Diversity and Ethnobotanical Importance of Pine Species from Sub-Tropical Forests, Azad Jammu and Kashmir

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Ethnobotanical Importance of Pine Species from Sub-Tropical Forests, Azad Jammu and Kashmir Journal of Bioresource Management Volume 7 Issue 1 Article 10 Diversity and Ethnobotanical Importance of Pine Species from Sub-Tropical Forests, Azad Jammu and Kashmir Kishwar Sultana PMAS-Arid Agriculture University, Rawalpindi, Pakistan Sher Wali Khan Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan, [email protected] Safdar Ali Shah Khyber Pakhtunkhwa (KP) Wildlife Department, Peshawar, Pakistan Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, Botany Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Sultana, K., Khan, S. W., & Shah, S. A. (2020). Diversity and Ethnobotanical Importance of Pine Species from Sub-Tropical Forests, Azad Jammu and Kashmir, Journal of Bioresource Management, 7 (1). DOI: https://doi.org/10.35691/JBM.0202.0124 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Diversity and Ethnobotanical Importance of Pine Species from Sub-Tropical Forests, Azad Jammu and Kashmir © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission. This article is available in Journal of Bioresource Management: https://corescholar.libraries.wright.edu/jbm/vol7/ iss1/10 Sultana et al. (2020). Diversity and Ethnobotanical Importance of Pine Species J Biores Manag. 7 (1): 94-101 DIVERSITY AND ETHNOBOTANICAL IMPORTANCE OF PINE SPECIES FROM SUB-TROPICAL FORESTS, AZAD JAMMU AND KASHMIR KISHWAR SULTANA1, SHER WALI KHAN2*AND SAFDAR ALI SHAH3 1PMAS-Arid Agriculture University, Rawalpindi, Pakistan 2Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan 3Khyber Pakhtunkhwa (KP) Wildlife Department, Peshawar, Pakistan *Corresponding author: [email protected] ABSTRACT A general investigation of sub-tropical forests, from Pir Chinasi National Park, Tolipir National Park, Dhirkot Nature Reserve and Banjosa Game Reserve was carried out during different months from February 2008 to May 2010. The relative abundance of species was calculated using line transects of 50m. A total of five different species (Abies pindrow. Cedrus deodara, Pinus wallichiana, Pinus roxburgii and Picea smithiana) from the Pinaceae family were recorded. The main reported use of Cedrus deodara and Pinus wallichiana by the local people was for furniture and construction purposes. Pinus wallichiana was observed as the dominant species from all the selected sites. Keywords: Pines, Cedrus deodara, Pinus wallichiana, chir, forest INTRODUCTION different parts of Pakistan exist (Shinwari, 2010; Jabeen et al., 2010; Bibi et al., 2011; Pinaceae (order: Pinales) consist of Akhtar et al., 2013). However, there is a lack 11 known genera and 228 known species of investigations focused on the worldwide (Christenhusz and Byng, 2016). ethnobotanical and population studies of the This family is widely distributed, covering Pinaceae family from the study area. Present Asian countries (China, Japan, Thailand and study was carried out to document the species Indonesia etc.), Central America and North belonging to the Pinaceae family in selected Africa (Pinaceae, n.d.). Due to their highly sub-tropical forests of Pakistan, their relative coveted timber, pine species have also been abundance and traditional use by local introduced to New Zealand, Australia and populace. sub-Saharan Africa. Only five species from this family have been reported from Pakistan, MATERIALS AND METHOD however, they cover a significant area (1928,000 hectares) (Zafar et al., 2010). A general surveillance of the Pir Pine species are commonly used for Chinasi National Park (April-May, 2010), softwood timber, essential oils and in the Tolipir National Park (April-May, 2008), pulp industry (Pinaceae, n.d.). Zafar et al. Dhirkot Nature Reserve (February, 2008) and (2010) studied the efficacy of essential oil Banjosa Game Reserve (May-June, 2009) from P. roxburghii and found it to be a was undertaken with the help of the relevant significantly effective antimicrobial and staff of AJK Wildlife and Fisheries antifungal agent. The oil from C. deodara has Department and AJK Forest Department to previously been investigated for curing collect information on general landscape of diseases (Parveen et al., 2010). the study area. The available information on Ecological studies documenting the expected biota was collected through medicinal importance of the flora from literature search and that available from the 94 Sultana et al. (2020). Diversity and Ethnobotanical Importance of Pine Species J Biores Manag. 