Table SII. Lncrna-Mrna Co-Expression Analysis for RFS in HCC with Fibrosis

Total Page:16

File Type:pdf, Size:1020Kb

Table SII. Lncrna-Mrna Co-Expression Analysis for RFS in HCC with Fibrosis Table SII. LncRNA-mRNA co-expression analysis for RFS in HCC with fibrosis. Pearson correlation lncRNA mRNA coefficient P-value PLCE1-AS1 ERBB3 -0.458 4.05E-12 PLCE1-AS1 NGEF -0.446 1.73E-11 PLCE1-AS1 FOXA2 -0.434 6.45E-11 PLCE1-AS1 GJB1 -0.43 1.02E-10 PLCE1-AS1 HNF4A -0.427 1.47E-10 PLCE1-AS1 HPN -0.42 2.91E-10 PLCE1-AS1 AFMID -0.409 9.85E-10 PLCE1-AS1 SALL1 -0.393 4.74E-09 PLCE1-AS1 C4BPB -0.387 8.48E-09 PLCE1-AS1 A1CF -0.385 1.03E-08 PLCE1-AS1 SLC9A3R1 -0.382 1.37E-08 PLCE1-AS1 HIRA -0.378 1.95E-08 PLCE1-AS1 APOC4-APOC2 -0.374 2.73E-08 PLCE1-AS1 GOLT1A -0.371 3.59E-08 PLCE1-AS1 CPB2 -0.368 5E-08 PLCE1-AS1 MEIG1 -0.36 1.04E-07 PLCE1-AS1 PDZK1 -0.36 1.03E-07 PLCE1-AS1 SERPINA1 -0.358 1.21E-07 PLCE1-AS1 APOB -0.352 2.06E-07 PLCE1-AS1 ESRP2 -0.352 1.97E-07 PLCE1-AS1 PRDX3 -0.351 2.09E-07 PLCE1-AS1 DNAJC22 -0.35 2.3E-07 PLCE1-AS1 RNF128 -0.348 2.73E-07 PLCE1-AS1 CXADR -0.348 2.82E-07 PLCE1-AS1 THPO -0.347 3.11E-07 PLCE1-AS1 IQGAP2 -0.345 3.53E-07 PLCE1-AS1 RNF43 -0.344 3.88E-07 PLCE1-AS1 ALCAM -0.342 4.59E-07 PLCE1-AS1 NIF3L1 -0.337 6.92E-07 PLCE1-AS1 CAMSAP3 -0.334 8.58E-07 PLCE1-AS1 GC -0.332 1.05E-06 PLCE1-AS1 IMPA2 -0.331 1.14E-06 PLCE1-AS1 ST13 -0.326 1.64E-06 PLCE1-AS1 SDC1 -0.323 2.06E-06 PLCE1-AS1 SRP54 -0.321 2.45E-06 PLCE1-AS1 PROX1 -0.321 2.37E-06 PLCE1-AS1 FMO5 -0.318 2.96E-06 PLCE1-AS1 ASGR2 -0.318 2.96E-06 PLCE1-AS1 ASGR1 -0.318 2.92E-06 PLCE1-AS1 SRRD -0.318 3.05E-06 PLCE1-AS1 CYP4F11 -0.316 3.42E-06 PLCE1-AS1 HHEX -0.315 3.76E-06 PLCE1-AS1 MMADHC -0.314 4.04E-06 PLCE1-AS1 ADH6 -0.314 4.1E-06 PLCE1-AS1 DEPDC7 -0.314 4.21E-06 PLCE1-AS1 MRPL49 -0.314 4.13E-06 PLCE1-AS1 BNIP3 -0.314 4.06E-06 PLCE1-AS1 TSG101 -0.313 4.34E-06 PLCE1-AS1 AMBP -0.312 4.85E-06 PLCE1-AS1 SHH -0.311 4.95E-06 PLCE1-AS1 BAAT -0.31 5.49E-06 PLCE1-AS1 PAH -0.31 5.68E-06 PLCE1-AS1 IDH1 -0.309 5.7E-06 PLCE1-AS1 ACTR6 -0.309 5.89E-06 PLCE1-AS1 METAP1 -0.309 5.84E-06 PLCE1-AS1 SLC25A17 -0.309 5.78E-06 PLCE1-AS1 TMPRSS2 -0.308 6.48E-06 PLCE1-AS1 PLS1 -0.307 6.77E-06 PLCE1-AS1 EDEM1 -0.307 6.94E-06 PLCE1-AS1 NR1H4 -0.307 6.75E-06 PLCE1-AS1 HNF1A -0.307 6.95E-06 PLCE1-AS1 MAT1A -0.307 6.72E-06 PLCE1-AS1 ITIH4 -0.306 7.17E-06 PLCE1-AS1 CREB3L4 -0.306 7.38E-06 PLCE1-AS1 HNRNPF -0.305 8.04E-06 PLCE1-AS1 TMED2 -0.305 7.62E-06 PLCE1-AS1 ANXA9 -0.305 8.04E-06 PLCE1-AS1 NARS2 -0.304 8.38E-06 PLCE1-AS1 PLPP6 -0.304 8.75E-06 PLCE1-AS1 MINPP1 -0.304 8.6E-06 PLCE1-AS1 CFI -0.303 8.83E-06 PLCE1-AS1 HNRNPA2B1 -0.303 9.05E-06 PLCE1-AS1 MARVELD2 -0.302 9.74E-06 PLCE1-AS1 XPNPEP3 -0.302 9.6E-06 PLCE1-AS1 C8G -0.302 1.01E-05 PLCE1-AS1 UAP1 -0.302 9.51E-06 PLCE1-AS1 RORC -0.302 1.01E-05 PLCE1-AS1 PHOSPHO2 -0.301 1.02E-05 PLCE1-AS1 PALD1 0.301 1.04E-05 PLCE1-AS1 ANK2 0.301 1.03E-05 PLCE1-AS1 SPTBN5 0.301 1.02E-05 PLCE1-AS1 LRRC4B 0.301 1.05E-05 PLCE1-AS1 SNPH 0.301 1.05E-05 PLCE1-AS1 PDZRN4 0.301 1.08E-05 PLCE1-AS1 HRASLS 0.301 1.05E-05 PLCE1-AS1 FOXS1 0.301 1.05E-05 PLCE1-AS1 DDR2 0.301 1.02E-05 PLCE1-AS1 DOK5 0.302 9.78E-06 PLCE1-AS1 SOD3 0.302 9.78E-06 PLCE1-AS1 PLN 0.302 9.53E-06 PLCE1-AS1 PHLDB1 0.302 9.93E-06 PLCE1-AS1 FOXF1 0.302 9.79E-06 PLCE1-AS1 NXNL2 0.303 8.95E-06 PLCE1-AS1 CRLF1 0.303 8.79E-06 PLCE1-AS1 SMIM10L2A 0.303 9.21E-06 PLCE1-AS1 LAMP5 0.304 8.7E-06 PLCE1-AS1 TSPAN18 0.304 8.48E-06 PLCE1-AS1 SLC7A4 0.304 8.21E-06 PLCE1-AS1 AFAP1 0.304 8.43E-06 PLCE1-AS1 CPZ 0.304 8.44E-06 PLCE1-AS1 TSPAN2 0.304 8.69E-06 PLCE1-AS1 GEM 0.304 8.3E-06 PLCE1-AS1 FHOD3 0.304 8.52E-06 PLCE1-AS1 SFXN3 0.305 8.11E-06 PLCE1-AS1 MYOZ1 0.305 7.86E-06 PLCE1-AS1 ZNF827 0.305 7.99E-06 PLCE1-AS1 GUCY1A2 0.305 7.74E-06 PLCE1-AS1 GATA2 0.306 7.4E-06 PLCE1-AS1 ZFPM2 0.306 7.24E-06 PLCE1-AS1 CCIN 0.306 7.49E-06 PLCE1-AS1 SCG2 0.306 7.18E-06 PLCE1-AS1 PCYT1B 0.307 6.58E-06 PLCE1-AS1 ENG 0.307 6.77E-06 PLCE1-AS1 ZNF521 0.307 6.9E-06 PLCE1-AS1 MMP28 0.307 6.62E-06 PLCE1-AS1 PAPPA 0.308 6.27E-06 PLCE1-AS1 ADAMTS7 0.308 6.36E-06 PLCE1-AS1 MORN3 0.308 6.43E-06 PLCE1-AS1 MAP3K12 0.308 6.25E-06 PLCE1-AS1 P4HA3 0.308 6.35E-06 PLCE1-AS1 PTGDS 0.308 6.12E-06 PLCE1-AS1 PEAK1 0.308 6.28E-06 PLCE1-AS1 RUNX1T1 0.309 5.73E-06 PLCE1-AS1 ATP2A3 0.309 5.73E-06 PLCE1-AS1 TRIM63 0.309 5.85E-06 PLCE1-AS1 CALHM2 0.309 6.09E-06 PLCE1-AS1 CPNE5 0.309 5.83E-06 PLCE1-AS1 MGP 0.309 5.76E-06 PLCE1-AS1 ARMCX2 0.31 5.52E-06 PLCE1-AS1 PRTG 0.311 5.24E-06 PLCE1-AS1 SELENON 0.311 5.13E-06 PLCE1-AS1 CNN1 0.311 5.2E-06 PLCE1-AS1 C16orf89 0.311 5.04E-06 PLCE1-AS1 FBXO40 0.311 5.27E-06 PLCE1-AS1 MOBP 0.312 4.62E-06 PLCE1-AS1 GNG2 0.312 4.57E-06 PLCE1-AS1 ARHGEF25 0.312 4.57E-06 PLCE1-AS1 LRRK1 0.312 4.7E-06 PLCE1-AS1 AC024270.1 0.312 4.56E-06 PLCE1-AS1 C2orf40 0.312 4.84E-06 PLCE1-AS1 MSX2 0.313 4.42E-06 PLCE1-AS1 NFATC1 0.313 4.25E-06 PLCE1-AS1 BHLHE22 0.313 4.44E-06 PLCE1-AS1 EDNRA 0.313 4.46E-06 PLCE1-AS1 DACT1 0.313 4.38E-06 PLCE1-AS1 FNDC1 0.313 4.27E-06 PLCE1-AS1 RBMS2 0.313 4.36E-06 PLCE1-AS1 RAB33A 0.313 4.27E-06 PLCE1-AS1 NMUR1 0.313 4.41E-06 PLCE1-AS1 SYTL2 0.313 4.51E-06 PLCE1-AS1 AFAP1L1 0.313 4.25E-06 PLCE1-AS1 GRM6 0.313 4.29E-06 PLCE1-AS1 