AM/FM Receiver Communication Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Large Bandwidth Photonic Correlator for Infrared Heterodyne Interferometry a first Laboratory Proof of Concept
A&A 639, A53 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937368 & c G. Bourdarot et al. 2020 Astrophysics Toward a large bandwidth photonic correlator for infrared heterodyne interferometry A first laboratory proof of concept G. Bourdarot1,2, H. Guillet de Chatellus2, and J-P. Berger1 1 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France e-mail: [email protected] 2 Univ. Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France Received 19 December 2019 / Accepted 17 May 2020 ABSTRACT Context. Infrared heterodyne interferometry has been proposed as a practical alternative for recombining a large number of telescopes over kilometric baselines in the mid-infrared. However, the current limited correlation capacities impose strong restrictions on the sen- sitivity of this appealing technique. Aims. In this paper, we propose to address the problem of transport and correlation of wide-bandwidth signals over kilometric dis- tances by introducing photonic processing in infrared heterodyne interferometry. Methods. We describe the architecture of a photonic double-sideband correlator for two telescopes, along with the experimental demonstration of this concept on a proof-of-principle test bed. Results. We demonstrate the a posteriori correlation of two infrared signals previously generated on a two-telescope simulator in a double-sideband photonic correlator. A degradation of the signal-to-noise ratio of 13%, equivalent to a noise factor NF = 1:15, is obtained through the correlator, and the temporal coherence properties of our input signals are retrieved from these measurements. Conclusions. Our results demonstrate that photonic processing can be used to correlate heterodyne signals with a potentially large increase of detection bandwidth. -
Electronic Warfare Fundamentals
ELECTRONIC WARFARE FUNDAMENTALS NOVEMBER 2000 PREFACE Electronic Warfare Fundamentals is a student supplementary text and reference book that provides the foundation for understanding the basic concepts underlying electronic warfare (EW). This text uses a practical building-block approach to facilitate student comprehension of the essential subject matter associated with the combat applications of EW. Since radar and infrared (IR) weapons systems present the greatest threat to air operations on today's battlefield, this text emphasizes radar and IR theory and countermeasures. Although command and control (C2) systems play a vital role in modern warfare, these systems are not a direct threat to the aircrew and hence are not discussed in this book. This text does address the specific types of radar systems most likely to be associated with a modern integrated air defense system (lADS). To introduce the reader to EW, Electronic Warfare Fundamentals begins with a brief history of radar, an overview of radar capabilities, and a brief introduction to the threat systems associated with a typical lADS. The two subsequent chapters introduce the theory and characteristics of radio frequency (RF) energy as it relates to radar operations. These are followed by radar signal characteristics, radar system components, and radar target discrimination capabilities. The book continues with a discussion of antenna types and scans, target tracking, and missile guidance techniques. The next step in the building-block approach is a detailed description of countermeasures designed to defeat radar systems. The text presents the theory and employment considerations for both noise and deception jamming techniques and their impact on radar systems. -
AM Series AGILE MODULATOR
