Bacterial Bioluminescence As a Lure for Marine Zooplankton and Fish

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Bioluminescence As a Lure for Marine Zooplankton and Fish Bacterial bioluminescence as a lure for marine zooplankton and fish Margarita Zarubina,b,1, Shimshon Belkinc, Michael Ionescuc, and Amatzia Genina,c aInteruniversity Institute for Marine Sciences, Eilat 88103, Israel; bInstitute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany; and cInstitute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel Edited* by J. Woodland Hastings, Harvard University, Cambridge, MA, and approved December 2, 2011 (received for review October 11, 2011) The benefits of bioluminescence for nonsymbiotic marine bacteria zooplankton being involved, or by zooplankton that propagates have not been elucidated fully. One of the most commonly cited bacteria in its feces. explanations, proposed more than 30 y ago, is that biolumines- The objective of this study was to test the following key points cence augments the propagation and dispersal of bacteria by of the bait hypothesis: (i) visual attraction of zooplankton to attracting fish to consume the luminous material. This hypothesis, bacterial bioluminescence; (ii) promotion of glow in zooplankton based mostly on the prevalence of luminous bacteria in fish guts, contacting/ingesting luminous bacteria (using planktonic brine has not been tested experimentally. Here we show that zooplank- shrimps as a surrogate for zooplankton); (iii) attraction of zoo- ton that contacts and feeds on the luminescent bacterium Photo- planktivorous fish to glowing prey; and (iv) survival by bacteria of bacterium leiognathi starts to glow, and demonstrate by video gut passage in both zooplankton and fish. recordings that glowing individuals are highly vulnerable to pre- dation by nocturnal fish. Glowing bacteria thereby are transferred Results to the nutritious guts of fish and zooplankton, where they survive Zooplankton Attraction to Bacterial Bioluminescence. A large (135- digestion and gain effective means for growth and dispersal. L) experimental sea-water tank was used to examine whether the Using bioluminescence as bait appears to be highly beneficial luminescence of marine bacteria (Photobacterium leiognathi) for marine bacteria, especially in food-deprived environments of attracts zooplankton. A dialysis bag (20 mL) containing luminous the deep sea. bacteria, used as a bait, was placed at one corner of the tank; an ECOLOGY identical bag containing a culture of a dark mutant of P. leiog- ioluminescence is common in the marine environment, oc- nathi was placed at the opposite corner. Significant changes in Bcurring in numerous organisms, from bacteria to inverte- zooplankton distribution within the tank were noticeable within brates and fish (1, 2). Bacterial bioluminescence occurs as a 15 min. Decapods and mysids were found almost exclusively < continuous glow in the presence of oxygen at cell concentrations (one-sample t-test, P 0.001 for both decapods and mysids) over fi exceeding quorum-sensing levels (3–6). Luminous bacteria occur the glowing net, whereas copepods showed no signi cant at- traction (P = 0.269) to either net (Fig. 1). Similarly, no differ- free-living in seawater (7, 8), in symbiotic associations with ma- fi rine organisms (most notably fish and squids; see refs. 7 and 8 ence was found for nonmotile organisms (spherical sh eggs and Pyrocystis spp.; P = 0.34), which served as in internal control. and references therein), as saprophytes on suspended organic Together these four groups constituted on average 85% (range, material such as marine snow (9, 10), as a major component of 73–90%) of the plankton captured in our samples. Other taxo- fecal pellets (11–13), and as parasites on crustaceans (14). fi nomic groups were too rare to be included reliably in this Although the adaptive bene ts of energetically costly bio- comparison. luminescence in symbiotic bacteria are well understood (e.g., 7, fi 15), those bene ts in nonsymbiotic bacteria and those living as Zooplankton Turns Luminescent upon Contacting P. leiognathi ectoparasites on zooplankton are less obvious. Several different Cultures. The brine shrimp Artemia salina (hereafter “Artemia”) physiological and biochemical functions of bacterial bio- became luminescent after swimming for only 10 s in a liquid luminescence have been proposed (7, 16–20), focusing mostly on culture of P. leiognathi, as well as after swimming for 2.5 h in the antioxidative activity, enhanced DNA repair, and UV resistance, suspension of small particles of bioluminescent P. leiognathi although the validity of some of these hypotheses has been colonies. As revealed by long-exposure photographs, the lumi- questioned (21). nescence in the guts of Artemia was clearly visible from outside, An ecological function in propagation and dispersal also has with additional glow produced by bacteria attached externally to been postulated (6, 7, 22). According to this hypothesis (here- the exoskeleton and appendages (Fig. 