BRAIN PLASTICITY Neuroplasticity

Total Page:16

File Type:pdf, Size:1020Kb

BRAIN PLASTICITY Neuroplasticity BRAIN PLASTICITY Neuroplasticity: _________________________. Happens in at least 3 ways: - ________________________________________ __________________ - ______________________________ - ________________________________________ Recently, it was found that “new” neurons and glial cells are born _____________ in specific brain regions - reorganization. Brain plasticity occurs during: - _______________ - _______________________ - ______________________________ DEVELOPMENT OF NERVOUS SYSTEM: 1. Neural proliferation (neurogenesis - neuronal “birth”) 2. Migration and differentiation (neural cell precursors travel “home” and “grow up”) 3. Axon growth and synapse formation (growth cones and filopodia) 4. Neuron death and synaptic pruning: too many neurons and synapses produced - competition for neurotrophic factors (ex., NGF - ___________________) Examples of the effects of EXPERIENCE on NEURAL DEVELOPMENT and PLASTICITY Early visual experience - studies of early __________________________ found deprived eye to ______ ability to activate visual cortex - only occurs if other eye is open, not if it is also deprived - ____________________ - these are structural effects - ________________ - concept of _______________________________ Two eyes open One eye shut Environment and the cortex - studies of rat litters separated at birth into _______________________________________ - enriched environments produces: - ________________ - ______________________ - __________________ - more glial cells; - larger postsynaptic zones; - larger protein content. - some of these effects can be produced in adult animals by giving them extensive maze training LEARNING AND MEMORY Learning: ________________________________ _________________________________________ _________________________________________ ________________________________ Memory: _________________________________ability to recall or recognize previous ________________________________________experience in the form of behavioral change. If behavior at a later time B is different than at earlier time A, say that learning has taken place between time A and B TYPES OF LEARNING: NON-ASSOCIATIVE LEARNING: _________ _______________________________________ ________________________ A. Habituation: __________________________ ______________________________________ __________ B. Sensitization: __________________________ _______________________________________ ___________ Marine snail “Aplysia Californica” Tail Head Gill-withdrawal reflex used to study habituation and sensitization (Eric Kandel’s laboratory) Habituation - touch siphon repeatedly every 30 sec leads to short-term habituation of gill-withdrawal reflex - can lead to long___________________-term habituation if touch is repeated over days Sensitization - one electric shock to the tail can lead to short- term sensitization of gill-withdrawal reflex - several electric shocks can lead to sensitization that will be observed for weeks (long-term) ASSOCIATIVE LEARNING: _______________ _________________________________________ _______________ A. Classical conditioning (also called Pavlovian_________ conditioning____________): the__________________________ process by which a neutral stimulus________________________________________ acquires meaning through associations with___________________ another stimulus (often a biologically relevant stimulus) Terminology UCS = ____________________ (food, water, etc.) UCR = _____________________ (salivation, etc.) Examples: UCS - - - - - - - - - - - > UCR pinprick withdrawal food salivation sudden loud noise startle airpuff eyeblink CS = ________________________ (bell, light, etc.) CR = _____________________ (salivation to bell) so CR is the ____________ response Development of Classical Conditioning Example: conditioning of emotional responses - Pavlov’s dog) UCS - - - - - - - - - - - - - > UCR (food) (salivation) Initially CS - - - - - - - - - - > no response (bell - neutral stimulus) Repeated pairings of CS + UCS - - - - - - > UCR (bell) + (food) (salivation) Bell eventually comes to elicit salivation without the presentation of food CS - - - - - - - - - - - - - - - - > CR (bell) (salivation) Note that salivation here is called conditioned response (CR) because it is not elicited directly by food; classical conditioning has taken place Also conditioning of motor responses - example of eye blink conditioning CLASSICAL CONDITIONING: NEURAL BASIS Classical conditioning of emotional responses (freezing in rats - changes in heart rate/blood pressure or skin conductance in humans) is learned after only a few pairings Electric shocks produce “freezing” in rats and changes in heart rate/skin conductance in humans Repeatedly pair auditory stimulus (CS) with shocks (UCS). - the auditory CS come to elicit freezing and changes in heart rate/skin conductances - the ________________________ to produce classical conditioning of emotional responses Classical conditioning of motor responses, such as eyeblink in response to puffs of air is learned only after 100s of pairings of an auditory stimulus with puffs of air - the _______________ is necessary to produce