Phylogeny and Classification of the Orussidae (Insecta: Hymenoptera), a Basal Parasitic Wasp Taxon

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Classification of the Orussidae (Insecta: Hymenoptera), a Basal Parasitic Wasp Taxon Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2003? 2003 139? 337418 Original Article L. VILHELMSENPHYLOGENY AND CLASSIFICATION OF ORUSSIDAE Zoological Journal of the Linnean Society, 2003, 139, 337–418. With 119 figures Phylogeny and classification of the Orussidae (Insecta: Hymenoptera), a basal parasitic wasp taxon LARS VILHELMSEN* Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark Received November 2002; accepted for publication March 2003 The Orussidae is a small family of parasitic wasps, comprising 75 species worldwide. It occupies a key position within the Hymenoptera, being the sistergroup of the Apocrita, a taxon containing all other parasitic wasps. In total, 163 morphological characters were scored for 74 species of Orussidae and five outgroup taxa. The dataset was analysed under different weighting schemes. The results do not support a single phylogenetic hypothesis, but most relation- ships were retrieved in the majority of the cladistic analyses. Earlier attempts at tribal and subfamily classifications of the Orussidae are not corroborated. Enforcing a strictly cladistic classification at these levels would require the recognition of many redundant taxa without enhancing the information content. It is proposed that formal recog- nition of tribes and subfamilies within the Orussidae be abandoned. The generic concepts of the family are revised. Sixteen genera are recognized; detailed descriptions and illustrations of each are provided, as is a key to the genera. The monophyly of most genera as defined here is well supported, with the exception of Guiglia Benson, 1938. Guiglia is retained because alternatives to monophyly of this genus are not well supported either. Heliorussus Benson, 1955, syn. nov., is incorporated in Orussus Latreille, 1796; the species formerly included in Heliorussus, Orussus schout- edeni Guiglia, 1937, combination reestablished, O. scutator (Benson, 1955) comb. nov. and O. spinifer (Benson, 1955), comb. nov. are transferred to Orussus. Leptorussus kwazuluensis sp. nov. is described; Pseudoryssus emanuelis Guiglia, 1956 syn. nov. is considered a junior synonym of Pseudoryssus henschii (Mocsáry, 1910). An annotated key to the world species of Orussus is included as an appendix. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139, 337-418. ADDITIONAL KEYWORDS: cladistic analysis – generic revision – keys – Orussus. INTRODUCTION order ‘Symphyta’), the Orussidae comes out strongly supported as the sistergroup of the Apocrita (Ronquist The Orussidae is a small family of parasitic wasps, et al., 1999; Vilhelmsen, 2001a). This implies that par- unique among the Hymenoptera in being the only non- asitism arose in the common ancestor of Orussidae apocritan parasitoid taxon. They possess a combina- and Apocrita. Therefore, understanding the lifestyle of tion of advanced and plesiomorphic traits (Vilhelmsen the Orussidae is crucial in elucidating the evolution of et al., 2001), the absence of the ‘wasp-waist’ of the Apo- parasitism within Hymenoptera. crita being the most striking example of a retained Biological information for any species of Orussidae plesiomorphy. The Apocrita with more than 100 000 is scarce, most having been obtained from a few spe- described species, the majority of which are parasi- cies of Orussus. Latreille (1811) provided the first toids, comprise the bulk of the Hymenoptera. Indeed, detailed account of the morphology and lifestyle of the main reason for the present day diversity of the any orussid (Orussus abietinus); he noted the close Apocrita is probably their successful exploitation of association with wood (p. 559: ‘…leurs larves vivent the parasitoid lifestyle. In the most recent cladistic certainement dans l’intérieur du bois.’). The interpre- treatments of the phylogeny of the basal tation of the evidence accumulated since then has hymenopteran lineages (previously known as the sub- been contentious. Everyone agrees that orussid larvae are associated with galleries in dead wood made by other woodliving insect larvae. Most workers favour *E-mail: [email protected] an ectoparasitic lifestyle for Orussidae, usually with © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139, 337–418 337 338 L. VILHELMSEN Buprestidae (Coleoptera) as the (presumed) host (e.g. apomorphic or plesiomorphic features were empha- Burke, 1917; Rawlings, 1957; Powell & Turner, 1975; sized in the classification. Only with the application of Nutall, 1980); in contrast, Cooper (1953) suggested quantitative cladistics did the systematic position of that Orussus is