2). Similarly, nonglowing after, “bait hypothesis“), the bacteria, by glowing, visually mark individual marine mysids, Anisomysis marisrubri, freshly trapped the presence of a food particle for fish in order to get into their in the sea, started to glow after contacting a diluted culture of nutritious guts. So far, this hypothesis was supported by cir- P. leiognathi. cumstantial evidence showing that luminous bacteria thrive in and survive passage through fish guts (7, 12, 23, 24). Here we Fish Detect and Consume Glowing Prey. The promoted glow in Artemia dramatically affected its risk of being preyed on by the propose that the mechanism underlying the bait hypothesis is fi based on the following steps: (i) Quorum sensing assures that nocturnal sh Apogon annularis in a recirculating laboratory fl Artemia bacterial bioluminescence is a reliable signal of the presence of ume in the dark. Almost all the glowing offered to the food aggregates, e.g., marine snow; (ii) zooplankton is attracted to luminous particles and grazes on the bacteria-rich organic Author contributions: M.Z., S.B., and A.G. designed research; M.Z. and M.I. performed matter; (iii) because of its contact with or ingestion of the lu- research; S.B. contributed new reagents/analytic tools; M.Z. and A.G. analyzed data; and minous bacteria, the zooplankton itself becomes glowing; (iv) the M.Z. and A.G. wrote the paper. glowing zooplankton is detected readily and consumed by fish; The authors declare no conflict of interest. (v) once in the gut of either zooplankton or fish, the bacteria gain *This Direct Submission article had a prearranged editor. a nutritious environment for growth and a fast-moving vehicle 1To whom correspondence should be addressed. [email protected]. fi for wide dispersal. The scheme may be shortened by sh that This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. directly detect and consume glowing organic particles without 1073/pnas.1116683109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1116683109 PNAS Early Edition | 1of5 Downloaded by guest on September 23, 2021 1 * 0.8 * 0.6 0.4 0.2 0 Proportion in “glowing” net Fig. 2. Glow of zooplankton (A. salina) after contacting and ingesting small Mysida particles broken off colonies of the bioluminescent bacterium P. leiognathi. CopepodaFish eggs + Decapoda Pyrocystis spp. The photograph on the left was taken in room light, and the photograph on the right was taken in darkness using long exposure (30 s) with a Nikon D3 Fig. 1. Zooplankton attraction to the bioluminescence of P. leiognathi camera (f/5.6, ISO 25600, 150 mm lens). (Scale bar: 1 cm.) shown as average proportions (total in glowing net divided by totals in both nets + SEM; n = 8) of four selected zooplankton taxonomic groups. Asterisks indicate a significant difference (one-sample t test, P < 0.001 for each taxon) The next prediction of the bait hypothesis is that, on contact from the value of 0.5 expected under no attraction to either net (dotted line). with and ingestion of luminous particles, the zooplankton itself starts to glow, thereby attracting its own predators, such as fish. The advantage to the bacteria is obvious: By surviving digestion fish were consumed readily (Fig. 3 and Movie S1), compared in the guts of both zooplankton and fish, the bacteria gain a nu- with rare occasions of predation on nonglowing specimens. As trient-rich, sheltered environment for proliferation as well as an the video recordings revealed, the predation on nonglowing efficient means of dispersal. The advantage for zooplankton is specimens occurred only when the prey drifted by chance directly less obvious because of the tradeoff between the gain provided toward the fish’s head. The effect of glow of the prey on fish by organic-rich food and the cost incurred by a higher risk predation was highly significant (two-way ANOVA, F = 1,18 of predation. 275.648, P < 0.0001), whereas the effect of the identity of the fish To examine the bait hypothesis, we experimentally tested its was not significant (two-way ANOVA, F = 0.990, P = 0.39). 2,18 key steps. First, we documented the visual attraction of marine Analysis of the video recordings revealed that the fish actively zooplankton to bacterial bioluminescence (Fig. 1). Biolumines- attacked and consumed glowing prey (Movie S1), whereas the ∼ nonglowing prey passed undetected even at very close proximity cence in most marine bacteria peaks at the wavelength of 490 to the fish (Movie S2). Glowing prey were detected by the fish nm (25), which, not surprisingly, is near the wavelength least from a distance of up to 26.8 cm, near the limit allowed by the absorbed in seawater (26). Several zooplankton taxa [e.g., two working section of the flume. In fact, video records revealed that species of the copepod Pleuromamma (27), hyperiid amphi- the fish occasionally swam to the upstream part of the working pods (28), and some deep-sea crustaceans (29)] were shown to be sensitive to similar wavelengths. Mesopelagic crustaceans section and seemed to wait for the prey to arrive.
