COMMON CONIFERS of the PNW the Common Conifers in the Pacific Northwest Belong to the Following Genera: Abies, Calocedrus, Call

Total Page:16

File Type:pdf, Size:1020Kb

COMMON CONIFERS of the PNW the Common Conifers in the Pacific Northwest Belong to the Following Genera: Abies, Calocedrus, Call COMMON CONIFERS OF THE PNW The common conifers in the Pacific Northwest belong to the following genera: Abies, Calocedrus, Callitropsis, Juniperus, Larix, Picea, Pinus, Pseudotsuga, Taxus, Thuja, and Tsuga. Most of the common species of these genera are provided in the laboratory. Secure a sample of each of the specimens and, as you examine and study the leafy twigs, compare them to the labeled specimens around the room and answer the questions and fill in the blanks in the following exercise. As you identify your unknowns to species, label them with a piece of masking tape. The materials provided will include the following species, which are classified in the families Cupressaceae, Pinaceae, and Taxaceae. In this exercise, diagnostic vegetative features of the leaves and stem are emphasized first, followed by an examination and comparison of cones (reproductive structures) and by a fill-in key to the common conifers. Cupressaceae Calocedrus decurrens (Incense cedar; does not occur naturally north of Mt. Hood, OR) Callitropsis nootkatensis (Alaska cedar) – formerly Chamaecyparis nootkatensis Juniperus occidentalis (Western juniper) Thuja plicata (Western red cedar) Pinaceae Abies grandis (Grand fir) Abies lasiocarpa (Alpine or Subalpine fir) Larix occidentalis (Western larch) Picea sitchensis (Sitka spruce) Picea engelmannii (Engelmann spruce) Pinus contorta (Lodgepole pine) Pinus monticola (Western white pine) Pinus ponderosa (Ponderosa or Yellow pine) Pseudotsuga menziesii (Douglas fir) Tsuga heterophylla (Western hemlock) Tsuga mertensiana (Mountain hemlock) Taxaceae Taxus brevifolia (Pacific yew) VEGETATIVE FEATURES 1. CUPRESSACEAE (Cypress family) Four of the genera have scale-like (as contrasted to needle-like) leaves. These four genera are _________________, _________________, _________________, and _________________. Consider these four specimens only (there is one representative in each genus). One usually will have round twigs (=stems) with 2 scale leaves opposite each other or 3 to 4 scale leaves in a whorl (arising from the same node or part of the stem), while the others appear to have flattened twigs with 2 scale leaves opposite or 4 scale leaves in a whorl. Which species has "round" twigs with the scale leaves in 2's or 3's? _________________ ________________ Considering the specimens with flattened twigs and with scale leaves in 2's or 4's, identify to species the following sketches of the leaves. Label: ___________________ ____________________ ____________________ The ovulate (=seed) cones of these four genera are distinctive. In general, they are small, often nearly globose or slightly cylindrical, and composed of 2-12 scales (the structures that bear the seeds). The cones of the Cupressaceae are generally smaller than those to be found in the other conifers, especially those in the Pinaceae. Which has a nearly globose, dry cone with the cone scales enlarged and thickest at the end? ___________________ ___________________ Which has a usually bluish, often fleshy cone that does not open to shed the seeds? ___________________ ___________________ The other two genera have more elongate, dry cones with several scales. The one with only 4 to 6 scales is _________________ _________________; the other with about 10 to 12 scales is _________________ ________________ Which of these has the larger cones? _________________ ________________ 2. PINACEAE (Pine family) The species in the Pinaceae have needle-like leaves, and usually rather large cones that are composed of numerous, spirally arranged cone scales. Some genera have the needles borne singly along all the twigs, usually in a spiral arrangement, others have the needles borne in small clusters or bundles of 2, 3, or 5 along the twigs, whereas others have the needles borne in terminal tufts at the tips of very short, lateral (spur) branches. Select the four species that have needles in bunches of 2 to 5, or in tufts or spur shoots. Those that have the needles in 2's, 3's, or 5's are in the genus Pinus (pines); the other, which has brush-like tufts of needles at the end of spur shoots, is ___________________ ___________________ This is a very distinctive conifer, the only one in the Pacific Northwest that is deciduous (meaning that the leaves are all shed each fall). Note that the branches that we have now (winter) are leafless, but when the leaves flush in the spring, leaves or needles of this tree are young, soft, and obviously freshly grown. Identify the other three species as follows: Needles 2 per bundle_________________ _________________ Needles 3 per bundle_________________ _________________ Needles 5 per bundle_________________ _________________ All the other needle-bearing species have the needles borne singly. Two genera are peculiar in that the leaves are shed rather quickly when the tree (or branches thereof) is cut; therefore, never try