7 (1): 94-101 field staff of the Department of Wildlife and shrubs, trees and epiphytes) were subjected to Fisheries and the Forest Department. The separate transect samplings. information thus collected was properly The taxonomic identification of mapped on the satellite imagery of the tracts. plants was carried out in the field. The specimens of all plants species were Sample Collection collected, pressed with a plant press using The general tract of the study area absorbent paper, and brought to the was physically visited to collect all possible laboratory, where it was identified following phyto-diversity. Attempts were made to Flora of Pakistan (Nasir and Ali, 1970-2008; collect/record all the plant species present Stewart, 1972; Toshiyuki and Malik, 1992, under different microhabitat variation. Using 1993) and through physical comparison with such data list of the plant species present in previously identified specimens, available at the study area was developed. Detailed Herbaria of Quaid-e-Azam University, phyto-sociological studies were undertaken Islamabad, and Pakistan Natural History through unbiased staged sampling, in an Museum (PNHM), Islamabad. endeavor to sample all possible The transect data was suitably pooled microhabitats. Broad areas having reasonably to develop estimates on the vegetative cover similar vegetative conditions were identified occupied by different plant species and the using satellite imagery and the physical total vegetative cover of the stands. The stand reconnaissance of the area, and were data was subject to computer-based recognized as stands for sampling of the ordination to develop vegetation types, based vegetation. Each stand was given a reference upon the stand similarities in the vegetative number and sampled using different numbers composition. The distribution of different of 50 m long line transects at randomly phyto-sociological communities was placed selected locations in different parts of each on the digitized map of the study area, with stand. The length of the transect line touching the help of satellite imagery. The possible use or supposed to be touching a plant was of the plant species in the area was recorded with the name of the plant species. determined through the information gathered The different vegetative layers (herbs, from the local population and the literature searched. RESULTS AND DISCUSSION Table 1: List of Pinaceae plant species recorded from Banjosa Game Reserve (BGR) # Scientific Names Remarks Usage 1. Abies pindrow 30 m tall , narrow pyrandial shape, bark fissured, light - grey to brown. 2. Cedrus deodara 30 m tall, gregarious 2000-3000 m altitudes, spreading Construction and (Diar, Cedar) horizontal branches, branch-lets drooping, male cones furniture. solitary at the tips of dwarf shoots, female cones solitary, erect, terminal at the end of shoots, young cones greenish, mature cones brown, barrel-shaped deciduous, leaving a central woody axis. Cone ripe: October- November in the second year. 3. Pinus wallichiana 30 m tall, grayish scaly bark, bluish to grey-green Wood for (Biar, blue pine) leaves, clustered 10-15 mm long male cones, 2-4 construction & cylindrical (16-28 cm long) drooping female cones at furniture. 95 Sultana et al. (2020). Diversity and Ethnobotanical Importance of Pine Species J Biores Manag. 7 (1): 94-101 the tips of branches. Cone formation October – November. Table 2: Relative vegetative cover of trees (% ±) shared between different plant species in different vegetative types established in BGR by Ward’s method. Vegetative layer (Tress) Names A B C D E F Constancy (10, 40- (5, 11, 13, (25, 35, (2-3, 6-7, (8, 12) (1,4, 9, 14-15, 41, 44-45) 16, 19, 22, 43) 17-18, 20, 21, 23, 26, 30, 24, 48) 27-29, 31- 33, 34, 37-39, 32, 36, 46) 42, 47, 49-51) AV ± S.E AV ± S.E AV ± S.E AV ± S.E AV ± S.E AV ± S.E % Class Pinus 33.76 ± 56.04 ± 27.28 ± 29.84 21.05 ± 4.26 ± 1.15 78.43 IV wallichiana 8.50 3.27 1.24 ±1.15 21.05 Cedrus
Recommended publications
  • Ethno Botanical Polypharmacy of Traditional Healers in Wayanad (Kerala) to Treat Type 2 Diabetes
    Indian Journal of Traditional Knowledge Vol. 11(4), October 2012, pp. 667-673 Ethno Botanical Polypharmacy of Traditional Healers in Wayanad (Kerala) to treat type 2 diabetes Dilip Kumar EK & Janardhana GR* Phytopharmacology Laboratory, Department of Studies in Botany University of Mysore, Manasagangothri, Mysore-570006, Karnataka, India E-mail: [email protected] Received 30.06.10, revised 15.05.12 The aboriginal medical system prevalent among traditional healers of Wayanad has demonstrated a good practice, so bright future in the therapy of type 2 diabetes. Therefore, present study focused on identification validation and documentation such Ethno botanical polypharmacy prevalent in the district. A total of 47 