Recommended publications
  • A New Type of Plankton Food Web Functioning in Coastal Waters Revealed by Coupling Monte Carlo Markov Chain Linear Inverse Metho
    A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, Aurélie Chaalali, Olivier Pringault, Asma Sakka Hlaili To cite this version: Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, et al.. A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecological Indicators, Elsevier, 2019, 104, pp.67-85. 10.1016/j.ecolind.2019.04.077. hal-02146355 HAL Id: hal-02146355 https://hal.archives-ouvertes.fr/hal-02146355 Submitted on 3 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 A new type of plankton food web functioning in coastal waters revealed by coupling 2 Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis 3 4 5 Marouan Meddeba,b*, Nathalie Niquilc, Boutheïna Gramia,d, Kaouther Mejria,b, Matilda 6 Haraldssonc, Aurélie Chaalalic,e,f, Olivier Pringaultg, Asma Sakka Hlailia,b 7 8 aUniversité de Carthage, Faculté des Sciences de Bizerte, Laboratoire de phytoplanctonologie 9 7021 Zarzouna, Bizerte, Tunisie.
    [Show full text]
  • Crustacean Zooplankton in Lake Constance from 1920 to 1995: Response to Eutrophication and Re-Oligotrophication
    Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53, p. 255-274, December 1998 Lake Constance, Characterization of an ecosystem in transition Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication Dietmar Straile and Waiter Geller with 9 figures Abstract: During the first three quarters ofthis century, the trophic state ofLake Constance changed from oligotrophic to meso-/eutrophic conditions. The response ofcrustaceans to the eutrophication process is studied by comparing biomasses ofcrustacean zooplankton from recent years, i.e. from 1979-1995, with data from the early 1920s (AUERBACH et a1. 1924, 1926) and the 1950s (MUCKLE & MUCKLE­ ROTTENGATTER 1976). This comparison revealed a several-fold increase in crustacean biomass. The relative biomass increase was more pronounced from the early 1920s to the 1950s than from the 1950s to the 1980s. Most important changes ofthe species inventory included the invasion of Cyclops vicinus and Daphnia galeata and the extinction of Heterocope borealis and Diaphanosoma brachyurum during the 1950s and early 1960s. All species which did not become extinct increased their biomass during eutrophication. This increase in biomass differed between species and throughout the season which re­ sulted in changes in relative biomass between species. Daphnids were able to enlarge their seasonal window ofrelative dominance from 3 months during the 1920s (June to August) to 7 months during the 1980s (May to November). On an annual average, this resulted in a shift from a copepod dominated lake (biomass ratio cladocerans/copepods = 0.4 during 1920/24) to a cladoceran dominated lake (biomass ratio cladocerans/copepods = 1.5 during 1979/95).
    [Show full text]
  • Fertilizing the Ocean with Iron Is This a Viable Way to Help Reduce Carbon Dioxide Levels in the Atmosphere?
    380 Fertilizing the Ocean with Iron Is this a viable way to help reduce carbon dioxide levels in the atmosphere? 360 ive me half a tanker of iron, and I’ll give you an ice Twenty years on, Martin’s line is still viewed alternately age” may rank as the catchiest line ever uttered by a as a boast or a quip—an opportunity too good to pass up or a biogeochemist.“G The man responsible was the late John Martin, misguided remedy doomed to backfire. Yet over the same pe- former director of the Moss Landing Marine Laboratory, who riod, unrelenting increases in carbon emissions and mount- discovered that sprinkling iron dust in the right ocean waters ing evidence of climate change have taken the debate beyond could trigger plankton blooms the size of a small city. In turn, academic circles and into the free market. the billions of cells produced might absorb enough heat-trap- Today, policymakers, investors, economists, environ- ping carbon dioxide to cool the Earth’s warming atmosphere. mentalists, and lawyers are taking notice of the idea. A few Never mind that Martin companies are planning new, was only half serious when larger experiments. The ab- 340 he made the remark (in his Ocean Iron Fertilization sence of clear regulations for “best Dr. Strangelove accent,” either conducting experiments he later recalled) at an infor- An argument for: Faced with the huge at sea or trading the results mal seminar at Woods Hole consequences of climate change, iron’s in “carbon offset” markets Oceanographic Institution outsized ability to put carbon into the oceans complicates the picture.
