Mosquito & Black Fly Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Mosquito & Black Fly Management Plan Banana Shire Council DES-EM-01-001 Mosquito and Black Fly Management Plan Page 1 of 104 Document Version: 8 February 2016 MOSQUITO & BLACK FLY MANAGEMENT PLAN 2015 – 2019 Adopted 20 January 2016 Mosquito & Black Fly Management Plan Information has been sourced from World Health Organisation; Queensland Health; New South Wales Health; and University of Sydney Medical Entomology Department Banana Shire Council DES-EM-01-001 Mosquito and Black Fly Management Plan Page 2 of 104 Document Version: 8 February 2016 Table of Contents PART A – STRATEGIC OVERVIEW ................................................................................................ 6 1.1 Executive Summary ............................................................................................................ 6 1.2 Vision .................................................................................................................................. 6 1.3 Mission Statement ............................................................................................................... 6 1.4 Objectives ........................................................................................................................... 6 1.5 Goals .................................................................................................................................. 7 1.6 Aims .................................................................................................................................... 7 PART B – PRELIMINARY INFORMATION ....................................................................................... 8 2.1 Introduction ......................................................................................................................... 8 2.2 Scope .................................................................................................................................. 8 2.3 Legislative Framework ........................................................................................................ 8 2.4 Council Policy ..................................................................................................................... 9 2.4.1 Corporate Plan Outcomes .............................................................................................. 9 2.5 Environmental and Safety Considerations ........................................................................... 9 PART C – BACKGROUND ............................................................................................................. 11 3.1 Mosquito Borne Disease Significance ............................................................................... 11 3.1.1 Notifications .................................................................................................................. 11 3.2 Mosquito Overview ............................................................................................................ 11 3.2.1 Lifecycle ....................................................................................................................... 12 3.2.2 Prevention .................................................................................................................... 12 3.3 Mosquito Habitats ............................................................................................................. 13 3.3.1 Fresh Water .................................................................................................................. 13 3.3.2 Polluted Water .............................................................................................................. 14 3.3.3 Brackish Water ............................................................................................................. 14 3.3.4 Salt Water ..................................................................................................................... 14 3.3.5 Groundwater/freshwater/polluted water habitats ........................................................... 14 3.3.6 Container/Urban habitats .............................................................................................. 14 3.4 Surveillance ...................................................................................................................... 14 3.4.1 Routine Mosquito Surveillance Provides: ...................................................................... 15 3.5 Response .......................................................................................................................... 15 3.5.1 Environmental Management ......................................................................................... 16 3.5.2 Chemical Control .......................................................................................................... 16 3.6 Community Engagement/Awareness ................................................................................ 16 Mosquito & Black Fly Management Plan Information has been sourced from World Health Organisation; Queensland Health; New South Wales Health; and University of Sydney Medical Entomology Department Banana Shire Council DES-EM-01-001 Mosquito and Black Fly Management Plan Page 3 of 104 Document Version: 8 February 2016 PART D – GENERAL APPENDICES .............................................................................................. 19 Appendix 1 – Dengue Fever ....................................................................................................... 19 Appendix 2 – Ross River Virus ................................................................................................... 21 Appendix 3 – Barmah Forest Virus ............................................................................................. 22 Appendix 4 – Murray Valley Encephalitis/Kunjin Virus ................................................................ 23 Appendix 5 – Malaria .................................................................................................................. 24 Appendix 6 – Chikungunya Virus................................................................................................ 25 Appendix 7 – Black Fly Overview ............................................................................................... 26 7.1 Lifecycle ....................................................................................................................... 26 7.2 Control .......................................................................................................................... 27 7.3 Personal Protection ...................................................................................................... 27 Appendix 8 – Mosquito Species ................................................................................................. 29 8.1 Disease Carrying Mosquitoes – Groundwater Breeding Species .................................. 29 8.2 Disease Carrying Mosquitoes – Container/Urban Breeding Species ............................. 30 8.3 Nuisance and Other Species (Potentially Abundant within in the Region) ........................ 30 PART E – OPERATIONAL APPENDICES ...................................................................................... 33 Appendix 1 – Surveillance and Monitoring Methods – Ground/Fresh/Polluted Water Mosquito Breeding & Black Fly Breeding ................................................................................................... 33 1.1 Habitat mapping and record keeping ............................................................................ 33 1.2 Identifying mosquito species in the area ....................................................................... 33 1.3 Identifying Black Fly abundance ................................................................................... 39 Appendix 2 – Response/Control Methods – Ground/Fresh/Polluted Water Mosquito & Black Fly Breeding ..................................................................................................................................... 40 2.1 Complaint Response .................................................................................................... 40 2.2 Response/Control Measures ........................................................................................ 40 Appendix 3 – Surveillance Methods – Container/Urban Breeding Mosquitoes............................ 47 3.1 Identifying species and density of vectors in the area ................................................... 47 3.2 Ovi/egg Sampling ......................................................................................................... 47 3.3 Larval Sampling ............................................................................................................ 49 3.4 Adult Sampling ............................................................................................................. 49 Appendix 4 – Response – Container/Urban Breeding Mosquitoes ............................................. 56 4.1 Source Reduction/Larval Control .................................................................................. 56 4.2 Chemical Control .......................................................................................................... 56 4.3 Approved Inspection Program ...................................................................................... 58 Appendix 5- Management of a Dengue Outbreak ....................................................................... 61 5.1 Dengue Fever and the Aedes aegypti mosquito ..........................................................