CACNA2D1 0.314 4.18E-06 PLCE1-AS1 HEYL 0.314 4.1E-06 PLCE1-AS1 OMD 0.314 4.18E-06 PLCE1-AS1 GNG11 0.314 4.06E-06 PLCE1-AS1 CDR2L 0.314 3.98E-06 PLCE1-AS1 COL16A1 0.314 4.03E-06 PLCE1-AS1 ANK3 0.314 4.11E-06 PLCE1-AS1 MYH11 0.315 3.85E-06 PLCE1-AS1 TMEM255B 0.315 3.86E-06 PLCE1-AS1 TSHZ3 0.315 3.9E-06 PLCE1-AS1 PDLIM4 0.315 3.9E-06 PLCE1-AS1 ACP5 0.315 3.71E-06 PLCE1-AS1 RAMP2 0.315 3.65E-06 PLCE1-AS1 GPX8 0.316 3.63E-06 PLCE1-AS1 GRASP 0.316 3.61E-06 PLCE1-AS1 PRKAR2B 0.316 3.61E-06 PLCE1-AS1 PLEKHO2 0.316 3.57E-06 PLCE1-AS1 CEP126 0.316 3.57E-06 PLCE1-AS1 THY1 0.316 3.51E-06 PLCE1-AS1 C1QTNF2 0.316 3.48E-06 PLCE1-AS1 FSCN1 0.316 3.52E-06 PLCE1-AS1 ITGA3 0.317 3.16E-06 PLCE1-AS1 SYNDIG1L 0.317 3.2E-06 PLCE1-AS1 ORAI2 0.317 3.22E-06 PLCE1-AS1 FLRT2 0.317 3.33E-06 PLCE1-AS1 OLFML2B 0.317 3.31E-06 PLCE1-AS1 ST6GAL2 0.317 3.15E-06 PLCE1-AS1 FBXL2 0.317 3.36E-06 PLCE1-AS1 ABCG4 0.317 3.14E-06 PLCE1-AS1 FMOD 0.318 2.94E-06 PLCE1-AS1 SSC5D 0.318 3.1E-06 PLCE1-AS1 GLI3 0.318 3.07E-06 PLCE1-AS1 KIAA1644 0.318 3.1E-06 PLCE1-AS1 MTHFD2 0.319 2.77E-06 PLCE1-AS1 RIMKLB 0.319 2.86E-06 PLCE1-AS1 FGFR1 0.319 2.88E-06 PLCE1-AS1 FEZ1 0.319 2.77E-06 PLCE1-AS1 NEXN 0.319 2.74E-06 PLCE1-AS1 PDE1A 0.319 2.76E-06 PLCE1-AS1 SLC25A36 0.32 2.57E-06 PLCE1-AS1 VCL 0.32 2.52E-06 PLCE1-AS1 ZBTB47 0.32 2.57E-06 PLCE1-AS1 ANGPTL2 0.32 2.65E-06 PLCE1-AS1 NMNAT2 0.32 2.52E-06 PLCE1-AS1 CHST1 0.32 2.52E-06 PLCE1-AS1 FAM124A 0.321 2.4E-06 PLCE1-AS1 ADCY4 0.321 2.47E-06 PLCE1-AS1 CACNA1C 0.321 2.39E-06 PLCE1-AS1 LMCD1 0.321 2.44E-06 PLCE1-AS1 FABP3 0.322 2.27E-06 PLCE1-AS1 PLXDC1 0.322 2.26E-06 PLCE1-AS1 CDC42EP3 0.322 2.19E-06 PLCE1-AS1 PHF24 0.322 2.15E-06 PLCE1-AS1 WDR63 0.323 2.03E-06 PLCE1-AS1 TINAGL1 0.323 2.04E-06 PLCE1-AS1 CYSLTR2 0.323 2.06E-06 PLCE1-AS1 DPYSL3 0.323 2.06E-06 PLCE1-AS1 LHX6 0.323 2.14E-06 PLCE1-AS1 ECM1 0.323 2.12E-06 PLCE1-AS1 PTN 0.324 1.89E-06 PLCE1-AS1 MSRB3 0.324 1.92E-06 PLCE1-AS1 MYZAP 0.324 1.96E-06 PLCE1-AS1 PLD5 0.324 1.95E-06 PLCE1-AS1 SPACA6 0.325 1.74E-06 PLCE1-AS1 FAM26E 0.325 1.81E-06 PLCE1-AS1 THBS2 0.325 1.77E-06 PLCE1-AS1 CAV1 0.325 1.75E-06 PLCE1-AS1 NAV1 0.326 1.69E-06 PLCE1-AS1 CELF2 0.326 1.63E-06 PLCE1-AS1 MYH15 0.326 1.59E-06 PLCE1-AS1 EFEMP1 0.326 1.69E-06 PLCE1-AS1 MGARP 0.326 1.69E-06 PLCE1-AS1 TIMP2 0.326 1.7E-06 PLCE1-AS1 SNAI1 0.326 1.6E-06 PLCE1-AS1 PACS1 0.327 1.56E-06 PLCE1-AS1 ZNF462 0.327 1.46E-06 PLCE1-AS1 EPHB1 0.328 1.35E-06 PLCE1-AS1 CCDC80 0.328 1.39E-06 PLCE1-AS1 MBOAT2 0.328 1.41E-06 PLCE1-AS1 MAPK10 0.329 1.28E-06 PLCE1-AS1 NOD1 0.329 1.35E-06 PLCE1-AS1 RSPO3 0.329 1.25E-06 PLCE1-AS1 VEGFC 0.329 