Phylogeny and Classification of the Orussidae

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Classification of the Orussidae Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2003? 2003 139? 337418 Original Article L. VILHELMSENPHYLOGENY AND CLASSIFICATION OF ORUSSIDAE Zoological Journal of the Linnean Society, 2003, 139, 337–418. With 119 figures Phylogeny and classification of the Orussidae (Insecta: Hymenoptera), a basal parasitic wasp taxon LARS VILHELMSEN* Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark Received November 2002; accepted for publication March 2003 The Orussidae is a small family of parasitic wasps, comprising 75 species worldwide. It occupies a key position within the Hymenoptera, being the sistergroup of the Apocrita, a taxon containing all other parasitic wasps. In total, 163 morphological characters were scored for 74 species of Orussidae and five outgroup taxa. The dataset was analysed under different weighting schemes. The results do not support a single phylogenetic hypothesis, but most relation- ships were retrieved in the majority of the cladistic analyses. Earlier attempts at tribal and subfamily classifications of the Orussidae are not corroborated. Enforcing a strictly cladistic classification at these levels would require the recognition of many redundant taxa without enhancing the information content. It is proposed that formal recog- nition of tribes and subfamilies within the Orussidae be abandoned. The generic concepts of the family are revised. Sixteen genera are recognized; detailed descriptions and illustrations of each are provided, as is a key to the genera. The monophyly of most genera as defined here is well supported, with the exception of Guiglia Benson, 1938. Guiglia is retained because alternatives to monophyly of this genus are not well supported either. Heliorussus Benson, 1955, syn. nov., is incorporated in Orussus Latreille, 1796; the species formerly included in Heliorussus, Orussus schout- edeni Guiglia, 1937, combination reestablished, O. scutator (Benson, 1955) comb. nov. and O. spinifer (Benson, 1955), comb. nov. are transferred to Orussus. Leptorussus kwazuluensis sp. nov. is described; Pseudoryssus emanuelis Guiglia, 1956 syn. nov. is considered a junior synonym of Pseudoryssus henschii (Mocsáry, 1910). An annotated key to the world species of Orussus is included as an appendix. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139, 337-418. ADDITIONAL KEYWORDS: cladistic analysis – generic revision – keys – Orussus. INTRODUCTION order ‘Symphyta’), the Orussidae comes out strongly supported as the sistergroup of the Apocrita (Ronquist The Orussidae is a small family of parasitic wasps, et al., 1999; Vilhelmsen, 2001a). This implies that par- unique among the Hymenoptera in being the only non- asitism arose in the common ancestor of Orussidae apocritan parasitoid taxon. They possess a combina- and Apocrita. Therefore, understanding the lifestyle of tion of advanced and plesiomorphic traits (Vilhelmsen the Orussidae is crucial in elucidating the evolution of et al., 2001), the absence of the ‘wasp-waist’ of the Apo- parasitism within Hymenoptera. crita being the most striking example of a retained Biological information for any species of Orussidae plesiomorphy. The Apocrita with more than 100 000 is scarce, most having been obtained from a few spe- described species, the majority of which are parasi- cies of Orussus. Latreille (1811) provided the first toids, comprise the bulk of the Hymenoptera. Indeed, detailed account of the morphology and lifestyle of the main reason for the present day diversity of the any orussid (Orussus abietinus); he noted the close Apocrita is probably their successful exploitation of association with wood (p. 559: ‘…leurs larves vivent the parasitoid lifestyle. In the most recent cladistic certainement dans l’intérieur du bois.’). The interpre- treatments of the phylogeny of the basal tation of the evidence accumulated since then has hymenopteran lineages (previously known as the sub- been contentious. Everyone agrees that orussid larvae are associated with galleries in dead wood made by other woodliving insect larvae. Most workers favour *E-mail: [email protected] an ectoparasitic lifestyle for Orussidae, usually with © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139, 337–418 337 338 L. VILHELMSEN Buprestidae (Coleoptera) as the (presumed) host (e.g. apomorphic or plesiomorphic features were empha- Burke, 1917; Rawlings, 1957; Powell & Turner, 1975; sized in the classification. Only with the application of Nutall, 1980); in contrast, Cooper (1953) suggested quantitative cladistics did the systematic position of that Orussus is feeding mainly on the frass in the gal- the Orussidae