feeding mainly on the frass in the gal- the Orussidae become firmly established. Currently, leries of wood-boring insects. However, the available they are placed in a separate superfamily (Orus- evidence considered as a whole supports the parasi- soidea), the most inclusive formal category below toid hypothesis (see Vilhelmsen et al., 2001 for further order level currently employed by hymenopterists discussion). Remarkable adaptations for ovipositing in (Vilhelmsen, 2001a). wood includes an echolocation system involving the In contrast to the present well corroborated phylo- antennae and the forelegs in the female and a very genetic position of the Orussidae within the long (at least twice the body length) concealed ovipos- Hymenoptera, the internal phylogeny of the family is itor (Vilhelmsen et al., 2001). entirely uncharted. The most recent comprehensive Larval adaptations for the parasitoid lifestyle in a effort in orussid systematics on a global level is confined habitat include the reduction of the sensory Guiglia’s (1965) catalogue of the world species. It is a apparatus (eyes and antenna), mouthparts (maxillae useful embarkation point for further exploration, but and labium), and locomotory apparatus (thoracic legs it was of course not done within a cladistic context, and suranal process (Vilhelmsen, 2003; see Rohwer & and no attempt was made to accumulate material Cushman, 1917 and Parker, 1935 for further informa- for an exhaustive study. Regional surveys of most tion about anatomy of the immature stages of the local faunas exist: Africa (Benson, 1935a; Guiglia, Orussidae). These features are all shared with apocri- 1937a: Chalinus; Guiglia, 1937b: Orussus), Australia tan larvae. An apparently unique feature is the pres- (Benson, 1938b; Riek, 1955), Europe (Guiglia, 1954a; ence of dorsal transverse rows of small cuticular Kraus, 1998), Far East/South-eastern Asia backward curving spines on all thoracic and abdomi- (Yasumatsu, 1954), North America (Ross, 1937; Mid- nal segments throughout larval development. These dlekauff, 1983), Neotropical (Smith, 1988); these are spines have also been reported in late instar larvae of all limited geographically. Schlettererius cinctipes (Cresson) (Stephanidae, see The main obstacle to further progress in orussid sys- Taylor, 1967). In Orussidae, they presumably facilitate tematics is the scarcity of material. Orussidae are moving in galleries inside the wood in order to seek uncommon and rarely collected. The most fortuitous out hosts that the ovipositing female was unable to record is that of the holotype of Orussella dentifrons reach (Vilhelmsen, 2003). Another feature not (Philippi, 1873), which was plucked from a cobweb. The reported for any other Hymenoptera is the presence of somewhat incomplete condition of this specimen led cuticular folds in the hindgut which perhaps allow the Konow (1897a) to conclude that it ‘entschieden besser orussid larva to clamp it shut during development; in den Papierkorb gewandert wäre’ [‘It would have been anatomically, the mid- and hindgut are continuous better to have thrown it in the paper bin.’]. Abuse not- throughout most of larval development, contrary to withstanding, the species is currently regarded as valid the condition in virtually all Apocrita examined (Vil- and placed in its own genus, attesting to the distinc- helmsen, 2003). Shutting the hindgut and the post- tiveness of the taxon. Only a few major collections hold ponement of defecation until just prior to pupation material of more than half a dozen species of Orussidae. prevent fouling and subsequent putrefaction of the Furthermore, many species are represented by only a host; this is thought to be an important adaptation to handful of specimens, spread in collections all over the the parasitoid lifestyle in Hymenoptera, especially world. Significantly, the only previous revisions of the endoparasitism (Gauld & Hanson, 1995). higher-level classification were undertaken by R. B. The unique status of the Orussidae was recognized Benson (1935a, 1955a) who worked in the NHML, at an early stage in higher-level hymenopteran sys- which holds the largest and most diverse collection of tematics. In precladistic days, this was translated by Orussidae in the world by far. some authors into assigning them an ‘intermediate’ The present revision is the most comprehensive position between ‘Symphyta’ and Apocrita. Rohwer & effort in orussid systematics to date: 75 species in 16 Cushman (1917) erected the suborder Idiogastra genera are recognized. Material from about 50 collec- solely to accommodate the Orussidae, and Bischoff tions from all over the world has been examined, (1926) argued that they should be placed in a separate including 57 primary types. This represents all but superfamily among the ‘Symphyta’.