1.32E-06 PLCE1-AS1 LDLRAD3 0.329 1.28E-06 PLCE1-AS1 INPP4B 0.329 1.25E-06 PLCE1-AS1 FHL1 0.33 1.22E-06 PLCE1-AS1 PTGIR 0.33 1.23E-06 PLCE1-AS1 ZEB2 0.33 1.19E-06 PLCE1-AS1 MYOCD 0.331 1.12E-06 PLCE1-AS1 FBLN5 0.331 1.1E-06 PLCE1-AS1 KCNMB1 0.331 1.13E-06 PLCE1-AS1 PNMA8B 0.332 1.05E-06 PLCE1-AS1 PTPRZ1 0.332 9.95E-07 PLCE1-AS1 MXRA5 0.332 9.9E-07 PLCE1-AS1 FLNA 0.332 1.04E-06 PLCE1-AS1 CRYGN 0.332 1.05E-06 PLCE1-AS1 C10orf107 0.332 1.05E-06 PLCE1-AS1 OGN 0.332 9.89E-07 PLCE1-AS1 PINLYP 0.332 9.94E-07 PLCE1-AS1 COL6A1 0.333 9.59E-07 PLCE1-AS1 RBMS3 0.334 9.07E-07 PLCE1-AS1 FILIP1 0.334 8.49E-07 PLCE1-AS1 SLC7A8 0.334 8.48E-07 PLCE1-AS1 MEOX1 0.334 8.96E-07 PLCE1-AS1 HSPB7 0.335 7.92E-07 PLCE1-AS1 HOXB2 0.335 7.98E-07 PLCE1-AS1 C11orf63 0.335 8.36E-07 PLCE1-AS1 NTF3 0.335 8.27E-07 PLCE1-AS1 TPM2 0.335 7.85E-07 PLCE1-AS1 LRRC8C 0.335 7.82E-07 PLCE1-AS1 PRND 0.336 7.68E-07 PLCE1-AS1 ROR2 0.336 7.53E-07 PLCE1-AS1 TPPP3 0.336 7.3E-07 PLCE1-AS1 ZCCHC18 0.336 7.22E-07 PLCE1-AS1 GPBAR1 0.336 7.73E-07 PLCE1-AS1 EFEMP2 0.336 7.4E-07 PLCE1-AS1 FAM189A2 0.336 7.31E-07 PLCE1-AS1 HAND2 0.336 7.51E-07 PLCE1-AS1 NTRK2 0.337 6.96E-07 PLCE1-AS1 ARMCX1 0.337 6.83E-07 PLCE1-AS1 RHOJ 0.337 6.74E-07 PLCE1-AS1 SFRP1 0.337 6.6E-07 PLCE1-AS1 FMNL3 0.338 6.15E-07 PLCE1-AS1 WISP2 0.338 6.18E-07 PLCE1-AS1 NOVA2 0.338 6.5E-07 PLCE1-AS1 WDR86 0.338 6.21E-07 PLCE1-AS1 NOV 0.338 6.1E-07 PLCE1-AS1 CCDC102B 0.338 6.11E-07 PLCE1-AS1 TRPC4 0.338 6.25E-07 PLCE1-AS1 TMEM159 0.338 6.15E-07 PLCE1-AS1 PLAT 0.339 5.88E-07 PLCE1-AS1 ZNF469 0.339 5.74E-07 PLCE1-AS1 COL4A1 0.339 5.92E-07 PLCE1-AS1 FHOD1 0.339 5.61E-07 PLCE1-AS1 SLCO3A1 0.34 5.4E-07 PLCE1-AS1 PKD1L1 0.341 4.95E-07 PLCE1-AS1 LDLRAD2 0.341 5.01E-07 PLCE1-AS1 ARHGAP15 0.341 5.06E-07 PLCE1-AS1 HEPH 0.341 5.07E-07 PLCE1-AS1 PYGO1 0.341 4.95E-07 PLCE1-AS1 SFRP4 0.341 5.03E-07 PLCE1-AS1 GPR161 0.341 5.07E-07 PLCE1-AS1 SCARF2 0.342 4.54E-07 PLCE1-AS1 LTBP2 0.342 4.51E-07 PLCE1-AS1 KCNE4 0.342 4.59E-07 PLCE1-AS1 NRP2 0.342 4.64E-07 PLCE1-AS1 ITGA11 0.342 4.71E-07 PLCE1-AS1 XYLT1 0.342 4.61E-07 PLCE1-AS1 MARVELD1 0.343 4.3E-07 PLCE1-AS1
Recommended publications
  • Recombinant Human Phosphodiesterase 4A/PDE4A
    Recombinant Human Phosphodiesterase 4A/PDE4A Catalog Number: 7767-PE DESCRIPTION Source Spodoptera frugiperda, Sf 21 (baculovirus)­derived Pro331­Met723, with an N­terminal Met and a C­terminal 6­His tag Accession # P27815 N­terminal Sequence Pro331 Analysis Predicted Molecular 46 kDa Mass SPECIFICATIONS SDS­PAGE 44­48 kDa, reducing conditions Activity Measured by its ability to convert cAMP to 5'­AMP. The