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • The Black Flies of Maine
    THE BLACK FLIES OF MAINE L.S. Bauer and J. Granett Department of Entomology University of Maine at Orono, Orono, ME 04469 Maine Life Sciences and Agriculture Experiment Station Technical Bulletin 95 May 1979 LS-\ F.\PFRi\ii-Nr Si \IION TK HNK \I BUI I HIN 9? ACKNOWLEDGMENTS We wish to thank Dr. Ivan McDaniel for his involvement in the USDA-funding of this project. We thank him for his assistance at the beginning of this project in loaning us literature, equipment, and giving us pointers on taxonomy. He also aided the second author on a number of collection trips and identified a number of collection specimens. We thank Edward R. Bauer, Lt. Lewis R. Boobar, Mr. Thomas Haskins. Ms. Leslie Schimmel, Mr. James Eckler, and Mr. Jan Nyrop for assistance in field collections, sorting, and identifications. Mr. Ber- nie May made the electrophoretic identifications. This project was supported by grant funds from the United States Department of Agriculture under CSRS agreement No. 616-15-94 and Regional Project NE 118, Hatch funds, and the Maine Towns of Brad­ ford, Brownville. East Millinocket, Enfield, Lincoln, Millinocket. Milo, Old Town. Orono. and Maine counties of Penobscot and Piscataquis, and the State of Maine. The electrophoretic work was supported in part by a faculty research grant from the University of Maine at Orono. INTRODUCTION Black flies have been long-time residents of Maine and cause exten­ sive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Backyard Mosquito Management Practices That Do Not Poison You Or the Environment by Becky Crouse
    A BEYOND PESTlClDES FACT SHEET O A BEYOND PESTlClDES FACT SHEET O A BEYOND PESTlClDES FACT SHEET Backyard Mosquito Management Practices that do not poison you or the environment By Becky Crouse irst and foremost, let’s get a couple of things straight. (1995), pgs. 17-29). He has continually questioned the effi- Mosquito management does NOT mean dousing your- cacy of spray-based strategies against mosquitoes, conduct- Fself and your kin in your favorite DEET product and ing research for several cities in the mid-1980s. then stepping out to enjoy the local wildlife. It is not swat- ting at the suckers as they bite you. And it is not investing in Life Cycle of a Skeeter one of those full-body net suits for your next camping trip. To manage mosquitoes, you have to get rid of the situa- There are more than 2,500 different species of mosquitoes in the tions that are attracting them to your world, 150 of which occur in the U.S. property, and, if you detect any and a only small fraction of which ac- breeding activity, kill them before tually transmit disease. they become adults. That’s called Mosquitoes go through four LARVACIDE! stages in their life cycle – egg, larva, So what then do mosquitoes pupa, and adult. Eggs can be laid ei- need? Why are they finding your ther one at a time or in rafts and float backyard so darn attractive? They on the surface of the water. Culex and need suitable aquatic breeding habi- Culiseta species stick their eggs to- tats in order to complete their life gether in rafts of 200 or more, which cycle (a.k.a they need water).