species belonging to 44 genera comes under 29 families were identified being utilized in 23 different compound medicinal recipes for diabetic healthcare in Wayanad. These preparations and the herbal ingredients need scientific evaluation about their mechanism of action in living organism in heath as well as disease condition to confirm their activity against type 2 diabetes. Keywords: Type 2 diabetes, Traditional medicine, Polypharmacy, Wayanad district IPC Int. Cl.8: A61K, A61K 36/00, A01D 16/02, A01D 16/03 Local herbal healers of Wayanad (Kerala), India have communities that directly depend on it. The present numerous prescriptions aims directly to treat and study documented some of the ethno botanical manage type 2 diabetes (old age diabetes). This remedies for the management of diabetes so as includes over 150 herbal preparations including to protect it within the aboriginal repository of simple and compound folk recipes and diets. This knowledge (ARK) programme and also shed light traditional medical knowledge has demonstrated a on a traditional culture that believes that a healthy potent therapeutic system for the management of lifestyle is found only at a healthy environment 1.
    [Show full text]
  • Trees for Alkaline Soil Greg Paige, Arboretum Curator
    RESEARCH LABORATORY TECHNICAL REPORT Trees for Alkaline Soil Greg Paige, Arboretum Curator Common name Scientific name Common name Scientific name Amur maple Acer ginnala Norway spruce Picea abies Hedge maple Acer campestre Serbian spruce Picea omorika Norway maple Acer platanoides Lacebark pine Pinus bungeana Paperbark maple Acer griseum Limber pine Pinus flexilis Tatarian maple Acer tatarian London plane tree Platanus x acerifolia European hornbeam Carpinus betulus Callery pear Pyrus calleryana Atlas cedar Cedrus atlantica (use cultivars) Cedar of Lebanon Cedrus libani Shingle oak Quercus imbricaria Deodar cedar Cedrus deodora Bur oak Quercus macrocarpa Hackberry Celtis occidentalis English oak Quercus robur Yellowwood Cladrastis lutea Littleleaf linden Tilia cordata Corneliancherry dogwood Cornus mas Silver linden Tilia tomentosa Cockspur hawthorn Crataegus crus-galli Lacebark elm Ulmus parvifolia Washington hawthorn Crataegus Japanese zelkova Zelkova serrata phaenopyrum Leyland cypress x Cupressocyparis leylandii Hardy rubber tree Eucommia ulmoides Green ash Fraxinus pennsylvanica Founded in 1926, The Bartlett Tree Research Ginkgo Ginkgo biloba Laboratories is the research wing of Bartlett Tree Thornless honeylocust Gleditsia triacanthos ‘inermis’ Experts. Scientists here develop guidelines for all of Kentucky coffeetree Gymnocladus dioicus the Company’s services. The Lab also houses a state- Goldenraintree Koelreuteria of-the-art plant diagnostic clinic and provides vital paniculata technical support to Bartlett arborists and field staff Amur maackia Maackia amurensis for the benefit of our clients. Crabapple Malus spp. Parrotia/Persian ironwood Parrotia persica Amur cork tree Phellodendron amurense Page 1 of 1 .
    [Show full text]
  • Cytospora Canker
    report on RPD No. 604 PLANT April 1996 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CYTOSPORA OR LEUCOSTOMA CANKER OF SPRUCE Cytospora or Leucostoma canker, the most common and damaging disease of spruce, is caused by the fungus Leucocytospora kunzei, synonym Cytospora kunzei (teleomorph or sexual state Leucostoma kunzei, synonym Valsa kunzei). This canker occurs on several conifers from New England to the western United States. Colo- rado or Colorado blue (Picea pungens) and Norway spruce (Picea abies), used for ornament and in wind- breaks, are the species most commonly affected in Illinois. The disease has reached epidemic proportions on Engelmann spruce (Picea engelmannii) and Douglas- fir (Pseudotsuga menziesii) in the eastern Rocky Mountains due to a succession of dry years in the area. Other trees reported as susceptible to the disease are given in Table 1. Spruce trees less than 10 to 15 years old usually do not have Cytospora canker. In landscape nurseries, how- ever, small branches of young Colorado blue and oc- casionally white spruces may be killed. Three varieties of Leucostoma kunzei are recognized by some spec- ialists: var. piceae on spruces, var. superficialis on pines, and var. kunzei on other conifers. Figure 1. Colorado spruce affected by Cytospora Dead and dying branches call attention to Cytospora or canker. Leucostoma canker with older branches more suscep- tible than young ones. The fungus kills areas of bark, usually at the bases of small twigs and branches, creating elliptical to diamond-shaped lesions. If the lesions enlarge faster than the stem and girdle it, the portion beyond the canker also dies.