become firmly established. Currently, leries of wood-boring insects. However, the available they are placed in a separate superfamily (Orus- evidence considered as a whole supports the parasi- soidea), the most inclusive formal category below toid hypothesis (see Vilhelmsen et al., 2001 for further order level currently employed by hymenopterists discussion). Remarkable adaptations for ovipositing in (Vilhelmsen, 2001a). wood includes an echolocation system involving the In contrast to the present well corroborated phylo- antennae and the forelegs in the female and a very genetic position of the Orussidae within the long (at least twice the body length) concealed ovipos- Hymenoptera, the internal phylogeny of the family is itor (Vilhelmsen et al., 2001). entirely uncharted. The most recent comprehensive Larval adaptations for the parasitoid lifestyle in a effort in orussid systematics on a global level is confined habitat include the reduction of the sensory Guiglia’s (1965) catalogue of the world species. It is a apparatus (eyes and antenna), mouthparts (maxillae useful embarkation point for further exploration, but and labium), and locomotory apparatus (thoracic legs it was of course not done within a cladistic context, and suranal process (Vilhelmsen, 2003; see Rohwer & and no attempt was made to accumulate material Cushman, 1917 and Parker, 1935 for further informa- for an exhaustive study. Regional surveys of most tion about anatomy of the immature stages of the local faunas exist: Africa (Benson, 1935a; Guiglia, Orussidae). These features are all shared with apocri- 1937a: Chalinus; Guiglia, 1937b: Orussus), Australia tan larvae. An apparently unique feature is the pres- (Benson, 1938b; Riek, 1955), Europe (Guiglia, 1954a; ence of dorsal transverse rows of small cuticular Kraus, 1998), Far East/South-eastern Asia backward curving spines on all thoracic and abdomi- (Yasumatsu, 1954), North America (Ross, 1937; Mid- nal segments throughout larval development. These dlekauff, 1983), Neotropical (Smith, 1988); these are spines have also been reported in late instar larvae of all limited geographically. Schlettererius cinctipes (Cresson) (Stephanidae, see The main obstacle to further progress in orussid sys- Taylor, 1967). In Orussidae, they presumably facilitate tematics is the scarcity of material. Orussidae are moving in galleries inside the wood in order to seek uncommon and rarely collected. The most fortuitous out hosts that the ovipositing female was unable to record is that of the holotype of Orussella dentifrons reach (Vilhelmsen, 2003). Another feature not (Philippi, 1873), which was plucked from a cobweb. The reported for any other Hymenoptera is the presence of somewhat incomplete condition of this specimen led cuticular folds in the hindgut which perhaps allow the Konow (1897a) to conclude that it ‘entschieden besser orussid larva to clamp it shut during development; in den Papierkorb gewandert wäre’ [‘It would have been anatomically, the mid- and hindgut are continuous better to have thrown it in the paper bin.’]. Abuse not- throughout most of larval development, contrary to withstanding, the species is currently regarded as valid the condition in virtually all Apocrita examined (Vil- and placed in its own genus, attesting to the distinc- helmsen, 2003). Shutting the hindgut and the post- tiveness of the taxon. Only a few major collections hold ponement of defecation until just prior to pupation material of more than half a dozen species of Orussidae. prevent fouling and subsequent putrefaction of the Furthermore, many species are represented by only a host; this is thought to be an important adaptation to handful of specimens, spread in collections all over the the parasitoid lifestyle in Hymenoptera, especially world. Significantly, the only previous revisions of the endoparasitism (Gauld & Hanson, 1995). higher-level classification were undertaken by R. B. The unique status of the Orussidae was recognized Benson (1935a, 1955a) who worked in the NHML, at an early stage in higher-level hymenopteran sys- which holds the largest and most diverse collection of tematics. In precladistic days, this was translated by Orussidae in the world by far. some authors into assigning them an ‘intermediate’ The present revision is the most comprehensive position between ‘Symphyta’ and Apocrita. Rohwer & effort in orussid systematics to date: 75 species in 16 Cushman (1917) erected the suborder Idiogastra genera are recognized. Material from about 50 collec- solely to accommodate the Orussidae, and Bischoff tions from all over the world has been examined, (1926) argued that they should be placed in a separate including 57 primary types. This represents all but superfamily among the ‘Symphyta’.