AM Series AGILE MODULATOR AM series is a family of frequency-agile analog audio/video modulators. AM-60-860, the flag-ship model, is available in NTSC C channels 2-135 (54-860 MHz), and the PAL B, G, and I channels in the same frequency range. A More economical models are available in NTSC for the frequency ranges 54-550 MHz, or 54-806 MHz. EAS (Emergency Alert System) is standard on all models. Stereo Audio, SAP (Secondary Audio Programming), and several other optional T features are also available. V Baseband Audio/Video P R O D U Modulated C Analog RF T S Ordering Information Model Stock # Description AM-60-860 59415A Frequency-agile Audio/Video Modulator, +60 dBmV, 54-860 MHz (NTSC) AM-60-806 59419 Frequency-agile Audio/Video Modulator, +60 dBmV, 54-806 MHz (NTSC) AM-60-550 59416 Frequency-agile Audio/Video Modulator, +60 dBmV, 54-550 MHz (NTSC) AM-45-550 59404 Frequency-agile Audio/Video Modulator, +45 dBmV, 54-550 MHz (NTSC) Options AM-OPT-02 BNC Video Input Connector AM-OPT-04 Sub-Band Output (Available with AM-60-550 only) AM-OPT-05 Integrated BTSC Stereo Audio AM-OPT-06 SAP Audio/ BTSC Stereo (Available with AM-60-860 only) products AM-OPT-07 Video AGC CATV AM-OPT-09 Balanced Audio Input, 600 Ohm (Standard on AM-60-860) Related Products Model Description AMCM Frequency-agile Audio/Video modulator, +45 dBmV, 54-860 MHz (NTSC & PAL), Twelve modulators in 2RU modulators freq. agile ACM Frequency-agile Audio/Video modulator, +45 dBmV, 54-806 MHz (NTSC only), Twelve modulators in 2RU MICM Fixed-channel Audio/Video modulator, +45 dBmV, 54-806 MHz (NTSC & PAL), Twelve modulators in 2RU www.blondertongue.com | 800-523-6049 76 Specifications Input Output Connector Connector: “F” Female Standard: “F” Female Impedance: 75 Ω Option 2: BNC Female Impedance: 75 Ω Return Loss: 12 dB Return Loss: 18 dB Frequency Range Video Input Level AM-60-860 Model: 54 to 860 MHz (NTSC CATV Ch. -
Radar Transmitter/Receiver
Introduction to Radar Systems Radar Transmitter/Receiver Radar_TxRxCourse MIT Lincoln Laboratory PPhu 061902 -1 Disclaimer of Endorsement and Liability • The video courseware and accompanying viewgraphs presented on this server were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor the Massachusetts Institute of Technology and its Lincoln Laboratory, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors or the Massachusetts Institute of Technology and its Lincoln Laboratory. • The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or any of their contractors or subcontractors Radar_TxRxCourse MIT Lincoln Laboratory PPhu 061802 -2 Outline • Introduction • Radar Transmitter • Radar Waveform Generator and Receiver • Radar Transmitter/Receiver Architecture -
US2959674.Pdf
Nov. 8, 1960 T. R. O "MEARA 2,959,674 GAIN CONTROL FOR PHASE AND GAIN MATCHED MULTI-CHANNEL RADIO RECEIVERS Filed July 2, 1957 2. Sheets-Sheet 2 PETARD CONVERTER TUBE Ë????Q. F SiGNAL OUTPUT OSC. S. G. INPUT INVENTOR. 77/OMAS A. O’MEAAA AT 7OAPWA 3 2,959,674 United States Patent Office Patented Nov. 8, 1960 1. 2 linear type. By a linear type frequency changer is meant a device with output current or voltage which is a linear 2.959,674 function of either the RF input signal or local oscillator GAIN CONTROL FOR PHASE AND GAN signal alone and with a conversion transconductance MATCHED MULT-CHANNELRADIO RE. 5 characteristic which varies linearly with the magnitude of CEIVERS the voltage at the local oscillator input to the device. Thomas R. O'Meara, Los Angeles, Calif., assignor, by This means that, if instead of being an alternating voltage, meSne assignments, to the United States of America as the RF signal input to the device were maintained at a represented by the Secretary of the Navy constant D.C. voltage and the oscillator signal were re 0. placed by a D.C. voltage excursion, then a plot of the Filed July 2, 1957, Ser. No. 669,691 output current or voltage of the device versus the local oscillator signal voltage would be a straight line. Simi 3 Claims. (Cl. 250-20) larly, if the local oscillator signal voltage input to the device were kept at a constant D.C. value, instead of This invention relates to a gain control for electronic 5 being an A.C. -
Radio Communications in the Digital Age
Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS -
Dec. 18, 1956 . F. J. BURGER 2,774,866 Firancis. J. B/RGER