classical conditioning of motor responses B. Instrumental Conditioning (also called _______ ______________): _________________________ ________________________________________ __________________________________ Terminology: Discriminative stimulus (SD): _______________cue that triggers the ___________________________________motor response (ex. sight of a lever bar). Favorable outcome: positive________________________ reinforcers (ex. food, __________________________________________water, etc) or termination of negative reinforcers _____________________________(termination of pain, isolation, etc). Example of instrumental conditioning: Cats have to learn to press a lever in order to obtain palatable food (Thorndike’s experiment) Neural Basis of Instrumental Conditioning: - _____________________________ necessary for instrumental motor response learning - ________________________________________ _______ necessary for “detection” of reinforcer. HUMAN MEMORY The various stages of memory: I. _______________Sensory registers (high capacity, low duration) With Attention - II. Short_________________-term memory (low capacity & duration) With Consolidation - III. Long________________-term memory (high capacity & duration) Retrieval - recall and recognition Implicit memory (similar to _________________): __________________________________________ ___________________________ Examples: - mirror drawing tasks - playing video games - riding a bicycle - word associates (define fall after different stories) Explicit memory (similar to _________________): ________________________________ Two types - _______________ (time and places) - _________ (facts and knowledge) NEUROBIOLOGICAL BASES OF MEMORY Karl Lashley (1920’s - 1950’s) and the search for the “engram” or memory trace: _________ __________________ He derived two principles from his studies: - ______________________= memories stored diffusely all over neocortex - _______________________= neocortex all over the brain plays an equal role in memory storage What was wrong with these interpretations? - task difficulty; - different “learning” systems/strategy used to solve problems. Donald Hebb (early 1950’s) and ______________ of short-term memories into long-term memories via ________________________________ - cell assemblies: ________________________ - reverberation: __________________________ _______________________________ ____________ LESSONS FROM HUMAN AMNESIAS Amnesia: _________________ Retrograde amnesia: forget events _______ brain trauma Anterograde amnesia: forget events _____ brain trauma The beginnings of Explicit Memory mechanisms Case of H.M.: ____________________________ ______________ because of severe epilepsy (removal of enthorinal and perirhinal cortex, part of amygdala and most of hippocampus) H.M. experienced: 1. No loss of intelligence (IQ) 2. Mild retrograde amnesia 3. Devastating anterograde amnesia What we learned from H.M.: 1. Supports________________________________________ short- & long-term memory processes 2. Existence____________________________________ of explicit vs. implicit memory 3. Existence________________________________ of consolidation process 4. Challenges_____________________________________ view of diffuse memory process 5. Implicates_______________________________________ discrete brain regions in memory Implicit memories: various forms of implicit knowledge. Amygdala: _______________________________ Cerebellum: _______________________________ Basal ganglia: _____________________________ __________________________.
Recommended publications
  • Classical Conditioning Without Awareness: an Electrophysiological Investigation
    Classical conditioning without awareness: An electrophysiological investigation A Thesis Presented to The Division of Philosophy, Religion, Psychology, and Linguistics Reed College In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts Jasmine Huang December 2016 Approved for the Division (Psychology) Timothy Hackenberg Michael Pitts Acknowledgements There is no way to express the amount of gratitude I feel towards every single person who has contributed to my growth as a student and as a human being, but I will try. My family, who has worked tirelessly to support me through life and years of school, I will never know how to repay that debt. My advisors, who have endlessly encouraged me and provided me with every opportunity I could have wished for. Tim who has believed in and supported me from my first year at Reed right up until the end. Enriqueta who was always willing to discuss experiments outside of class (even when I wasn’t in her class to begin with). Michael who inspired me every day with his unending enthusiasm and drive for research. The amazing psychology department staff who are always making sure that everything is running as smoothly as it can be. Joan, our silent hero who puts out the metaphorical fires every day. Greg, one the most lively presences in the animal colony, whose love for all of the critters is unparalleled. Chris, whose attention to detail and patience for dumb questions were invaluable to me during this process. Lavinia, whose realism and dark humor made for the best introduction into real labwork that I could have asked for.