to use either of them as a Christmas tree! Both of these genera have evergreen leaves that, when shed, leave a tiny remnant of the leaf-base on the twig; a remnant that can be described as peg-like. In one, the pegs stand out at right angles to the stem and, in the other, they project forward. Separate the two genera with peg-like leaf scars (there are four such species). A B Of these four species, the two species with peg-like leaf bases as in “A”, have sharp, stiff, and more or less square (in cross-section) leaves. What is the genus? _______________ The two species in genus “A” can be differentiated on (1) the shape of the needles, and (2) the pubescence (“hairyness”) of the young twigs. Of the two species in this genus, which one has somewhat dorsiventrally flattened leaves and no hair on the stems/twigs (glabrous)? (space is provided for you to make a sketch) ___________________ ___________________ The other species in this genus, has square leaves in cross-section (not dorsiventrally flattened) and the stems are covered with fine hairs. Which one is this? ___________________ ___________________ The two species in genus “B” have flat, blunt needles. Note that the leaves of one of these are very white beneath, but green above. Examine these leaves under the microscope and note that the whiteness is due to the presence of several rows of white dots (pores or stomata--singular, stoma). The other species is almost the same color on both surfaces (having stomata almost equally numerous on both surfaces). The first species also will have the needles tending to spread in a horizontal plane, in contrast to the other, where the needles tend to spread in all directions. Identify the two species. Needles spreading in one plane, gray beneath, green above, very unequal in length: ___________________ ___________________ Needles spreading in all directions, about the same color on both surfaces, not markedly different in length: ___________________ ___________________ Now you should have left only the species of Pseudotsuga and Abies, all of which have comparatively smooth twigs where the needles have been shed. Examine the leaf scars carefully. Some scars are nearly circular, or slightly elongate (with reference to the axis of the branch), whereas at least one of the species has the scars broader than long and somewhat crater-like or umbilicate (navel-like). Recognize the genera as represented in the following two sketches. (This is not a hard and sharp distinction, and does not always "work".) Genus ____________________ Genus ____________________ "A" has pointed and almost sharp buds, in contrast to those of "B", which are more blunt. "A" tends to have less regular opposite branching than does "B". What is species "A"? ____________________ __________________ Cheer up, if you cannot recognize it from the leaves, you surely can from the cones, as they are perhaps the most distinctive cones found among our conifers, having a 3- cornered bract extending past each seed-bearing scale. To repeat, the species is ____________________ ____________________ There are two species with leaf scars as shown in "B", both in the genus ___________. The species of this genus usually cannot be distinguished by the cones, since a peculiarity of this genus is that the cones are never shed in their entirety, but only scale by scale, leaving the axis of the cone on the tree, standing stiffly erect. These two species can be distinguished, though, by the presence of stomates on one or two surfaces, by differences in the arrangement and attachment of leaves, and by differences in positioning of resin ducts in the leaves. One species, namely ________________ _______________ has stomata on the lower side of the leaves, but not on the upper side (hence the leaves are gray beneath but green above). In addition, this species without stomata on the upper surface has the needles practically all spreading in a horizontal plane, the upper and lower surfaces of the twigs being similarly exposed. On this basis, identify the species as illustrated below. To repeat, this species is _______________ ______________ The other species in the same genus (with leaf scars as shown in "B") has stomata on both leaf surfaces, and ± straight leaves with one broad central row of stomata on its upper leaf surface. This species is: _______________ _______________ As with the scale-leaved species, many of the needle-leaved conifers can be recognized by their cones alone. Consider the following features: Two genera have cones with a 3-pointed bract arising from beneath each cone scale; the bracts may be about as long as the cone scales (barely visible) or considerably longer than the cone scales. Which of these has the larger cone? ________ _______________ and which the smaller? ________ _______________. Two cones have sharp hooks or spines near the tip of the scales. One of these has somewhat lopsided, smaller cones; it is ________ _______________. The other has a much larger, symmetrical cone; it is _________ _______________. The third species in this genus has the largest (or at least the longest) cones of our native conifers; it is __________ ___________________.