    [Show full text]
  • Seed Source Variation in Cone, Seed and Seedling Characteristic Across the Natural Distribution of Himalayan Low Level Pine Pinus Roxburghii Sarg
    Mukherjee Roy et al.·Silvae Genetica (2004) 53-3, 116-123 LUGER, G. F., STUBBLEFIELD, W. A. (1998): Artificial Intelligence. RITLAND, K. (1986): Joint maximum likelihood estimation of Addison Wesley, USA. genetic and mating structure using open-pollinated proge- PAPAGEORGIOU, A. C. (1995): Genetische Untersuchungen zur nies. Biometrics 42, 25–43. Züchtung und Generhaltung der Mittelmeerzypresse TURBAN, E., ARONSON J. (1998): Decision Support Systems and (Cupressus sempervirens L.) in Griechenland. Göttingen Intelligent Systems. Prentice Hall, New Jersey, USA. Research Notes in Forest Genetics 18, Georg-August Univer- VERGA, A. R. (1995): Genetische Untersuchungen an Prosopis sität Göttingen, Germany. chilensis und P. flexuosa im trockenen Chaco Argentiniens. PRATA, S. (1998): C++ Primer Plus, 3rd edition. Sams Publishing, Göttingen Research Notes in Forest Genetics 19, Georg- Indiana, U.S.A. August Universität Göttingen, Germany. Seed Source Variation in Cone, Seed and Seedling Characteristic Across the Natural Distribution of Himalayan Low Level Pine Pinus roxburghii Sarg. By S. MUKHERJEE ROY*, R. C. THAPLIYAL and S. S. PHARTYAL (Received 5th July 2004) Abstract percentage of heritability coupled with same intensity of gain, The wide range of climatic condition in the natural distribu- was observed for many of the traits studied under laboratory tion of chir pine is expected to result in high genetic variation conditions and at nursery stage e.g. for germination percent- within different populations of the species. The present study age, MGT, GV. This signifies that these traits are under strong on the provenance variation of chir pine aims to determine the genetic control and good amount of heritable additive genetic nature and extent of variation in wide range of populations component can be exploited for further selection and improve- with respect to 23 morphological traits of cone, seed and ment of this species.
    [Show full text]
  • World Bank Document
    Report No. P-2147-PAK(s) Pakistan: Hazara Forestry Pre-lnvestment Project Technical Annexes FILE COPY October 1977 South Asia Projects Department Public Disclosure Authorized Agriculture Division B FOR OFFICIAL USE ONLY Public Disclosure Authorized Public Disclosure Authorized Document of the World Bank Public Disclosure Authorized This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. PAKISTAN HAZARA FORESTRY PRE-INVESTMENT PROJECT Currency Equivalent US$ = PRs 9.8 PRs 1 US$ 0.10 PRs I million (m) US$302,000 Weights and Measures I acre (ac) 0.405 hectare (ha) I kana] 0.125 acre I mile (mi) 1.609 kilometers (km) 1 foot (ft) 0.3048 meters I inch (in) 2.540 centimeters 1 cubic foot (ft ) 0.0283 cubicmeter (m3) 1 pound (Ib) =0.454 kilograms (kg) 3 liter (]) 0.264 US gallons I maund 82.3 lbs = 37.4 kg Abbreviations ACF - Assistant Conservator of Forests DBH - Tree diameter at breast heilght (4 ft. 3 in.) DFO - Divisional Forest Officer FD - Forest Department of NWFP GOAK - Government of Azad Kashmir GONWFP - Government of North West Frontier Province GOP - Government of Pakistan MAI - Mean annual volume increment of growing trees NWFP - North West Frontier Province PFI - Pakistan Forest Institute Glossary Pulp - Wood pulp produced by mechanical or chemical means. Pulpwood - Wood used in pulp manufacture; usually small dimension roundwood and wood waste from other forms of wood processing. Roundwood - Unprocessed logs in round form. Fiscal Year - GOP and GONWFP July 1 to June 30 FMR 01FfCIAL USE ONLY PAKISTAN: Supplement to Hazara Forestry Pre-Investment Project Technical Annexes containing Working Papers for project imp] ementation October, 1977 South Asia Projects Department Agricul ture Division B The data and other materia7 contained in the technical arnexes have been compiled to give direction to project activities and provide a basis for developing detailed work programs for the various sub-components.