specific activity is >28,000 pmol/min/μg, as measured under the described conditions. Endotoxin Level <0.01 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE under reducing conditions and visualized by Colloidal Coomassie® Blue stain at 5 μg per lane. Formulation Supplied as a 0.2 μm filtered solution in Tris and NaCl. See Certificate of Analysis for details. Activity Assay Protocol Materials l Assay Buffer (1X): 20 mM Tris, 1 mM MgCl2, 1 mM DTT, 0.01538% CHAPS, pH 7.5 l Recombinant Human Phosphodiesterase 4A/PDE4A (rhPDE4A) (Catalog # 7767­PE) l Adenosine 3’,5’­cyclic monophosphate (cAMP) (Sigma, Catalog # A6885) 0.1 M stock in deionized water l Sialyltransferase Activity Kit (Catalog # EA002) l 96­well Clear Plate (Costar, Catalog # 92592) l Plate Reader (Model: SpectraMax Plus by Molecular Devices) or equivalent Assay 1. Dilute 1 mM Phosphate Standard provided by the Sialyltransferase Kit by adding 40 µL of the 1 mM Phosphate Standard to 360 µL of Assay Buffer for a 100 µM stock. 2. Continue standard curve by performing six additional one­half serial dilutions of the 100 µM Phosphate stock in Assay Buffer.
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • Characterization of BRCA1-Deficient Premalignant Tissues and Cancers Identifies Plekha5 As a Tumor Metastasis Suppressor
    ARTICLE https://doi.org/10.1038/s41467-020-18637-9 OPEN Characterization of BRCA1-deficient premalignant tissues and cancers identifies Plekha5 as a tumor metastasis suppressor Jianlin Liu1,2, Ragini Adhav1,2, Kai Miao1,2, Sek Man Su1,2, Lihua Mo1,2, Un In Chan1,2, Xin Zhang1,2, Jun Xu1,2, Jianjie Li1,2, Xiaodong Shu1,2, Jianming Zeng 1,2, Xu Zhang1,2, Xueying Lyu1,2, Lakhansing Pardeshi1,3, ✉ ✉ Kaeling Tan1,3, Heng Sun1,2, Koon Ho Wong 1,3, Chuxia Deng 1,2 & Xiaoling Xu 1,2 1234567890():,; Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intra- tumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung. 1 Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China. 2 Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
    [Show full text]
  • PDE4) Subtypes in Human Primary CD4+ T Cells: Predominant Role of PDE4D This Information Is Current As of September 26, 2021