Dec. 18, 1956 . F. J. BURGER 2,774,866 AUTOMATIC GAIN AND BAND WIDTH CONTROL FORTRANSISTOR CIRCUITS Filed Jan. 30, 1956 s log 00 0 0-0 000 & S. l INVENTOR, firANCIS. J. B/RGER 9. BY alid. A77ORNEYs 2,774,866 United States Patent Office Patented Dec. 18, 1956 2 reduced gain conditions. In order to prevent such dis tortion some means is required to reduce the signal level 2,774,866 prior to its application to the first intermediate frequency stage. In addition to the distortion problem, as is known, AUTOMATIC GAN AND BAND WIDTH CONTROL 5 the band width of the intermediate frequency amplifier FORTRANSISTOR CIRCUITS varies as a function of the magnitude of the automatic Francis J. Burger, Leonia, N. J., assignior to Enuerson gain controi voltage. As the gain of the transistor is Radio & Phonograph Corporation, Jersey City, N. , reduced, the loading which it presents to the intermediate a corporation of New York frequency coils decreases, thus increasing the Q of the O circuit and narrowing the band width. There also results Application January 30, 1956, Serial No. 562,072 a change in reactive loading provided by the I. F. tran 6 Claims. (C. 250-20) sistor which causes the intermediate frequency coils to shift their frequency center to a higher value. The purpose of this invention is to provide a variable This invention relates to improvements in transistor damping system which will vary the primary damping circuits, particularly transistor radio receivers with re of the converter intermediate frequency coil as a func spect to means for providing automatic gain and band tion of the automatic gain control voltage. -
History of Radio Broadcasting in Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013). -
Lecture 11 : Discrete Cosine Transform Moving Into the Frequency Domain
Lecture 11 : Discrete Cosine Transform Moving into the Frequency Domain Frequency domains can be obtained through the transformation from one (time or spatial) domain to the other (frequency) via Fourier Transform (FT) (see Lecture 3) — MPEG Audio. Discrete Cosine Transform (DCT) (new ) — Heart of JPEG and MPEG Video, MPEG Audio. Note : We mention some image (and video) examples in this section with DCT (in particular) but also the FT is commonly applied to filter multimedia data. External Link: MIT OCW 8.03 Lecture 11 Fourier Analysis Video Recap: Fourier Transform The tool which converts a spatial (real space) description of audio/image data into one in terms of its frequency components is called the Fourier transform. The new version is usually referred to as the Fourier space description of the data. We then essentially process the data: E.g . for filtering basically this means attenuating or setting certain frequencies to zero We then need to convert data back to real audio/imagery to use in our applications. The corresponding inverse transformation which turns a Fourier space description back into a real space one is called the inverse Fourier transform. What do Frequencies Mean in an Image? Large values at high frequency components mean the data is changing rapidly on a short distance scale. E.g .: a page of small font text, brick wall, vegetation. Large low frequency components then the large scale features of the picture are more important. E.g . a single fairly simple object which occupies most of the image. The Road to Compression How do we achieve compression? Low pass filter — ignore high frequency noise components Only store lower frequency components High pass filter — spot gradual changes If changes are too low/slow — eye does not respond so ignore? Low Pass Image Compression Example MATLAB demo, dctdemo.m, (uses DCT) to Load an image Low pass filter in frequency (DCT) space Tune compression via a single slider value n to select coefficients Inverse DCT, subtract input and filtered image to see compression artefacts. -
Hot 100 SWL List Shortwave Frequencies Listed in the Table Below Have Already Programmed in to the IC-R5 USA Version
I Hot 100 SWL List Shortwave frequencies listed in the table below have already programmed in to the IC-R5 USA version. To reprogram your favorite station into the memory channel, see page 16 for the instruction. Memory Frequency Memory Station Name Memory Frequency Memory Station Name Channel No. (MHz) name Channel No. (MHz) name 000 5.005 Nepal Radio Nepal 056 11.750 Russ-2 Voice of Russia 001 5.060 Uzbeki Radio Tashkent 057 11.765 BBC-1 BBC 002 5.915 Slovak Radio Slovakia Int’l 058 11.800 Italy RAI Int’l 003 5.950 Taiw-1 Radio Taipei Int’l 059 11.825 VOA-3 Voice of America 004 5.965 Neth-3 Radio Netherlands 060 11.910 Fran-1 France Radio Int’l 005 5.975 Columb Radio Autentica 061 11.940 Cam/Ro National Radio of Cambodia 006 6.000 Cuba-1 Radio Havana /Radio Romania Int’l 007 6.020 Turkey Voice of Turkey 062 11.985 B/F/G Radio Vlaanderen Int’l 008 6.035 VOA-1 Voice of America /YLE Radio Finland FF 009 6.040 Can/Ge Radio Canada Int’l /Deutsche Welle /Deutsche Welle 063 11.990 Kuwait Radio Kuwait 010 6.055 Spai-1 Radio Exterior de Espana 064 12.015 Mongol Voice of Mongolia 011 6.080 Georgi Georgian Radio 065 12.040 Ukra-2 Radio Ukraine Int’l 012 6.090 Anguil Radio Anguilla 066 12.095 BBC-2 BBC 013 6.110 Japa-1 Radio Japan 067 13.625 Swed-1 Radio Sweden 014 6.115 Ti/RTE Radio Tirana/RTE 068 13.640 Irelan RTE 015 6.145 Japa-2 Radio Japan 069 13.660 Switze Swiss Radio Int’l 016 6.150 Singap Radio Singapore Int’l 070 13.675 UAE-1 UAE Radio 017 6.165 Neth-1 Radio Netherlands 071 13.680 Chin-1 China Radio Int’l 018 6.175 Ma/Vie Radio Vilnius/Voice -