    [Show full text]
  • Understanding Bioluminescence in Dinoflagellates—How Far Have We Come?
    Microorganisms 2013, 1, 3-25; doi:10.3390/microorganisms1010003 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Understanding Bioluminescence in Dinoflagellates—How Far Have We Come? Martha Valiadi 1,* and Debora Iglesias-Rodriguez 2 1 Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse, Plӧn 24306, Germany 2 Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +49-4522-763277; Fax: +49-4522-763310. Received: 3 May 2013; in revised form: 20 August 2013 / Accepted: 24 August 2013 / Published: 5 September 2013 Abstract: Some dinoflagellates possess the remarkable genetic, biochemical, and cellular machinery to produce bioluminescence. Bioluminescent species appear to be ubiquitous in surface waters globally and include numerous cosmopolitan and harmful taxa. Nevertheless, bioluminescence remains an enigmatic topic in biology, particularly with regard to the organisms’ lifestyle. In this paper, we review the literature on the cellular mechanisms, molecular evolution, diversity, and ecology of bioluminescence in dinoflagellates, highlighting significant discoveries of the last quarter of a century. We identify significant gaps in our knowledge and conflicting information and propose some important research questions
    [Show full text]
  • Beyond Eutrophication: Vancouver Lake, WA, USA As a Model System for Assessing Multiple, Interacting Biotic and Abiotic Drivers of Harmful Cyanobacterial Blooms
    water Article Beyond Eutrophication: Vancouver Lake, WA, USA as a Model System for Assessing Multiple, Interacting Biotic and Abiotic Drivers of Harmful Cyanobacterial Blooms Gretchen Rollwagen-Bollens 1,2,*, Tammy Lee 1, Vanessa Rose 1 and Stephen M. Bollens 1,2 1 School of the Environment, Washington State University, Vancouver, WA, 98686, USA; [email protected] (T.L.); [email protected] (V.R.); [email protected] (S.M.B.) 2 School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA * Correspondence: [email protected]; Tel.: +1-360-546-9115 Received: 16 April 2018; Accepted: 8 June 2018; Published: 10 June 2018 Abstract: Eutrophication of lakes and reservoirs has contributed to an increase in the magnitude and frequency of harmful cyanobacterial blooms; however, the interactive effects of nutrient availability (eutrophication) and other abiotic and biotic drivers have rarely been comprehensively studied in the field. We undertook an eight-year (2005–2013) research program that assessed the interaction of multiple factors driving cyanobacterial blooms in Vancouver Lake, a large, shallow eutrophic lake in Washington, USA. Our program consisted of nearly continuous monthly or weekly monitoring of water quality and plankton community composition over eight years, as well as multiple zooplankton grazing experiments over three years. We found a relatively consistent seasonal succession of phytoplankton and zooplankton assemblages, and a pattern of interacting factors influencing cyanobacterial bloom dynamics. Typically, a combined effect of decreased dissolved inorganic nitrogen (N), a sudden increase of dissolved inorganic phosphorus (P), and a cascading effect of zooplankton grazing created a ‘perfect storm’ of conditions that promoted the rapid proliferation of cyanobacteria over the two to three weeks before a bloom.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • FDA: "Glowing" Seafood?
    FDA: "Glowing" Seafood? http://web.archive.org/web/20080225162926/http://vm.cfsan.fda.gov/~ea... U.S. Food and Drug Administration Seafood Products Research Center July 1998 "GLOWING" SEAFOOD? by Patricia N. Sado* Introduction Seafood that produces a bright, blue-green light in the dark could be a meal from outer space or haute cuisine in a science fiction novel. The U. S. Food and Drug Administration (FDA) has received many consumer complaints about various seafood products "glowing" in the dark. Some of these consumers called their local health departments, poison control centers, and their U.S. Senator because they thought they had been poisoned by radiation. These consumers said they had trouble convincing people that their seafood was emitting light. One consumer took his imitation crabmeat to a local television station. Unfortunately his seafood had dried out and did not glow for the television reporters. Several consumers said that it took them many weeks before they found phone numbers for various government agencies to make inquiries. Several consumers thought their "glowing" seafood was due to phosphorescing phytoplankton, or even fluorescence. The consumers' seafood products "glowing" in the dark were not due to radiation or to fluorescence, which requires an ultraviolet light to trigger the reaction. These seafood products exhibited luminescence due to the presence of certain bacteria that are capable of emitting light. Luminescence by bacteria is due to a chemical reaction catalyzed by luciferase, a protein similar to that found in fireflies. The reaction involves oxidation of a reduced flavin mononucleotide and a long chain aliphatic aldehyde by molecular oxygen to produce oxidized flavin plus fatty acid and light (5, 12).