Recommended publications
  • Conifer Reproductive Biology Claire G
    Conifer Reproductive Biology Claire G. Williams Conifer Reproductive Biology Claire G. Williams USA ISBN: 978-1-4020-9601-3 e-ISBN: 978-1-4020-9602-0 DOI: 10.1007/978-1-4020-9602-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927085 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover Image: Snow and pendant cones on spruce tree (reproduced with permission of Photos.com). Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword When it comes to reproduction, gymnosperms are deeply weird. Cycads and coni- fers have drawn out reproduction: at least 13 genera take over a year from pollina- tion to fertilization. Since they don’t apparently have any selection mechanism by which to discriminate among pollen tubes prior to fertilization, it is natural to won- der why such a delay in reproduction is necessary. Claire Williams’ book celebrates such oddities of conifer reproduction. She has written a book that turns the context of many of these reproductive quirks into deeper questions concerning evolution. The origins of some of these questions can be traced back Wilhelm Hofmeister’s 1851 book, which detailed the revolutionary idea of alternation of generations.
    [Show full text]
  • 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, Nom. Cons. 金钱松属 Jin Qian Song Shu Chrysolarix H
    Flora of China 4: 41–42. 1999. 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, nom. cons. 金钱松属 jin qian song shu Chrysolarix H. E. Moore; Laricopsis Kent. Trees deciduous; trunk monopodial, straight, terete; branches irregularly whorled; branchlets strongly dimorphic: long branchlets with leaves spirally arranged and radially spreading; short branchlets with leaves radially arranged in false whorls of 10–30 (often spirally spread like a discoid star). Leaves green, turning golden yellow before falling in autumn, narrowly oblanceolate-linear, flattened, 1.5–4 mm wide, flexible, stomatal lines abaxial, in 2 bands, separated by midvein, vascular bundle 1, resin canals 2 or 3 (–7), marginal. Pollen cones terminal on short branchlets, borne in umbellate clusters of 10–25, pendulous at maturity; pollen 2-saccate. Seed cones solitary, shortly pedunculate, erect or ± spreading, ovoid-globose, 2-seeded, maturing in 1st year. Seed scales thick, woody, deciduous at maturity. Bracts adnate to seed scales at base and shed together with them at maturity. Seeds with large, backward projecting wing extending beyond scale margin at maturity. Cotyledons 4–7. 2n = 44*. • One species: China. 1. Pseudolarix amabilis (J. Nelson) Rehder, J. Arnold Arbor. 1: 53. 1919. 金钱松 jin qian song Larix amabilis J. Nelson, Pinaceae 84. 1866; Abies kaempferi Lindley; Chrysolarix amabilis (J. Nelson) H. E. Moore; Laricopsis kaempferi (Lindley) Kent; Pseudolarix fortunei Mayr; P. kaempferi Gordon; P. pourtetii Ferré. Trees to 40 m tall; trunk to 3 m d.b.h.; bark gray-brown, rough, scaly, flaking; crown broadly conical; long branchlets initially reddish brown or reddish yellow, glossy, glabrous, becoming yellowish gray, brownish gray, or rarely purplish brown in 2nd or 3rd year, finally gray or dark gray; short branchlets slow growing, bearing dense rings of leaf cushions; winter buds ovoid, scales free at apex.