Recommended publications
  • Assemblage of Hymenoptera Arriving at Logs Colonized by Ips Pini (Coleoptera: Curculionidae: Scolytinae) and Its Microbial Symbionts in Western Montana
    University of Montana ScholarWorks at University of Montana Ecosystem and Conservation Sciences Faculty Publications Ecosystem and Conservation Sciences 2009 Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana Celia K. Boone Diana Six University of Montana - Missoula, [email protected] Steven J. Krauth Kenneth F. Raffa Follow this and additional works at: https://scholarworks.umt.edu/decs_pubs Part of the Ecology and Evolutionary Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Boone, Celia K.; Six, Diana; Krauth, Steven J.; and Raffa, Kenneth F., "Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana" (2009). Ecosystem and Conservation Sciences Faculty Publications. 33. https://scholarworks.umt.edu/decs_pubs/33 This Article is brought to you for free and open access by the Ecosystem and Conservation Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Ecosystem and Conservation Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 172 Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana Celia K. Boone Department of Entomology, University of Wisconsin,
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • A Maple Wood Wasp, Xiphydria Maculata, and Its Insect Enemies (Hymenoptera: Xiphydriiade)
    The Great Lakes Entomologist Volume 17 Number 1 - Spring 1984 Number 1 - Spring 1984 Article 3 April 1984 A Maple Wood Wasp, Xiphydria Maculata, and its Insect Enemies (Hymenoptera: Xiphydriiade) Mark A. Deyrup Archbold Biological Station Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Deyrup, Mark A. 1984. "A Maple Wood Wasp, Xiphydria Maculata, and its Insect Enemies (Hymenoptera: Xiphydriiade)," The Great Lakes Entomologist, vol 17 (1) Available at: https://scholar.valpo.edu/tgle/vol17/iss1/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Deyrup: A Maple Wood Wasp, <i>Xiphydria Maculata,</i> and its Insect Enem 1984 THE GREAT LAKES ENTOMOLOGIST 17 A MAPLE WOOD WASP, XIPHYDRIA MACULATA, AND ITS INSECT ENEMIES (HYMENOPTERA: XIPHYDRIIADE) Mark A. Deyrupl ABSTRACT A xiphydriid wood wasp, Xiphydria mandata, is very common in branches ofAeer spp. in Indiana. and is frequently the proximate cause of branches falling from shade trees. X. maculata is attacked by seven parasitoids: Alliaells bllrquei (Aulacidae), A. digitalis, Rhyssella nitida (Ichneumonidae), Xiphydriophagus meyer/llcki! (Pteromalidae), Co· eloides TOssiclls betlltae (Braconidae), Spathills elegans (Braconidae), and OruSSlIs sp. (Orussidae). The latter three parasitoids prior to this study had no confirmed hosts; Xiphydriophagus is new to N. America. This parasitoid complex is compared with that of the Palaearctic Xiphydria camelus, showing a series of pairs of closely related Palaearctic and :\earctic forms.