Recommended publications
  • Key to Arthropods 1
    Key to arthropods 1. Does it have wings/wing cases? 6. Does it have pincers? YES NO YES NO ►go to 28 ►go to 2 ►go to 7 ►go to 8 2. How many legs does it have? 7. Does it have a tail? (It’s possible that legs have broken off) 6 8 MORE THAN YES NO (+fangs 8 Scorpiones Pseudoscorpionida and/or (scorpion) (pseudoscorpion) pedipalps) ►go to 14 ►go to 3 ►go to 10 3. Does it have a segmented abdomen? 8. Does it have spiny pedipalps? YES NO YES NO ►go to 6 ►go to 4 Ambly pygi ►go to 9 4. Is there a constriction between the 9. How many fangs (chelicerae) has it head and the abdomen? got? YES NO 2 4 Araneae (spider) ►go to 5 Schizomida Solpugida 5. How long are the legs? VERY LONG SHORT Opiliones Acari (mite) (harvestman) 1 Key to arthropods 10. Does it have a long thin body? 12. Does it have fangs? YES NO YES NO ►go to 11 ►go to 13 Chilopoda Symphyla (centipede)) (symphylan) 11. How many legs on each body 13. Is the body segmented? segment? 4 2 YES NO ►go to 11A ►go to 12 ►go to 13A Decapoda: Brachyura (crab) 11A How many pairs of legs does it have? 13A. In which way is it flattened? 11 OR LESS 12 OR MORE DORSO-VENTRALLY LATERALLY (TOP TO BOTTOM) (SIDE TO SIDE) Pauropoda Diplopoda Isopoda Amphipoda (pauropod) (millipede) (woodlouse) (sandhopper) 2 Key to insects without wings 14. Does it have at least two appendages 18.
    [Show full text]
  • Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae Qian Li Zhejiang University, China
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 9-1-2016 Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae Qian Li Zhejiang University, China Shu-Jun Wei Beijing Academy of Agriculture and Forestry Sciences, China Pu Tang Zhejiang University, China Qiong Wu Zhejiang University, China Min Shi Zhejiang University, China See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Repository Citation Li, Qian; Wei, Shu-Jun; Tang, Pu; Wu, Qiong; Shi, Min; Sharkey, Michael J.; and Chen, Xue-Xin, "Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae" (2016). Entomology Faculty Publications. 117. https://uknowledge.uky.edu/entomology_facpub/117 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Qian Li, Shu-Jun Wei, Pu Tang, Qiong Wu, Min Shi, Michael J. Sharkey, and Xue-Xin Chen Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae Notes/Citation Information Published in Genome Biology and Evolution, v. 8, issue 9, p. 2651-2662. © The Author 2016. ubP lished by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
    [Show full text]
  • A Phylogenetic Analysis of the Megadiverse Chalcidoidea (Hymenoptera)
    UC Riverside UC Riverside Previously Published Works Title A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) Permalink https://escholarship.org/uc/item/3h73n0f9 Journal Cladistics, 29(5) ISSN 07483007 Authors Heraty, John M Burks, Roger A Cruaud, Astrid et al. Publication Date 2013-10-01 DOI 10.1111/cla.12006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cladistics Cladistics 29 (2013) 466–542 10.1111/cla.12006 A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) John M. Heratya,*, Roger A. Burksa,b, Astrid Cruauda,c, Gary A. P. Gibsond, Johan Liljeblada,e, James Munroa,f, Jean-Yves Rasplusc, Gerard Delvareg, Peter Jansˇtah, Alex Gumovskyi, John Huberj, James B. Woolleyk, Lars Krogmannl, Steve Heydonm, Andrew Polaszekn, Stefan Schmidto, D. Chris Darlingp,q, Michael W. Gatesr, Jason Motterna, Elizabeth Murraya, Ana Dal Molink, Serguei Triapitsyna, Hannes Baurs, John D. Pintoa,t, Simon van Noortu,v, Jeremiah Georgea and Matthew Yoderw aDepartment of Entomology, University of California, Riverside, CA, 92521, USA; bDepartment of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA; cINRA, UMR 1062 CBGP CS30016, F-34988, Montferrier-sur-Lez, France; dAgriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada; eSwedish Species Information Centre, Swedish University of Agricultural Sciences, PO Box 7007, SE-750 07, Uppsala, Sweden; fInstitute for Genome Sciences, School of Medicine, University