    Differential Expression and Function of Phosphodiesterase 4 (PDE4) Subtypes in Human Primary CD4+ T Cells: Predominant Role of PDE4D This information is current as of September 26, 2021. Daniel Peter, S. L. Catherine Jin, Marco Conti, Armin Hatzelmann and Christof Zitt J Immunol 2007; 178:4820-4831; ; doi: 10.4049/jimmunol.178.8.4820 http://www.jimmunol.org/content/178/8/4820 Downloaded from References This article cites 53 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/178/8/4820.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Expression and Function of Phosphodiesterase 4 :PDE4) Subtypes in Human Primary CD4؉ T Cells) Predominant Role of PDE4D1 Daniel Peter,* S. L. Catherine Jin,† Marco Conti,† Armin Hatzelmann,* and Christof Zitt2* Type 4 phosphodiesterases (PDE4) are critical regulators in TCR signaling by attenuating the negative constraint of cAMP.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Reduced PDE4 Expression and Activity Contributes to Enhanced Catecholamine-Induced Camp Accumulation in Adipocytes from FOXC2 Transgenic Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 4126–4130 Reduced PDE4 expression and activity contributes to enhanced catecholamine-induced cAMP accumulation in adipocytes from FOXC2 transgenic mice Line M. Grønninga,*, George S. Baillieb, Anna Cederbergc, Martin J. Lynchb, Miles D. Houslayb, Sven Enerba¨ckc, Kjetil Taske´na a Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125 Blindern, 0317 Oslo, Norway b Dvn Biochemistry and Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK c Medical Genetics, Department of Medical Biochemistry, Go¨teborg University, SE 405 30 Go¨teborg, Sweden Received 11 April 2006; revised 14 June 2006; accepted 15 June 2006 Available online 30 June 2006 Edited by Laszlo Nagy diesterase (PDE) inhibitor IBMX to minimize hydrolysis of Abstract Overexpression of forkhead transcription factor FOXC2 in white adipose tissue (WAT) leads to a lean phenotype cAMP by PDEs. Thus, the strongly enhanced and sustained resistant to diet-induced obesity. This is due, in part, to enhanced cAMP response previously observed in FOXC2 transgenic catecholamine-induced cAMP-PKA signaling in FOXC2 trans- adipocytes is most likely a result of the increased expression genic mice. Here we show that rolipram treatment of adipocytes of b-AR receptors, since this would lead to a more profound from FOXC2 transgenic mice did not increase isoproterenol-in- activation of b-AR associated adenylyl cyclases (ACs) and, duced cAMP accumulation to the same extent as in wild type thus, increased generation of cAMP from ATP.
    [Show full text]
  • PDE4A, Active Human Recombinant Protein Expressed in Sf9 Cells
