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Tropical mycology / edited by Roy Watling ... [et al.]. p. cm. Selected papers of the Millenium Symposium held April 2000 at the Liverpool John Moores University and organized by the British Mycological Society. Includes bibliographical references and index. Contents: v. 1. Macromycetes. ISBN 0-85199-542-X (v. 1 : alk. paper) 1. Mycology--Tropics--Congresses. 2. Fungi--Tropics--Congresses. I. Watling, Roy. QK615.7.T76 2001 616.9¢69¢00913--dc21 2001025877 ISBN 0 85199 543 8 Typeset in Photina by Wyvern 21 Ltd. Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn. Contents Dedication vii Contributors ix Preface xi 1 Why Study Tropical Fungi? 1 D.L.
    [Show full text]