    [Show full text]
  • Ecological Characterization of Bioluminescence in Mangrove Lagoon, Salt River Bay, St. Croix, USVI
    Ecological Characterization of Bioluminescence in Mangrove Lagoon, Salt River Bay, St. Croix, USVI James L. Pinckney (PI)* Dianne I. Greenfield Claudia Benitez-Nelson Richard Long Michelle Zimberlin University of South Carolina Chad S. Lane Paula Reidhaar Carmelo Tomas University of North Carolina - Wilmington Bernard Castillo Kynoch Reale-Munroe Marcia Taylor University of the Virgin Islands David Goldstein Zandy Hillis-Starr National Park Service, Salt River Bay NHP & EP 01 January 2013 – 31 December 2013 Duration: 1 year * Contact Information Marine Science Program and Department of Biological Sciences University of South Carolina Columbia, SC 29208 (803) 777-7133 phone (803) 777-4002 fax [email protected] email 1 TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................... 4 BACKGROUND: BIOLUMINESCENT DINOFLAGELLATES IN CARIBBEAN WATERS ............................................... 9 PROJECT OBJECTIVES ..................................................................................................................................... 19 OBJECTIVE I. CONFIRM THE IDENTIY OF THE BIOLUMINESCENT DINOFLAGELLATE(S) AND DOMINANT PHYTOPLANKTON SPECIES IN MANGROVE LAGOON ........................................................................ 22 OBJECTIVE II. COLLECT MEASUREMENTS OF BASIC WATER QUALITY PARAMETERS (E.G., TEMPERATURE, SALINITY, DISSOLVED O2, TURBIDITY, PH, IRRADIANCE, DISSOLVED NUTRIENTS) FOR CORRELATION WITH PHYTOPLANKTON
    [Show full text]
  • Generation of Fluorescent Bacteria with the Genes Coding for Lumazine Protein and Riboflavin Biosynthesis
    sensors Communication Generation of Fluorescent Bacteria with the Genes Coding for Lumazine Protein and Riboflavin Biosynthesis Sunjoo Lim, Eugeney Oh, Miae Choi, Euiho Lee and Chan-Yong Lee * Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea; [email protected] (S.L.); [email protected] (E.O.); [email protected] (M.C.); [email protected] (E.L.) * Correspondence: [email protected]; Tel.: +82-42-821-5482 Abstract: Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. The pRFN4 plasmid, which contains the riboflavin synthesis genes from Bacillus subtilis, was originally designed for overproduction of the fluorescent ligand of 6,7-dimethyl 8-ribityllumazine. To provide the basis for a biosensor based on the lux gene from bioluminescent bacteria of Photobacterium leiognathi, the gene coding for N-terminal domain half of the lumazine protein extending to amino acid 112 (N-LumP) and the gene for whole lumazine protein (W-LumP) from P. leiognathi were introduced by polymerase chain reaction (PCR) and ligated into pRFN4 vector, to construct the recombinant plasmids of N-lumP-pRFN4 and W-lumP-pRFN4 as well as their modified plasmids by insertion of the lux promoter. The expression of the genes in the recombinant plasmids was checked in various Escherichia coli strains, and the fluorescence intensity in Escherichia coli 43R can even be observed in a single cell. These results concerning the co-expression of the genes coding for lumazine protein and for riboflavin synthesis raise the possibility to generate fluorescent bacteria which can be used in the Citation: Lim, S.; Oh, E.; Choi, M.; field of bio-imaging.