    [Show full text]
  • Focusing on the Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries
    33 Focusing on The Re-Emergence of Primitive Reflexes Following Acquired Brain Injuries Resiliency Through Reconnections - Reflex Integration Following Brain Injury Alex Andrich, OD, FCOVD Scottsdale, Arizona Patti Andrich, MA, OTR/L, COVT, CINPP September 19, 2019 Alex Andrich, OD, FCOVD Patti Andrich, MA, OTR/L, COVT, CINPP © 2019 Sensory Focus No Pictures or Videos of Patients The contents of this presentation are the property of Sensory Focus / The VISION Development Team and may not be reproduced or shared in any format without express written permission. Disclosure: BINOVI The patients shown today have given us permission to use their pictures and videos for educational purposes only. They would not want their images/videos distributed or shared. We are not receiving any financial compensation for mentioning any other device, equipment, or services that are mentioned during this presentation. Objectives – Advanced Course Objectives Detail what primitive reflexes (PR) are Learn how to effectively screen for the presence of PRs Why they re-emerge following a brain injury Learn how to reintegrate these reflexes to improve patient How they affect sensory-motor integration outcomes How integration techniques can be used in the treatment Current research regarding PR integration and brain of brain injuries injuries will be highlighted Cases will be presented Pioneers to Present Day Leaders Getting Back to Life After Brain Injury (BI) Descartes (1596-1650) What is Vision? Neuro-Optometric Testing Vision writes spatial equations
    [Show full text]
  • Improvement and Neuroplasticity After Combined Rehabilitation to Forced Grasping
    Hindawi Case Reports in Neurological Medicine Volume 2017, Article ID 1028390, 7 pages https://doi.org/10.1155/2017/1028390 Case Report Improvement and Neuroplasticity after Combined Rehabilitation to Forced Grasping Michiko Arima, Atsuko Ogata, Kazumi Kawahira, and Megumi Shimodozono Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan Correspondence should be addressed to Michiko Arima; [email protected] Received 20 September 2016; Revised 31 December 2016; Accepted 9 January 2017; Published 6 February 2017 Academic Editor: Pablo Mir Copyright © 2017 Michiko Arima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The grasp reflex is a distressing symptom but the need to treat or suppress it has rarely been discussed in the literature. We report the case of a 17-year-old man who had suffered cerebral infarction of the right putamen and temporal lobe 10 years previously. Forced grasping of the hemiparetic left upper limb was improved after a unique combined treatment. Botulinum toxin typeA (BTX-A) was first injected into the left biceps, wrist flexor muscles, and finger flexor muscles. Forced grasping was reduced along with spasticity of the upper limb. In addition, repetitive facilitative exercise and object-related training were performed under low-amplitude continuous neuromuscular electrical stimulation. Since this 2-week treatment improved upper limb function, we compared brain activities, as measured by near-infrared spectroscopy during finger pinching, before and after the combined treatment.
    [Show full text]
  • The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive
    Hindawi Publishing Corporation International Journal of Pediatrics Volume 2012, Article ID 191562, 10 pages doi:10.1155/2012/191562 Review Article The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive Reflex Responses Yasuyuki Futagi, Yasuhisa Toribe, and Yasuhiro Suzuki Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan Correspondence should be addressed to Yasuyuki Futagi, [email protected] Received 27 October 2011; Accepted 30 March 2012 Academic Editor: Sheffali Gulati Copyright © 2012 Yasuyuki Futagi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The plantar grasp reflex is of great clinical significance, especially in terms of the detection of spasticity. The palmar grasp reflex also has diagnostic significance. This grasp reflex of the hands and feet is mediated by a spinal reflex mechanism, which appears to be under the regulatory control of nonprimary motor areas through the spinal interneurons. This reflex in human infants can be regarded as a rudiment of phylogenetic function. The absence of the Moro reflex during the neonatal period and early infancy is highly diagnostic, indicating a variety of compromised conditions. The center of the reflex is probably in the lower region of the pons to the medulla. The phylogenetic meaning of the reflex remains unclear. However, the hierarchical interrelation among these primitive reflexes seems to be essential for the arboreal life of monkey newborns, and the possible role of the Moro reflex in these newborns was discussed in relation to the interrelationship.