    [Show full text]
  • Hymenoptera, Orussidae) from French Guiana
    JHR 51: 171–185 (2016) A new species of Ophrella 171 doi: 10.3897/jhr.51.9075 RESEARCH ARTICLE http://jhr.pensoft.net A new species of Ophrella Middlekauff, 1985 (Hymenoptera, Orussidae) from French Guiana Lars Vilhelmsen1 1 Natural History Museum of Denmark, SCIENCE, University of Copenhagen; Zoological Museum, Univer- sitetsparken 15, DK-2100, Denmark Corresponding author: Lars Vilhelmsen ([email protected]) Academic editor: Marko Prous | Received 3 May 2016 | Accepted 24 June 2016 | Published 29 August 2016 http://zoobank.org/09799B9B-839C-499C-A531-B1FE299B3ECC Citation: Vilhelmsen L (2016) A new species of Ophrella Middlekauff, 1985 (Hymenoptera, Orussidae) from French Guiana. Journal of Hymenoptera Research 51: 171–185. doi: 10.3897/jhr.51.9075 Abstract Ophrella seagi sp. n. is described and illustrated from a female and a male collected in French Guiana. Additional Orussidae from this country are listed in an Appendix. The new species differs from other members of Ophrella in a number of features, and the diagnosis of the genus is revised accordingly. A key to Ophrella species is included. The new species is included in a continuously updated morphological data set assembled for the Orussidae and its phylogenetic position discussed. Keywords Parasitoid wasps, wood-living insects, taxonomy, phylogeny, biogeography Introduction The Orussidae are a small family of parasitoid wasps, currently with about 90 extant described species. They have a worldwide distribution (Vilhelmsen 2003, 2004), but they are very rarely collected, many species being known from only one or a few speci- mens. Orussidae have a fossil record spanning the Cretaceous and Tertiary, the radia- tion of the extant members of the family probably occurred in the mid-Cretaceous, approx.
    [Show full text]
  • Ants (Order Hymenoptera, Family Formicidae)
    BugWise Invertebrate Guide A tool for studying Australian invertebrates Introduction The Invertebrate Guide was created by Matthew Bulbert and David Britton. Illustrations were prepared by Andrew Howells. Images on title page were provided by Matthew Bulbert. An electronic version is available at www.australianmuseum.net.au/bugwise. This version has coloured pictures of groups. Funding for the BugWise project and associated resources were supplied by Coal and Allied Community Trust and NSW Environmental Trust. All images, illustrations and text copyrighted to the Australian Museum, 2007. The Australian Museum encourages the availability, dissemination and exchange of public information. Unless otherwise specified you may copy, distribute, display, download and otherwise freely deal with this material on the condition that you include the copyright notice “© Australian Museum” on all uses. You must, however, obtain written permission from the Australian Museum if you wish to: · charge others for access to the material; · include all or part of the material in advertising or a product for sale; · modify the material in any form; or · publish the material on another website - we prefer that you make a direct link to this website to ensure that the latest version is always displayed. Invertebrate Guide 1 Scope of the document: BugWise Invertebrate Guide has been prepared by Australian Museum staff working on invertebrate behaviour, taxonomy and ecology. It has been designed to help people who need to identify invertebrates. Unlike other guides of similar nature, extensive notes on behaviour and common misidentifications for each invertebrate group are also provided. An advantage of this added information is that it potentially allows identification of invertebrate groups without the need to collect them.
    [Show full text]
  • Mechanisms of Ovipositor Insertion and Steering of a Parasitic Wasp
    Mechanisms of ovipositor insertion and steering of a parasitic wasp Urosˇ Cerkvenika,1, Bram van de Straata, Sander W. S. Gusseklooa, and Johan L. van Leeuwena aExperimental Zoology Group, Wageningen University and Research, 6708WD Wageningen, The Netherlands Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved July 28, 2017 (received for review April 13, 2017) Drilling into solid substrates with slender beam-like structures Buckling is a mechanical failure of a structure which occurs, for is a mechanical challenge, but is regularly done by female para- instance, when a beam cannot withstand the applied axial load sitic wasps. The wasp inserts her ovipositor into solid substrates and bends, possibly beyond its breaking point. As buckling occurs to deposit eggs in hosts, and even seems capable of steering more easily in slender beams, this is a real danger for parasitic the ovipositor while drilling. The ovipositor generally consists of wasps. Buckling depends on four parameters: (i) the axial load three longitudinally connected valves that can slide along each applied on the beam, (ii) the second moment of area of the beam, other. Alternative valve movements have been hypothesized to (iii) how well is the beam fixed on both ends (i.e., “free to slide be involved in ovipositor damage avoidance and steering during sideways,” “hinged,” or “fixed”), and (iv) the length of the beam. drilling. However, none of the hypotheses have been tested in During puncturing, axial loading of the ovipositor cannot be vivo. We used 3D and 2D motion analysis to quantify the probing avoided, so only the other factors can be adjusted.