    [Show full text]
  • Cedrus Atlantica 'Glauca'
    Fact Sheet ST-133 November 1993 Cedrus atlantica ‘Glauca’ Blue Atlas Cedar1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION A handsome evergreen with blue, bluish-green or light green foliage, ‘Glauca’ Atlas Cedar is perfect for specimen planting where it can grow without being crowded since the tree looks its best when branches are left on the tree to the ground (Fig. 1). This shows off the wonderful irregular, open pyramidal form with lower branches spreading about half the height. It grows rapidly when young, then slowly, reaching 40 to 60 feet tall by 30 to 40 feet wide. The trunk stays fairly straight with lateral branches nearly horizontal. Allow plenty of room for these trees to spread. They are best located as a lawn specimen away from walks, streets, and sidewalks so branches will not have to be pruned. It looks odd if lower branches are removed. Older trees become flat-topped and are a beautiful sight to behold. GENERAL INFORMATION Scientific name: Cedrus atlantica ‘Glauca’ Pronunciation: SEE-drus at-LAN-tih-kuh Common name(s): Blue Atlas Cedar Family: Pinaceae USDA hardiness zones: 6 through 8 (Fig. 2) Origin: not native to North America Uses: Bonsai; specimen Availability: generally available in many areas within Figure 1. Young Blue Atlas Cedar. its hardiness range DESCRIPTION Height: 40 to 60 feet Spread: 25 to 40 feet Crown uniformity: irregular outline or silhouette 1. This document is adapted from Fact Sheet ST-133, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • PHYLOGENETIC RELATIONSHIPS of TORREYA (TAXACEAE) INFERRED from SEQUENCES of NUCLEAR RIBOSOMAL DNA ITS REGION Author(S): Jianhua Li, Charles C
    PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Author(s): Jianhua Li, Charles C. Davis, Michael J. Donoghue, Susan Kelley and Peter Del Tredici Source: Harvard Papers in Botany, Vol. 6, No. 1 (July 2001), pp. 275-281 Published by: Harvard University Herbaria Stable URL: http://www.jstor.org/stable/41761652 Accessed: 14-06-2016 15:35 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/41761652?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Harvard University Herbaria is collaborating with JSTOR to digitize, preserve and extend access to Harvard Papers in Botany This content downloaded from 128.103.224.4 on Tue, 14 Jun 2016 15:35:14 UTC All use subject to http://about.jstor.org/terms PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Jianhua Li,1 Charles C. Davis,2 Michael J. Donoghue,3 Susan Kelley,1 And Peter Del Tredici1 Abstract. Torreya, composed of five to seven species, is distributed disjunctly in eastern Asia and the eastern and western United States.
    [Show full text]
  • Pinus Contorta Dougl
    Unclassified ENV/JM/MONO(2008)32 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 05-Dec-2008 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2008)32 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 04 December 2008 Series on Harmonisation of Regulatory Oversight in Biotechnology No. 44 CONSENSUS DOCUMENT ON THE BIOLOGY OF LODGEPOLE PINE (Pinus contorta Dougl. ex. Loud.) English - Or. English JT03257048 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2008)32 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No.
    [Show full text]
  • Phylogeny and Biogeography of Tsuga (Pinaceae)
    Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T.
    [Show full text]
  • Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
    © 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions.
    [Show full text]
  • Phloem in Pinophyta
    Phloem in Pinophyta G. S Paliwal Paliwal GS 1992. Phloem in Pinophyta. Palaeobotanist 41 : 114·127. The gymnospermous phloem shows major differences from those of the cryptogams on one hand and the angiosperms on the Other. These include both the type of conducting cells as well as the cellular composition. Even more important is the degree and nature of functional inter· relationship between the conducting and parenchyma cells. The following evolutionary trends have been suggested: Increase in the amount of axial parenchyma; Decrease in the number of albuminous cells in the rays; Increase in the axial albuminous cells: Increase in the fibres; Increase in the regular arrangement. of cells The work on the fossil taxa does prOVide variable suppOrt to these suggestions. It is generally believed that the cryptogamic sieve element arose from a parenchyma cell and all the phloem produced in the fossil lycopods, Sphenopsida and ferns is primary in origin. Here the phloem consists of either sieve elements only or the sieve elements with scattered parenchyma cells. There is no definite relationship between the conducting elements and the parenchyma cells as seen in the seed plants. Additional parenchyma is often present in the form of a sheath separating the ,-ylem from the narrow phloem tissue. The typical cryptOgamic sieve elements are identical to the elongate parenchyma cells. These are relatively small in diameter, longer than the parenchyma cells but shorter than the gymnospermous sieve cells. In some taxa, the sieve elements are of twO sizes: large (up to 600 /lm) and small (between 100·1,500 /lm). The end walls of the cryptogamous sieve elements are horizontal or slightly oblique and the sieve areas are small and vary markedly in their outline.