Suitability of a Commercial Software Defined Radio System for Passive Coherent Location
Suitability of a Commercial Software Defined Radio System for Passive Coherent Location Aadil Volkwin A dissertation submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering. Cape Town, May 2008 Dedicated to: My Parents, my Sister and my Wife. 2 Declaration I declare that this work done is my own, unaided work. This dissertation is being submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering. It has not been submitted for any degree or examination in any other university. ................................................................................ Signature of Author Cape Town 2008 3 Abstract This dissertation provides a comprehensive discussion around bistatic radar with specific reference to PCL, highlighting existing literature and work, examining the various performance metrics. In particular the performance of commercial FM radio broadcasts as the radar waveform is examined by implementation of the ambiguity function. The FM signals show desirable characteristics in the context of our application, the average range resolution obtained is 5.98km, with range and doppler peak sidelobe levels measured at -25.98dB and -33.14dB respectively. Furthermore, the SDR paradigm and technology is examined, with discussion around the design considerations. The USRP, the TVRx daughterboard and GNURadio are examined further as a potential receiver and development environment, in this light. The system meets the low cost ambitions costing just over US$1000.00 for the USRP motherboard and a single daughterboard. Furthermore it performs well, displaying desirable characteristics, The receiver's frontend provides a bandwidth of 6MHz and a tunable range between 50MHz and 800MHz, with a tuning step size as low as 31.25kHz. -
(MSEE) COMMUNICATION, NETWORKING, and SIGNAL PROCESSING TRACK*OPTIONS Curriculum Program of Study Advisor: Dr
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING (MSEE) COMMUNICATION, NETWORKING, AND SIGNAL PROCESSING TRACK*OPTIONS Curriculum Program of Study Advisor: Dr. R. Sankar Name USF ID # Term/Year Address Phone Email Advisor Areas of focus: Communications (Systems/Wireless Communications), Networking, and Digital Signal Processing (Speech/Biomedical/Image/Video and Multimedia) Course Title Number Credits Semester Grade 1. Mathematics: 6 hours Random Process in Electrical Engineering EEE 6545 3 Select one other from the following Linear and Matrix Algebra EEL 6935 3 Optimization Methods EEL 6935 3 Statistical Inference EEL 6936 3 Engineering Apps for Vector Analysis** EEL 6027 3 Engineering Apps for Complex Analysis** EEL 6022 3 2. Focus Area Core Courses: 15 hours (Select a major core with 2 sets of sequences from groups A or B and a minor core (one course from the other group) A. Communications and Networking Digital Communication Systems EEL 6534 3 Mobile and Personal Communication EEL 6593 3 Broadband Communication Networks EEL 6506 3 Wireless Network Architectures and Protocols EEL 6597 3 Wireless Communications Lab EEL 6592 3 B. Signal Processing Digital Signal Processing I EEE 6502 3 Digital Signal Processing II EEL 6752 3 Speech Signal Processing EEL 6586 3 Deep Learning EEL 6935 3 Real-Time DSP Systems Lab (DSP/FPGA Lab) EEL 6722C 3 3. Electives: 3 hours A. Communications, Networking, and Signal Processing Selected Topics in Communications EEL 7931 3 Network Science EEL 6935 3 Wireless Sensor Networks EEL 6935 3 Digital Signal Processing III EEL 6753 3 Biomedical Image Processing EEE 6514 3 Data Analytics for Electrical and System Engineers EEL 6935 3 Biomedical Systems and Pattern Recognition EEE 6282 3 Advanced Data Analytics EEL 6935 3 B.