    [Show full text]
  • Simultaneous Percussion by the Larvae of a Stem-Nesting Solitary
    JHR 81: 143–164 (2021) doi: 10.3897/jhr.81.61067 RESEARCH ARTICLE https://jhr.pensoft.net Simultaneous percussion by the larvae of a stem- nesting solitary bee – a collaborative defence strategy against parasitoid wasps? Andreas Müller1, Martin K. Obrist2 1 ETH Zurich, Institute of Agricultural Sciences, Biocommunication and Entomology, Schmelzbergstrasse 9/ LFO, 8092 Zurich, Switzerland 2 Swiss Federal Research Institute WSL, Biodiversity and Conservation Biol- ogy, 8903 Birmensdorf, Switzerland Corresponding author: Andreas Müller ([email protected]) Academic editor: Michael Ohl | Received 23 November 2020 | Accepted 7 February 2021 | Published 25 February 2021 http://zoobank.org/D10742E1-E988-40C1-ADF6-7F8EC24D6FC4 Citation: Müller A, Obrist MK (2021) Simultaneous percussion by the larvae of a stem-nesting solitary bee – a collaborative defence strategy against parasitoid wasps? Journal of Hymenoptera Research 81: 143–164. https://doi. org/10.3897/jhr.81.61067 Abstract Disturbance sounds to deter antagonists are widespread among insects but have never been recorded for the larvae of bees. Here, we report on the production of disturbance sounds by the postdefecating larva (“prepupa”) of the Palaearctic osmiine bee Hoplitis (Alcidamea) tridentata, which constructs linear series of brood cells in excavated burrows in pithy plant stems. Upon disturbance, the prepupa produces two types of sounds, one of which can be heard up to a distance of 2–3 m (“stroking sounds”), whereas the other is scarcely audible by bare ear (“tapping sounds”). To produce the stroking sounds, the prepupa rapidly pulls a horseshoe-shaped callosity around the anus one to five times in quick succession over the cocoon wall before it starts to produce tapping sounds by knocking a triangularly shaped callosity on the clypeus against the cocoon wall in long uninterrupted series of one to four knocks per second.
    [Show full text]
  • Journal of Hymenoptera Research
    J. HYM. RES. Vol. 12(2), 2003, pp. 346-354 Larval Anatomy of Orussidae (Hymenoptera) Lars Vilhelmsen Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100, Denmark, e-mail: [email protected] Abstract. —The external and selected parts of the internal anatomy of the larva of Orussus abie- tinus (Orussidae) are examined The external anatomy is similar to that reported for other Orus- sidae. The eyes, laterocervicalia, and thoracic legs are absent, and the antennae, maxillae, and labium are reduced. Each thoracic and abdominal segment has a pair of short transverse rows of recurved cuticular spines laterodorsally, probably for locomotory purposes. A previously unre- ported feature is the configuration of the hindgut, which has a set of transverse interlocking cuticular folds. The mid- and hindgut are anatomically continuous. Overall, the larval anatomy of Orussidae is highly reduced compared with that of other basal hymenopteran lineages and resembles that of apocritan larvae. The modifications of the larval anatomy are probably correlated with the shift in lifestyle from herbivorous to carnivorous, which is less demanding of the sensory, feeding, and locomotory apparatus. Orussidae is a small wasp family, com- termediate in Hymenoptera (Hanson and prising 75 species worldwide (Vilhelmsen Gauld 1995; Vilhelmsen 1997). in press). Traditionally, the Hymenoptera Nutall (1980) provided a very brief de- have been subdivided in two suborders, scription of the larva of Guiglia schauins- the almost exclusively herbivorous 'Sym- landi (Ashmead, 1903), a New Zealand phyta' and the predominantly entomoph- species. The only detailed descriptions of agous Apocrita; Orussidae were usually the immature stages of an orussid species placed in the 'Symphyta' because of the are by Rohwer and Cushman (1917) and absence of the wasp-waist in the adults, Parker (1935), who dealt with Orussus oc- the defining feature of the Apocrita.