    [Show full text]
  • Determining the Depth Limit of Bioluminescent Sources in Scattering Media
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.044982; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Determining the Depth Limit of Bioluminescent Sources in Scattering Media. Ankit Raghuram1,*, Fan Ye1, Jesse K. Adams1,2, Nathan Shaner3, Jacob T. Robinson1,2,4,5, Ashok Veeraraghavan1,2,6 1 Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA 2 Applied Physics Program, Rice University, Houston, TX 77005, USA 3 Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA 4 Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA 5 Department of Bioengineering, Rice University, Houston, TX 77005, USA 6 Department of Computer Science, Rice University, Houston TX 77005, USA * [email protected] Abstract Bioluminescence has several potential advantages compared to fluorescence microscopy for in vivo biological imaging. Because bioluminescence does not require excitation light, imaging can be performed for extended periods of time without phototoxicity or photobleaching, and optical systems can be smaller, simpler, and lighter. Eliminating the need for excitation light may also affect how deeply one can image in scattering biological tissue, but the imaging depth limits for bioluminescence have yet to be reported. Here, we perform a theoretical study of the depth limits of bioluminescence microscopy and find that cellular resolution imaging should be possible at a depth of 5-10 mean free paths (MFPs). This limit is deeper than the depth limit for confocal microscopy and slightly lower than the imaging limit expected for two-photon microscopy under similar conditions.
    [Show full text]
  • Algae and Lakes Algae Are Primitive, Usually Microscopic, Organisms Found in Every Lake
    Algae and Lakes Algae are primitive, usually microscopic, organisms found in every lake. Like green plants, most algae have pigments that allow them to create energy from sunlight through the process of photosynthesis. Algae use this energy and nutrients such as nitrogen and phosphorus to grow and reproduce. Algae form the base of the food web in lakes. Small animals called zooplankton feed on algae. In Drawings from IFAS, Center for Aquatic Plants, turn, zooplankton become food for fish. Algae University of Florida, 1990; and U.S. Soil Conservation Service, Water Quality Indicators Guide: Surface Waters, also produce some of the oxygen found in lake 1989. water and in the atmosphere What types of algae live in my lake? There are thousands of species of freshwater algae living in lakes around the world. Most species of algae in Snohomish County lakes are free-floating, collectively known as phytoplankton. There are also many species of algae that attach to rocks, docks, and aquatic plants, called periphyton. There are three main groups of algae—the green algae (Chlorophyta), the golden brown algae (Chrysophyta) which also includes a large group called diatoms, and A typical microscopic view of algae found in local lakes the blue-green algae (Cyanobacteria)—as well as several smaller groups (euglenoids, cryptomonads, and dinoflagellates). Under the microscope, many algae have beautiful shapes and colors. Algae are important for healthy lakes. Without algae, your lake would likely be devoid of fish and other wildlife. Most algae are inconspicuous and do not cause problems. Unfortunately, a few types of algae can cause water quality problems in lakes.
    [Show full text]
  • Who Glows There? Bioluminescence of Fireflies, Mushrooms, and Jellyfish Detailed Project Description
    Who Glows there? Bioluminescence of Fireflies, Mushrooms, and Jellyfish Glenna Smith Anthony Todd Background: Most people think of fireflies when it comes to bioluminescent or glow- in-the-dark organisms, but many other organisms use bioluminescence as well to communicate, ward off predators, or attract their meal. On land and in fresh water, it is fairly rare with only a handful of bioluminescent mushrooms and insects (not including the recently developed abundance of transgenic glowing organisms like tobacco or rabbits). In the ocean, however, and the deep sea in particular where it is the only source of light, bioluminescence is used by a multitude of creatures: fish, squid, jellyfish, sponges, algae. We propose construction of a small exhibit which will teach children about bioluminescence and allow them to ‘draw’ the bioluminescence onto glow-in-the- dark cutouts of the organisms using fiber optic ‘pens’. This exhibit could be positioned in SciTech near the “shadowbox”. Goals: Teach children about the utility of bioluminescence by various organisms (it isn’t just for show!). Children would learn how creatures communicate with and relate to each other using bioluminescence, and how bioluminescence is particularly useful in their environment (counterillumination camouflage). Target Museum: SciTech Target Audience: Grades K-10 (benchmarks addressed in appendix 1) Big Idea: Fireflies, jellyfish, and other organisms are using bioluminescence to communicate, protect themselves, and feed themselves. Detailed Project Description: This demo will be a fun, hands-on small exhibit to showcase several bioluminescent organisms, and explain why glowing is useful to their survival. The exhibit would feature a series of pictures of glowing fish, mushrooms, insects, (the pictures could be backlit).
    [Show full text]