    Catalog # Aliquot Size P92-31G -05 5 µg P92-31G -10 10 µg PDE4A, Active Human recombinant protein expressed in Sf9 cells Catalog # P92-31G Lot # E3321-2 Product Description Specific Activity Recombinant human PDE4A (332-end) was expressed by 1,400,000 baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_001111307. 1,050,000 Gene Aliases 700,000 350,000 PDE4; DPDE2; PDE46 (RLU) Activity 0 Formulation 3 4.2 5.4 6.6 7.8 9 Protein (ng) Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM The specific activity of PDE4A was determined to be 1100 nmol DTT, 0.1mM PMSF, 25% glycerol. /min/mg as per activity assay protocol. Storage and Stability Purity o Store product at –70 C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple The purity was determined to be freeze/thaw cycles. >75% by densitometry. Approx. MW 110kDa. Scientific Background PDE4A is a member of the phosphodiesterase family of proteins that play a critical role in regulating intracellular levels of cAMP. In vitro phosphorylation of PDE4A by the PDE4A, Active PKA-catalytic subunit increases the enzyme's sensitivity to Human recombinant protein expressed in Sf9 cells Mg(2+), leading to a 4-fold increase in cAMP hydrolysis without affecting the Km. PDE4 is widely expressed in Catalog # P92-31G brain tumors and promotes their growth and treatment Specific Activity 1100 nmol/min/mg with PDE4A inhibitor Rolipram overcomes tumor resistance and mediates tumor regression (1).
    [Show full text]
  • Peripheral Neuropathy in Complex Inherited Diseases: an Approach To
    PERIPHERAL NEUROPATHY IN COMPLEX INHERITED DISEASES: AN APPROACH TO DIAGNOSIS Rossor AM1*, Carr AS1*, Devine H1, Chandrashekar H2, Pelayo-Negro AL1, Pareyson D3, Shy ME4, Scherer SS5, Reilly MM1. 1. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 2. Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK. 3. Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy. 4. Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA 5. Department of Neurology, University of Pennsylvania, Philadelphia, PA 19014, USA. * These authors contributed equally to this work Corresponding author: Mary M Reilly Address: MRC Centre for Neuromuscular Diseases, 8-11 Queen Square, London, WC1N 3BG, UK. Email: [email protected] Telephone: 0044 (0) 203 456 7890 Word count: 4825 ABSTRACT Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy e.g. spasticity, the type of neuropathy, and the other neurological and non- neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories - 1) ataxia, 2) spasticity, and 3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy e.g.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • Clinical Utility of Recently Identified Diagnostic, Prognostic, And
    Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
    [Show full text]