    [Show full text]
  • Hymenoptera: Symphyta): Evidence for Multiple Increases in Sperm Bundle Size
    J. HYM. RES. Vol. 10(Z), 2001, pp. 119-125 Spermatodesmata of the Sawflies (Hymenoptera: Symphyta): Evidence for Multiple Increases in Sperm Bundle Size NATHAN SCHIFF, ANTHONY J. FLEMMINC, AND DONALD L. J. QUICKE (NS) U.S. Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, P.O. Box 227, Stoneville, MS 38776, USA; (AJF) Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, U.K.; (DLJQ) Unit of Parasitoid Systematics, Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK, and Department of Entomology, The Natural History Museum, London SW7 5BD, UK Abstract.-We present the first survey of spermatodesmata (bundles of spermatozoa connected at the head by an extracellular ‘gelatinous’ matrix) across the sawfly superfamilies. Spermatodes- mata occur in all examined taxa within the sawfly grade (Xyelidae-Orussidae inclusive), but are not found in the Apocrita. Using DAPI staining, the numbers of individual sperm per sperma- todesm were calculated and the values obtained are mapped on to the current phylogenetic hy- pothesis. The plesiomorphic spermatodesm in the Hymenoptera, based on that observed in the putatively basal family Xyelidae, contains relatively few sperm, approximately 16. However, in the Tenthredinoidea and in the Siricidae, far larger numbers are found, reaching up to 256 in the Cimbicidae. In many insects, mature sperm released Until now, spermatodesmata have only from testicular follicles are neither free in- been characterised in a few sawflies, al- dividuals nor packaged into variously most entirely as part of ultrastructural in- complex spermatophores, but are ar- vestigations using transmission electron ranged in organised bundles with their microscopy (Quicke et al.
    [Show full text]
  • The Origins of Species Richness in the Hymenoptera: Insights from a Family-Level Supertree BMC Evolutionary Biology 2010, 10:109
    Davis et al. BMC Evolutionary Biology 2010, 10:109 http://www.biomedcentral.com/1471-2148/10/109 RESEARCH ARTICLE Open Access TheResearch origins article of species richness in the Hymenoptera: insights from a family-level supertree Robert B Davis*1,2, Sandra L Baldauf1,3 and Peter J Mayhew1 Abstract Background: The order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification. Results: The supertrees most supported by the underlying input trees are produced using matrix representation with compatibility (MRC) (from an all-in and a compartmentalised analysis). Whilst relationships at the tips of the tree tend to be well supported, those along the backbone of the tree (e.g. between Parasitica superfamilies) are generally not. Ten significant shifts in diversification (six positive and four negative) are found common to both MRC supertrees. The Apocrita (wasps, ants, bees) experienced a positive shift at their origin accounting for approximately 4,000 species. Within Apocrita other positive shifts include the Vespoidea (vespoid wasps/ants containing 24,000 spp.), Anthophila + Sphecidae (bees/thread-waisted wasps; 22,000 spp.), Bethylidae + Chrysididae (bethylid/cuckoo wasps; 5,200 spp.), Dryinidae (dryinid wasps; 1,100 spp.), and Proctotrupidae (proctotrupid wasps; 310 spp.). Four relatively species-poor families (Stenotritidae, Anaxyelidae, Blasticotomidae, Xyelidae) have undergone negative shifts.