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Occurrence and Biology of Pseudogonalos Hahnii (Spinola, 1840) (Hymenoptera: Trigonalidae) in Fennoscandia and the Baltic States
    © Entomologica Fennica. 1 June 2018 Occurrence and biology of Pseudogonalos hahnii (Spinola, 1840) (Hymenoptera: Trigonalidae) in Fennoscandia and the Baltic states Simo Väänänen, Juho Paukkunen, Villu Soon & Eduardas Budrys Väänänen, S., Paukkunen, J., Soon, V. & Budrys, E. 2018: Occurrence and bio- logy of Pseudogonalos hahnii (Spinola, 1840) (Hymenoptera: Trigonalidae) in Fennoscandia and the Baltic states. Entomol. Fennica 29: 8696. Pseudogonalos hahnii is the only known species of Trigonalidae in Europe. It is a hyperparasitoid of lepidopteran larvae via ichneumonid primary parasitoids. Possibly, it has also been reared from a symphytan larva. We report the species for the first time from Estonia, Lithuania and Russian Fennoscandia, and list all known observations from Finland and Latvia. An overview of the biology of the species is presented with a list of all known host records. S. Väänänen, Vantaa, Finland; E-mail: [email protected] J. Paukkunen, Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI-00014 University of Helsinki, Finland; E-mail: [email protected] V. Soon, Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; E-mail: [email protected] E. Budrys, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; E-mail: [email protected] Received 27 June 2017, accepted 22 September 2017 1. Introduction ovipositor with Aculeata (Weinstein & Austin 1991). The trigonalid ovipositor is reduced and Trigonalidae is a moderately small family of par- hidden within the abdomen and it is not known if asitic wasps of little over 100 species and about it is used in egg placement (Quicke et al. 1999).
    [Show full text]
  • Capsicum Annuum) Associated with Basil (Ocimum Basilicum) and Marigold (Tagetes Erecta) I
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.185417 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Parasitoids diversity in organic Sweet Pepper (Capsicum annuum) associated with Basil (Ocimum basilicum) and Marigold (Tagetes erecta) I. L. Souzaa*, V. B. Tomazellaa, A. J. N. Santosb, T. Moraesc and L. C. P. Silveiraa aLaboratório de Controle Biológico Conservativo, Departamento de Entomologia, Universidade Federal de Lavras – UFLA, Av. Doutor Sylvio Menicucci, 1001, Kennedy, CEP 37200-000, Lavras, MG, Brasil bCompanhia Nacional de Abastecimento – CONAB, Rua Tobias Barreto, s/n, Bebedouro, CEP 57013-000, Maceió, AL, Brasil cLaboratório de Ecologia Molecular de Artrópodes, Departamento de Entomologia, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brasil *e-mail: [email protected] Received: September 17, 2017 – Accepted: March 26, 2018 – Distributed: November 30, 2019 (With 5 figures) Abstract The sweet pepper (Capsicum annuum L.) is one of the most important crops in Brazilian farming. Many insect are related to this crop, compromising the quantity and quality of the fruit, representing a production problem. Vegetable diversification is one of the main elements that can be managed for suppressing undesirable insect populations in organic production, once that supports the presence of natural enemies. The basil Ocimum basilicum L. and the marigold Tagetes erecta L. are attractive and nutritious plants for parasitoids, being important candidates for diversified crops. This study evaluated the parasitoids attracted by the association of basil and marigold to organic sweet pepper crop. The experiment comprised three treatments: a) sweet pepper monoculture; b) sweet pepper and basil intercropping; c) sweet pepper and marigold intercropping.