    [Show full text]
  • The Concept of the Reflex in the Description of Behavior 321
    THE CONCEPT OF THE REFLEX IN THE DESCRIPTION OF BEHAVIOR 321 The present paper was published in the Journal of General Psychology, I I 2 * s here the editor. ( 93 > 5' 4 7~45$) an^ reprinted by permission of INTRODUCTORY NOTE THE EXTENSION of the concept of the reflex to the description of the behavior of intact organisms is a common practice in modern theorizing. Nevertheless, we owe most of our knowledge of the reflex to investigators who have dealt only with "preparations," and who have never held themselves to be con- cerned with anything but a subsidiary function of the central nervous system. Doubtless, there is ample justification for the use of relatively simple systems in an early investigation. But it is true, nevertheless, that the concept of the reflex has not emerged unmarked by such a circumstance of its development. In its extension to the behavior of intact organisms, that is to say, the his- torical definition finds itself encumbered with what now appear to be super- fluous interpretations. The present paper examines the concept of the reflex and attempts to evaluate the historical definition. It undertakes eventually to frame an alterna- tive definition, which is not wholly in despite of the historical usage. The reader will recognize a method of criticism first formulated with respect to scientific Ernst Mach in The Science and concepts by [ of Mechanics} per- haps better stated by Henri Poincare. To the works of these men and to Bridgman's excellent application of the method [in The Logic of Modern Physics] the reader is referred for any discussion of the method qua method.
    [Show full text]
  • Classic Signs Revisited Postgrad Med J: First Published As 10.1136/Pgmj.71.841.645 on 1 November 1995
    Postgrad MedJ3 1995; 71: 645-648 C The Fellowship of Postgraduate Medicine, 1995 Classic signs revisited Postgrad Med J: first published as 10.1136/pgmj.71.841.645 on 1 November 1995. Downloaded from The Babinski reflex J van Gijn Summary The information that may be deduced from scratching a patient's sole, is as The plantar response is a reflex important as a diagnostic sign as it is simple to elicit. When the great toe moves that involves not only the toes, but upward (sign of Babinski), this signifies, as everybody knows, a disturbance of all muscles that shorten the leg. In the pyramidal tract. This explains why few patients with neurological symptoms the newborn the synergy is brisk, can avoid having their plantar reflexes examined - often to their great surprise, or involving all flexor muscles of the even alarm if the trouble is in the head. Unfortunately the reality is less simple leg; these include the toe 'exten- than the theory. Often it is difficult to decide whether the great toe actually does sors', which also shorten the leg go up: the toe movements may be slight, vacillate between up and down, seem on contraction and therefore are down one day but up the next, or be interrupted by voluntary withdrawal flexors in a physiological sense. As movements. It is therefore no great surprise that such difficult plantar responses the nervous system matures and give rise to wide variations between doctors, or even between different occasions the pyramidal tract gains more with the same observer. Under these circumstances the interpretation may be control over spinal motoneurones influenced by the physician's previous expectations.' Since it is obviously the flexion synergy becomes less important for the diagnosis in individual patients whether or not a lesion of the brisk, and the toe 'extensors' are pyramidal system exists, there is a need for criteria that are both reliable and no longer part of it.
    [Show full text]
  • The Brain That Changes Itself
    The Brain That Changes Itself Stories of Personal Triumph from the Frontiers of Brain Science NORMAN DOIDGE, M.D. For Eugene L. Goldberg, M.D., because you said you might like to read it Contents 1 A Woman Perpetually Falling . Rescued by the Man Who Discovered the Plasticity of Our Senses 2 Building Herself a Better Brain A Woman Labeled "Retarded" Discovers How to Heal Herself 3 Redesigning the Brain A Scientist Changes Brains to Sharpen Perception and Memory, Increase Speed of Thought, and Heal Learning Problems 4 Acquiring Tastes and Loves What Neuroplasticity Teaches Us About Sexual Attraction and Love 5 Midnight Resurrections Stroke Victims Learn to Move and Speak Again 6 Brain Lock Unlocked Using Plasticity to Stop Worries, OPsessions, Compulsions, and Bad Habits 7 Pain The Dark Side of Plasticity 8 Imagination How Thinking Makes It So 9 Turning Our Ghosts into Ancestors Psychoanalysis as a Neuroplastic Therapy 10 Rejuvenation The Discovery of the Neuronal Stem Cell and Lessons for Preserving Our Brains 11 More than the Sum of Her Parts A Woman Shows Us How Radically Plastic the Brain Can Be Appendix 1 The Culturally Modified Brain Appendix 2 Plasticity and the Idea of Progress Note to the Reader All the names of people who have undergone neuroplastic transformations are real, except in the few places indicated, and in the cases of children and their families. The Notes and References section at the end of the book includes comments on both the chapters and the appendices. Preface This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations.