    [Show full text]
  • ISH and That Revising (Half) the Nematinae (Tenthredinidae) of The
    Hamuli The Newsletter of the International Society of Hymenopterists volume 4, issue 2 20 August 2013 In this issue... Revising Nematinae (STING) 1 ISH and that (Heraty) 1 Webmaster update (Seltmann) 6 News from the Albany Museum (Gess) 7 Challenges of large-scale taxonomy (Whitfield) 8 Hymenoptera Emporium (Sharkey) 9 Rearing Eois in Panama (Parks) 10 Relying on catalogues (Broad) 11 Wasps on the phone (Broad) 12 Hidden terrors (Heraty et al.) 14 Orasema: facts and request (Heraty) 15 Tiny hymys (Sharkey) 16 Fig. 1 Tenthredo arctica (Thomson, 1870) Abisko: Mt. Njullá above Neotropical hym course (Sharkey) 17 treeline (Sweden: Norrbottens Län); 900 m. 05.07.2012 I Encontro Internacional Sobre Vespas (Carpenter) 17 Small trick for lighting (Mikó) 18 Revising (half) the Nematinae What is fluorescing? (Mikó & Deans) 19 Hymenoptera at the Frost (Deans) 22 (Tenthredinidae) of the West Postgraduate corner (Kittel) 24 Palaearctic Paper wasps get official respect (Starr) 24 By: STI Nematinae Group (STING): Andrew D. Liston, Marko Membership information 25 Prous, Stephan M. Blank, Andreas Taeger, Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany; Erik Heibo, Lierskogen, Norway; Hege Vårdal, Swedish Mu- seum of Natural History, Stockholm, Sweden. ISH and That The Swedish Taxonomy Initiative (STI) has set the goal By: John Heraty, University of California, Riverside, USA of documenting all the estimated 60,000 multicellular species in Sweden (Miller, 2005). One of the STI projects Since I began in this field, there were three things that which recently received funding from the Swedish govern- vastly changed how all of us (behaviorists and systematics) ment is “The Swedish Nematinae (Hymenoptera, Tenth- operate.
    [Show full text]
  • Rejuvenation and Sex Change in an Ancient Parasitoid Wasp Lineage
    Baltorussus Total Makeover: Rejuvenation and Sex Change in an Ancient Parasitoid Wasp Lineage Lars Vilhelmsen1*, Dominique Zimmermann2 1 Biosystematics, Natural History Museum of Denmark, Copenhagen, Denmark, 2 2nd Zoological Department, Natural History Museum Vienna, Vienna, Austria Abstract The Orussidae is a small and rare but phylogenetically important family of parasitoid wasps. The fossil record of the family is also very poor. Baltorussus velteni was described from Baltic amber from an allegedly female specimen. This and another recently discovered specimen are examined with microCT scanning and standard microscopy. We reveal that both the holotype and the new specimen are actually males. Furthermore, the results of the microCT scanning allow us to integrate the fossils in a morphological data set assembled for extant Orussidae. Phylogenetic analyses consistently retrieve Baltorussus as a separate basal lineage within the crown group, whereas two Cretaceous fossils are placed as stem group orussids and a Dominican amber fossil in an extant genus. Based on the positions of the fossils, we estimate that the extant Orussidae radiated in the mid-Cretaceous (approx. 100 Ma ago). This is considerably younger than a previously suggested Early Jurassic date (180 Ma ago), which was primarily based on biogeographic evidence. Citation: Vilhelmsen L, Zimmermann D (2014) Baltorussus Total Makeover: Rejuvenation and Sex Change in an Ancient Parasitoid Wasp Lineage. PLoS ONE 9(6): e98412. doi:10.1371/journal.pone.0098412 Editor: Peter Wilf, Penn State University, United States of America Received November 27, 2013; Accepted May 1, 2014; Published June 2, 2014 Copyright: ß 2014 Vilhelmsen, Zimmermann. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]