    [Show full text]
  • EVERGREEN TREES for NEBRASKA Justin Evertson & Bob Henrickson
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS EVERGREEN TREES FOR NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu Throughout much of the Great Plains, just a handful of species make up the majority of evergreens being planted. This makes them extremely vulnerable to challenges brought on by insects, extremes of weather, and diseases. Utilizing a variety of evergreen species results in a more diverse and resilient landscape that is more likely to survive whatever challenges come along. Geographic Adaptability: An E indicates plants suitable primarily to the Eastern half of the state while a W indicates plants that prefer the more arid environment of western Nebraska. All others are considered to be adaptable to most of Nebraska. Size Range: Expected average mature height x spread for Nebraska. Common & Proven Evergreen Trees 1. Arborvitae, Eastern ‐ Thuja occidentalis (E; narrow habit; vertically layered foliage; can be prone to ice storm damage; 20‐25’x 5‐15’; cultivars include ‘Techny’ and ‘Hetz Wintergreen’) 2. Arborvitae, Western ‐ Thuja plicata (E; similar to eastern Arborvitae but not as hardy; 25‐40’x 10‐20; ‘Green Giant’ is a common, fast growing hybrid growing to 60’ tall) 3. Douglasfir (Rocky Mountain) ‐ Pseudotsuga menziesii var. glauca (soft blue‐green needles; cones have distinctive turkey‐foot bract; graceful habit; avoid open sites; 50’x 30’) 4. Fir, Balsam ‐ Abies balsamea (E; narrow habit; balsam fragrance; avoid open, windswept sites; 45’x 20’) 5. Fir, Canaan ‐ Abies balsamea var. phanerolepis (E; similar to balsam fir; common Christmas tree; becoming popular as a landscape tree; very graceful; 45’x 20’) 6.
    [Show full text]
  • Conifer Reproductive Biology Claire G
    Conifer Reproductive Biology Claire G. Williams Conifer Reproductive Biology Claire G. Williams USA ISBN: 978-1-4020-9601-3 e-ISBN: 978-1-4020-9602-0 DOI: 10.1007/978-1-4020-9602-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927085 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover Image: Snow and pendant cones on spruce tree (reproduced with permission of Photos.com). Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword When it comes to reproduction, gymnosperms are deeply weird. Cycads and coni- fers have drawn out reproduction: at least 13 genera take over a year from pollina- tion to fertilization. Since they don’t apparently have any selection mechanism by which to discriminate among pollen tubes prior to fertilization, it is natural to won- der why such a delay in reproduction is necessary. Claire Williams’ book celebrates such oddities of conifer reproduction. She has written a book that turns the context of many of these reproductive quirks into deeper questions concerning evolution. The origins of some of these questions can be traced back Wilhelm Hofmeister’s 1851 book, which detailed the revolutionary idea of alternation of generations.