    [Show full text]
  • Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
    Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore ..................................................................................
    [Show full text]
  • Pseudotsuga Menziesii)
    120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.
    [Show full text]
  • Pseudotsuga Menziesii 'Fastigiata' 'Fastigiata' Douglas-Fir
    Fact Sheet ST-527 October 1994 Pseudotsuga menziesii ‘Fastigiata’ ‘Fastigiata’ Douglas-Fir1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION This cultivar of Douglas-Fir probably grows about 40 feet tall but spreads only about 10 or 15 feet in a dense, narrow pyramid in the landscape (Fig. 1). This cultivar is denser than the species and is probably better suited for a screen planting. A row of these spaced 10 feet apart would make a striking border to block an undesirable view or to define a space on a large landscape. Douglas-Fir is most commonly used as a screen or occasionally a specimen in the landscape. Not suited for a small residential landscape, it is often a fixture in a commercial setting. GENERAL INFORMATION Scientific name: Pseudotsuga menziesii ‘Fastigiata’ Pronunciation: soo-doe-SOO-guh men-ZEE-zee-eye Common name(s): ‘Fastigiata’ Douglas-Fir Family: Pinaceae USDA hardiness zones: 5 through 6 (Fig. 2) Origin: native to North America Uses: screen; specimen; no proven urban tolerance Availability: grown in small quantities by a small number of nurseries DESCRIPTION Height: 35 to 45 feet Figure 1. Young ‘Fastigiata’ Douglas-Fir. Spread: 10 to 15 feet Crown uniformity: symmetrical canopy with a Growth rate: medium regular (or smooth) outline, and individuals have more Texture: fine or less identical crown forms Crown shape: columnar; upright Crown density: dense 1. This document is adapted from Fact Sheet ST-527, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1994.
    [Show full text]
  • The Population Biology of Torreya Taxifolia: Habitat Evaluation, Fire Ecology, and Genetic Variability
    I LLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. The Population Biology of Torreya taxifolia: Habitat Evaluation, Fire Ecology, and Genetic Variability Mark W. Schwartz and Sharon M. Hermann Center for Biodiversity Technical Report 1992(Z) Illinois Natural History Survey 607 E. Peabody Drive Champaign, Illinois 61820 Tall Timbers, Inc. Route 1, Box 678 Tallahassee, Florida 32312 Prepared for Florida Game and Freshwater Fish Commission Nongame Wildlife Section 620 S. Meridian Street Tallahassee, Florida 32399-1600 Project Completion Report NG89-030 TABLE OF CONTENTS page Chapter 1: Species background and hypotheses for.......5 the decline of Torreya taxifolia, species Background ....... .. .6 Hypotheses for the Decline........0 Changes in the Biotic Environment ...... 10 Changes in the Abiotic Environment ..... 13 Discu~ssion *0o ** eg. *.*. 0 0*.0.*09 6 0 o**** o*...21 Chapter 2: The continuing decline of Torreyap iola....2 Study.Area and Methods ooo................25 Results * ** ** ** ** ** ** .. .. .. .. .. .. .. .. .. .. .30 Chapter 3: Genetic variability in Torreya taxif-olia......4 Methods.......................* 0 C o490 0 Results . ...... *oe*.........o51 -0L-icmion *.. ~ 0000 00000@55 Management _Recommendations .000000000000.0.60 Chapter 4: The light relations of Tgr .taz'ifgli with ..... 62 special emphasis on the relationship to growth and,,disease- Methods o..............0.0.0.0.0.00.eoo63 Light and Growth . .. .. .. .. .. .. .. .. .. .. .64 Measurements'-of photosynthetic rates 0,.65 Light and Growth . .. .. .. .. .. .. .. .. .. .. .69 Measurements of photosynthetic rates ..71. Discussion......... *0* * * * * * * ** . 81 Chapter 5: The foliar fungal associates of Torreya............85 ta ifola: pathogenicity and susceptibility to smoke Methods 0 0 0..
    [Show full text]