    [Show full text]
  • Comparison Between Two Methodological Paradigms of Conditioned Place Preference with Methlyphenidate
    East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 12-2013 Comparison between Two Methodological Paradigms of Conditioned Place Preference with Methlyphenidate. Bryce D. Watson East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/honors Part of the Psychiatry and Psychology Commons Recommended Citation Watson, Bryce D., "Comparison between Two Methodological Paradigms of Conditioned Place Preference with Methlyphenidate." (2013). Undergraduate Honors Theses. Paper 89. https://dc.etsu.edu/honors/89 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Watson 1 Comparison between Two Methodological Paradigms of Conditioned Place Preference with Methlyphenidate By Bryce Watson The Honors College Honors in Discipline Program East Tennessee State University Department of Psychology December 9, 2013 Russell Brown, Faculty Mentor David Harker, Faculty Reader Eric Sellers, Faculty Reader Watson 2 Abstract The aim of this thesis is to examine the mechanisms of Methylphenidate (MPH) on Conditioned Place Preference (CPP), a behavioral test of reward. The psychostimulant MPH is therapeutically used in the treatment of ADHD, but has been implicated in many pharmacological actions related to drug addiction and is considered to have abuse potential. Past work in our lab and others have shown substantial sex-differences in the neuropharmacological profile of MPH. Here a discussion of the relevant mechanisms of action of MPH and its relationship to neurotrophins and CPP are reviewed.
    [Show full text]
  • The Leg Cross Flexion-Extension Reflex: Biomechanics, Neurophysiology, MNRI® Assessment, and Repatterning
    Po R t a l t o n e u R o d e ve l o P m e n t a n d le a R n i n g t h e o R y a n d h i s t o R y o f m n R i ® R e f l e x i n t e g R a t i o n The Leg Cross Flexion-Extension Reflex: Biomechanics, Neurophysiology, MNRI® Assessment, and Repatterning Elvin Akhmatov, MA, Ph.D. Student, Orlando, FL, USA; Jakub Buraczewski, PT, MNRI® Core Specialist; Denis Masgutov, Director of SMEI , Poland Introduction wo separate reflexes, Phillipson’s Withdrawal and Leg Cross Flexion-Extension, are eas- ily confused because they have similar motor Tpatterns and are elicited by stimuli that can appear to be alike and usually manifest at the same time. The authors’ purpose is to distinguish clearly between these two reflexes and to present detailed information on the one they refer to as the Leg Cross Flexion-Extension Reflex. The other reflex, often con- Elvin Akhmatov Jakub Buraczewski Denis Masgutov fused with Leg Cross Flexion-Extension, goes by sev- eral names: Phillipson’s Withdrawal, Phillipson’s Leg Flexion, Crossed Extensor, and Leg Withdrawal Reflex, among others. For clarity in this paper, the other reflex will be referred to as Phillipson’s Withdrawal. On the neurophysiological level, these two reflex patterns present the work of two different nerve tracts – tactile and proprioceptive, activated and processed by different receptors. The Leg Cross Flexion-Extension Reflex is extremely important for overall sensory-motor integration, mo- tor programing and control.