    [Show full text]
  • Improvement of Seed Germination in Three Important Conifer Species by Gibberellic Acid (GA3)
    Volume 11(2) Improvement of seed germination in three important conifer species by Gibberellic acid (GA3). Improvement of seed germination in three important conifer species by Gibberellic acid (GA3). B. S. Rawat1, C. M. Sharma2 and S. K. Ghildiyal3 Department of Forestry, Post Box # 76, HNB Garhwal University, Srinagar Garhwal-246 174 (Uttaranchal) 1. [email protected] 2. [email protected] [email protected] December 2006 Download at: http://www.lyonia.org/downloadPDF.php?pdfID=283.486.1 Improvement of seed germination in three important conifer species by Gibberellic acid (GA3). Abstract Results pertaining to the germination percentage of pre-soaked seeds in a series of temperature regimes viz., 100C, 150C, 200C and 250C have revealed significant increase among seed sources in each of the three conifer species of Garhwal Himalaya. Soaking of the seeds for 24 hours in GA3 solution had shown maximum germination in A. pindrow (45.0±4.19%), C. torulosa (57.0±3.40%) and P. smithiana (56±6.01%) as compared to untreated (control) seeds. It has also been observed that GA3 treatment caused an appreciable shortening of the germination period by 10 days. Therefore, seeds of these commercially important tree species should be pre-treated particularly with GA3 for 24 hours for getting enhanced germination. It is important to point out here that the seeds of each of the three species reflect poor germination in nature due to snow cover, seed decay, prevalence of excess water and lack of maintenance, however, because of increasing demand for large quantities of tree seeds for reforestation programmes, pre-sowing treatments are useful to improve the rate and percentage of germination.
    [Show full text]
  • Variation in Soil CO2 Efflux in Pinus Wallichiana and Abies Pindrow
    rch: O ea pe es n A R t c s c e e Sundarapandian and Dar, Forest Res 2013, 3:1 r s o s Forest Research F DOI: 10.4172/2168-9776.1000116 Open Access ISSN: 2168-9776 Research Article Open Access Variation in Soil CO2 Efflux in Pinus Wallichiana and Abies Pindrow Temperate Forests of Western Himalayas, India SM Sundarapandian* and Javid Ahmad Dar Department of Ecology and Environmental Sciences, School of life Sciences, Pondicherry University, Puducherry, India Abstract Soil CO2 efflux was measured by alkali absorption method from April to December 2012 in two different forest types, i.e., Pinus wallichiana and Abies pindrow, with three replicate plots in each forest type. Soil CO2 efflux was found maximum in July and minimum in December in both the forest types. Significantly (P<0.001) greater soil CO2 efflux was measured inPinus wallichiana forest compared to Abies pindrow forest throughout the study period. The -2 -1 range of soil CO2 efflux (mg CO2 m hr ) from the soil was 126-427 in Abies pindrow forest and 182-646 in Pinus wallichiana forest. Soil CO2 efflux showed greater values in Pinus wallichiana forest than Abies pindrow forest, which could be attributed to greater tree density, tree biomass, shrub density, shrub biomass, forest floor litter and moisture. Soil CO2 efflux also showed significant positive relationship with air temperature. In addition to that the altitudinal difference may be one of the reasons for variation in soil CO2 efflux between the two forest types. This result also indicates that at higher altitude even a small difference in elevation (100 m) alter the functional attributes of the ecosystem.
    [Show full text]
  • Angiospermic Plant Resources and Folk Uses in District Karak, Khyber Pakhtunkhwa, Pakistan
    Akhtar et al., The Journal of Animal & Plant Sciences, 28(5): 2018, Page:The J.1418 Anim.-1425 Plant Sci. 28(5):2018 ISSN: 1018-7081 ANGIOSPERMIC PLANT RESOURCES AND FOLK USES IN DISTRICT KARAK, KHYBER PAKHTUNKHWA, PAKISTAN N. Akhtar*, A. Siddique, and M. Anwar Department of Botany, Islamia College Peshawar, Pakistan. *Corresponding author E-mail: [email protected] ABSTRACT Ethnobotanical survey of angiosperms was undertaken in district Karak KP, Pakistan during March, 2010 through April, 2011.The aims and objectives of the study were to document the indigenous knowledge of plants particularly medicinal, fuel, timber, vegetables, ornamentals and fruit plants. A total of 88 genera and 103 species belonging to 43 families were collected from district Karak, KP, Pakistan. Out of 103 plant species, 76 species (74%) were herbs, 15 species (14%) were trees and 12 species (12%) were shrubs. Among these 103 plants, 70 (67.9%) plants are used as a fodder for cattle, 52 (50.4%) medicinal, 38(36.8%) fuel, 8 (7.7%) timber, 8 (7.7%) vegetables, 7 (6.8%) ornamental and 4 (3.8%) as edible fruits. Out of these, 6 (5.8%) used as a hedge plants and 10 (9.7%) used for miscellaneous purposes. Key words: Ethnobotany, Flora, Medicinal plants, Karak, Pakistan. INTRODUCTION is the scientific study of the traditional knowledge and customs of a people concerning plants and their medical, District Karak lies between 33˚-6´ to 33˚-7´ religious and other uses. Ethnobotany is the study of how North latitudes and 71˚-2´ to 71˚-7´ East longitudes.