    [Show full text]
  • Phylogeny and Classification of the Orussidae
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2003? 2003 139? 337418 Original Article L. VILHELMSENPHYLOGENY AND CLASSIFICATION OF ORUSSIDAE Zoological Journal of the Linnean Society, 2003, 139, 337–418. With 119 figures Phylogeny and classification of the Orussidae (Insecta: Hymenoptera), a basal parasitic wasp taxon LARS VILHELMSEN* Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark Received November 2002; accepted for publication March 2003 The Orussidae is a small family of parasitic wasps, comprising 75 species worldwide. It occupies a key position within the Hymenoptera, being the sistergroup of the Apocrita, a taxon containing all other parasitic wasps. In total, 163 morphological characters were scored for 74 species of Orussidae and five outgroup taxa. The dataset was analysed under different weighting schemes. The results do not support a single phylogenetic hypothesis, but most relation- ships were retrieved in the majority of the cladistic analyses. Earlier attempts at tribal and subfamily classifications of the Orussidae are not corroborated. Enforcing a strictly cladistic classification at these levels would require the recognition of many redundant taxa without enhancing the information content. It is proposed that formal recog- nition of tribes and subfamilies within the Orussidae be abandoned. The generic concepts of the family are revised. Sixteen genera are recognized; detailed descriptions and illustrations of each are provided, as is a key to the genera. The monophyly of most genera as defined here is well supported, with the exception of Guiglia Benson, 1938. Guiglia is retained because alternatives to monophyly of this genus are not well supported either.
    [Show full text]
  • Genomes of the Hymenoptera Michael G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • Assemblage of Hymenoptera Arriving at Logs Colonized by Ips Pini (Coleoptera: Curculionidae: Scolytinae) and Its Microbial Symbionts in Western Montana
    University of Montana ScholarWorks at University of Montana Ecosystem and Conservation Sciences Faculty Publications Ecosystem and Conservation Sciences 2009 Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana Celia K. Boone Diana Six University of Montana - Missoula, [email protected] Steven J. Krauth Kenneth F. Raffa Follow this and additional works at: https://scholarworks.umt.edu/decs_pubs Part of the Ecology and Evolutionary Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Boone, Celia K.; Six, Diana; Krauth, Steven J.; and Raffa, Kenneth F., "Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana" (2009). Ecosystem and Conservation Sciences Faculty Publications. 33. https://scholarworks.umt.edu/decs_pubs/33 This Article is brought to you for free and open access by the Ecosystem and Conservation Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Ecosystem and Conservation Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 172 Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana Celia K. Boone Department of Entomology, University of Wisconsin,
    [Show full text]
  • Hymenoptera: Mymarommatidae) in Montana: a New State Record
    Western North American Naturalist Volume 70 Number 4 Article 17 12-20-2010 Note on occurrence of Mymaromella pala Huber and Gibson (Hymenoptera: Mymarommatidae) in Montana: a new state record Timothy D. Hatten Invertebrate Ecology, Inc., Moscow, ID, [email protected] Norm Merz Fish and Wildlife Department, Kootenai Tribe of Idaho, Bonners Ferry, ID, [email protected] James B. 'Ding' Johnson University of Idaho, Moscow, ID, [email protected] Chris Looney University of Idaho, Moscow, ID, [email protected] Travis Ulrich University of Idaho, Moscow, ID, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan See next page for additional authors Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Hatten, Timothy D.; Merz, Norm; Johnson, James B. 'Ding'; Looney, Chris; Ulrich, Travis; Soults, Scott; Capilo, Roland; Bergerone, Dwight; Anders, Paul; Tanimoto, Philip; and Shafii, Bahman (2010) "Note on occurrence of Mymaromella pala Huber and Gibson (Hymenoptera: Mymarommatidae) in Montana: a new state record," Western North American Naturalist: Vol. 70 : No. 4 , Article 17. Available at: https://scholarsarchive.byu.edu/wnan/vol70/iss4/17 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Note on occurrence of Mymaromella pala Huber and Gibson (Hymenoptera: Mymarommatidae) in Montana: a new state record Authors Timothy D. Hatten, Norm Merz, James B.
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]