    [Show full text]
  • Normal Plantar Response: Integration of Flexor and Extensor Reflex Components
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.26.1.39 on 1 February 1963. Downloaded from J. Neurol. Neurosurg. Psychiat., 1963, 26, 39 Normal plantar response: integration of flexor and extensor reflex components LENNART GRIMBY From the Department of Neurology, Karolinska Institute, Serafimerlasarettet, Stockholm, Sweden The reflexes elicited by painful stimulation of the the suprasegmental control of the reflex centres, the plantar surface of the foot have been studied receptive field of the reflex is limited to the skin area extensively for a long time and the relation between where it is adequate for protective purposes, viz., the reflexes obtained in normal and in pathological the ball of the great toe. cases has been the subject of considerable debate. An Previous investigations (Eklund et al., 1959; excellent survey of previous investigations is to be Kugelberg et al., 1960) have shown that the main found in the review by Walshe (1956). As in most difference between the electromyographic pattern of studies of human reflexes, the technique commonly a flexor plantar response and that of an extensor used has, however, not permitted an exact deter- plantar response is that the reflex plantar flexion of mination of the latency values of the reflexes, and the great toe is associated with activity in the short it has thus not been possible to judge with certainty hallux flexor and reciprocal inhibition of the guest. Protected by copyright. to what extent the movements studied have been voluntary activity in the short hallux extensor, purely spinal and to what extent of cerebral origin. whereas, conversely, reflex dorsiflexion of the great By means of brief electric stimuli and an electro- toe is accompanied by activity in the short hallux myographic recording technique these latency values extensor and reciprocal inhibition of the voluntary can, however, be exactly determined, and in this way activity in the short hallux flexor.
    [Show full text]
  • General Psychology
    PSY 100: General Psychology John M. Kelley, Ph.D. Professor of Psychology, Endicott College Staff Psychologist, Massachusetts General Hospital Deputy Director, Program in Placebo Studies at Harvard Medical School 1 PSY 100: General Psychology John M. Kelley, Ph.D. AC 165 [email protected] 978-232-2386 2 Psychological Questions I • What makes a song popular? • Why do we dream? Do dreams have meaning? • Is intelligence inherited or developed? • How good is eyewitness testimony? 3 Psychological Questions II Small Groups (handout) • Are men more violent than women? Why? • Are people fundamentally good or evil? • Is alcoholism a disease? Are alcoholics at fault? • What causes depression? • Why do people self-destruct with alcohol or drugs? • Is there such a thing as free will? • Do our minds exist independently of our brains? 4 Chapter 1: Introduction and Research Methods • Psychology is the scientific study of behavior and mental processes • Empirical evidence (empirical vs. theoretical methods of investigation) • Critical thinking (skepticism vs. cynicism) • Who are better drivers: Men or Women? 5 Four Goals of Psychology • Describe • Explain • Predict • Change • Example: Major Depressive Disorder 6 Four Goals of Psychology • Describe: Clearly describe and classify behavior: What is depression? How does it progress? • Explain: What causes depression? Nature vs. Nurture? Genes vs. Experience • Predict: Which individuals are likely to become depressed? How will a person’s depression progress? Who will respond to treatment? • Change: Interpersonal therapy, cognitive and behavioral therapy, medication, ECT, surgery? 7 Types of Psychologists • Clinical (therapists - psychologists vs. psychiatrists) • Counseling • School • Social and Personality • Biological and Neuroscientists • Developmental • Cognitive 8 Types of Psychologists 9 Seven Psychological Perspectives 1.
    [Show full text]
  • Classical Conditioning, Awareness, and Brain Systems
    524 Review TRENDS in Cognitive Sciences Vol.6 No.12 December 2002 Classical conditioning, awareness, and brain systems Robert E. Clark, Joseph R. Manns and Larry R. Squire Memory is composed of several different abilities that are supported by conditioning for two reasons. First, the neural different brain systems. The distinction between declarative (conscious) and substrates of eyeblink conditioning are better nondeclarative (non-conscious) memory has proved useful in understanding understood than any other form of conditioning in the the nature of eyeblink classical conditioning – the best understood example vertebrate. Second, the cognitive aspects of both delay of classical conditioning in vertebrates. In delay conditioning, the standard and trace conditioning, including the role of awareness, procedure, conditioning depends on the cerebellum and brainstem and is have been more systematically investigated in the case intact in amnesia. Trace conditioning, a variant of the standard procedure, of eyeblink conditioning than in other forms of classical depends additionally on the hippocampus and neocortex and is impaired in conditioning. The conditioned eyeblink is an example amnesia. Recent studies have sharpened the contrast between delay and of an aversively conditioned somatic motor response. trace conditioning by exploring the importance of awareness. We discuss The response is a highly specific motor movement these new findings in relation to the brain systems supporting eyeblink that becomes adaptively timed to the presentation conditioning and suggest why awareness is important for trace conditioning of the US. In other types of conditioning, like fear but not for delay conditioning. conditioning and autonomic conditioning, the conditioned response to the CS involves a broad Memory is not a single faculty of the mind but is change in emotional state.
    [Show full text]