    [Show full text]
  • 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, Nom. Cons. 金钱松属 Jin Qian Song Shu Chrysolarix H
    Flora of China 4: 41–42. 1999. 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, nom. cons. 金钱松属 jin qian song shu Chrysolarix H. E. Moore; Laricopsis Kent. Trees deciduous; trunk monopodial, straight, terete; branches irregularly whorled; branchlets strongly dimorphic: long branchlets with leaves spirally arranged and radially spreading; short branchlets with leaves radially arranged in false whorls of 10–30 (often spirally spread like a discoid star). Leaves green, turning golden yellow before falling in autumn, narrowly oblanceolate-linear, flattened, 1.5–4 mm wide, flexible, stomatal lines abaxial, in 2 bands, separated by midvein, vascular bundle 1, resin canals 2 or 3 (–7), marginal. Pollen cones terminal on short branchlets, borne in umbellate clusters of 10–25, pendulous at maturity; pollen 2-saccate. Seed cones solitary, shortly pedunculate, erect or ± spreading, ovoid-globose, 2-seeded, maturing in 1st year. Seed scales thick, woody, deciduous at maturity. Bracts adnate to seed scales at base and shed together with them at maturity. Seeds with large, backward projecting wing extending beyond scale margin at maturity. Cotyledons 4–7. 2n = 44*. • One species: China. 1. Pseudolarix amabilis (J. Nelson) Rehder, J. Arnold Arbor. 1: 53. 1919. 金钱松 jin qian song Larix amabilis J. Nelson, Pinaceae 84. 1866; Abies kaempferi Lindley; Chrysolarix amabilis (J. Nelson) H. E. Moore; Laricopsis kaempferi (Lindley) Kent; Pseudolarix fortunei Mayr; P. kaempferi Gordon; P. pourtetii Ferré. Trees to 40 m tall; trunk to 3 m d.b.h.; bark gray-brown, rough, scaly, flaking; crown broadly conical; long branchlets initially reddish brown or reddish yellow, glossy, glabrous, becoming yellowish gray, brownish gray, or rarely purplish brown in 2nd or 3rd year, finally gray or dark gray; short branchlets slow growing, bearing dense rings of leaf cushions; winter buds ovoid, scales free at apex.
    [Show full text]
  • Checklist of Medicinal Flora of Tehsil Isakhel, District Mianwali-Pakistan
    Ethnobotanical Leaflets 10: 41-48. 2006. Check List of Medicinal Flora of Tehsil Isakhel, District Mianwali-Pakistan Mushtaq Ahmad, Mir Ajab Khan, Shabana Manzoor, Muhammad Zafar And Shazia Sultana Department of Biological Sciences, Quaid-I-Azam University Islamabad-Pakistan Issued 15 February 2006 ABSTRACT The research work was conducted in the selected areas of Isakhel, Mianwali. The study was focused for documentation of traditional knowledge of local people about use of native medicinal plants as ethnomedicines. The method followed for documentation of indigenous knowledge was based on questionnaire. The interviews were held in local community, to investigate local people and knowledgeable persons, who are the main user of medicinal plants. The ethnomedicinal data on 55 plant species belonging to 52 genera of 30 families were recorded during field trips from six remote villages of the area. The check list and ethnomedicinal inventory was developed alphabetically by botanical name, followed by local name, family, part used and ethnomedicinal uses. Plant specimens were collected, identified, preserved, mounted and voucher was deposited in the Department of Botany, University of Arid Agriculture Rawalpindi, for future references. Key words: Checklist, medicinal flora and Mianwali-Pakistan. INTRODUCTION District Mianwali derives its name from a local Saint, Mian Ali who had a small hamlet in the 16th century which came to be called Mianwali after his name (on the eastern bank of Indus). The area was a part of Bannu district. The district lies between the 32-10º to 33-15º, north latitudes and 71-08º to 71-57º east longitudes. The district is bounded on the north by district of NWFP and Attock district of Punjab, on the east by Kohat districts, on the south by Bhakkar district of Punjab and on the west by Lakki, Karak and Dera Ismail Khan District of NWFP again.
    [Show full text]