    [Show full text]
  • RESCON 2020 Proceedings
    POSTGRADUATE INSTITUTE OF SCIENCE UNIVERSITY OF PERADENIYA SRI LANKA PGIS RESEARCH CONGRESS 2020 PROCEEDINGS 26th - 28th November 2020 Copyright © 2020 by Postgraduate Institute of Science All rights reserved. No part of this publication may be reproduced, distributed, stored in a retrieval system, and transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. ISBN 978-955-8787-10-6 Published by Postgraduate Institute of Science (PGIS) University of Peradeniya Peradeniya 20400 SRI LANKA Printed by Sanduni Offset Printers (Pvt) Ltd, 1/4, Sarasavi Uyana Goodshed Road, Sarasavi Uyana, Peradeniya 20400, Sri Lanka Printed in the Democratic Socialist Republic of Sri Lanka ii TABLE OF CONTENTS Message from the Director, Postgraduate Institute of Science ....................................... v Message from the Congress Chairperson ..................................................................... vii Message from the Editor-in-Chief .................................................................................ix Message from the Chief Guest .......................................................................................xi Editorial Board ............................................................................................................ xiii Academic Coordinators of the Virtual Technical Sessions .........................................xiv A Brief Biography of the Keynote Speaker .................................................................
    [Show full text]
  • Insects Commonly Mistaken for Mosquitoes
    Mosquito Proboscis (Figure 1) THE MOSQUITO LIFE CYCLE ABOUT CONTRA COSTA INSECTS Mosquitoes have four distinct developmental stages: MOSQUITO & VECTOR egg, larva, pupa and adult. The average time a mosquito takes to go from egg to adult is five to CONTROL DISTRICT COMMONLY Photo by Sean McCann by Photo seven days. Mosquitoes require water to complete Protecting Public Health Since 1927 their life cycle. Prevent mosquitoes from breeding by Early in the 1900s, Northern California suffered MISTAKEN FOR eliminating or managing standing water. through epidemics of encephalitis and malaria, and severe outbreaks of saltwater mosquitoes. At times, MOSQUITOES EGG RAFT parts of Contra Costa County were considered Most mosquitoes lay egg rafts uninhabitable resulting in the closure of waterfront that float on the water. Each areas and schools during peak mosquito seasons. raft contains up to 200 eggs. Recreational areas were abandoned and Realtors had trouble selling homes. The general economy Within a few days the eggs suffered. As a result, residents established the Contra hatch into larvae. Mosquito Costa Mosquito Abatement District which began egg rafts are the size of a grain service in 1927. of rice. Today, the Contra Costa Mosquito and Vector LARVA Control District continues to protect public health The larva or ÒwigglerÓ comes with environmentally sound techniques, reliable and to the surface to breathe efficient services, as well as programs to combat Contra Costa County is home to 23 species of through a tube called a emerging diseases, all while preserving and/or mosquitoes. There are also several types of insects siphon and feeds on bacteria enhancing the environment.
    [Show full text]
  • Horse Insect Control Guide
    G950 (Revised March 2006) Horse Insect Control Guide John B. Campbell, Extension Entomologist feeds on blood. The fly bites inflict pain to the animal which Insects that bother horses, and ways to treat responds by foot stamping and tail switching in an effort to them, are covered here. dislodge the fly. House flies have a sponging type mouthpart and feed only on secretions of the animal around the eyes, nostrils and Nebraskans keep horses for a number of different rea­ anal openings. They are annoying to the animal even though sons. Some are for 4-H projects and urban users (recreation­ they don’t bite. al), ranch and farm (work), breeding farms, and racing. Both these fly species can transmit a nematode parasite Some of the insect pests of horses are also pests of other (Habronema spp.) to horses. The nematode is transmitted livestock. Other insects are specific to horses, but may be either through a feeding wound, or internally if the horse pests only on farm and ranch horses. swallows a fly. The best methods of pest control vary depending upon The nematode tunnels through the skin (cutaneous the type of horse production. tissues) of the horse, causing ulcerative sores (habroneiniasis or summer sores). The sores begin as small papules which Caution become encrusted. They are most often found on the shoulders, chest, neck, and inner surfaces of the rear quarters Use only insecticides that are USDA approved and EPA and tail. registered for use on horses. Wettable powder (WP) formula­ Localized treatment with a phosphate insecticide labeled tions are generally preferred over emulsifiable-concentrates for use on horses usually destroys the nematode.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Doh Multi-Page Template
    Medical Entomology 2016/2017 Annual Report Environmental Health Hazards Unit Environmental Health Directorate Public Health Division Department of Health, Western Australia PO Box 8172, Perth Business Centre Perth, 6849 Acknowledgements The extensive and diverse work program undertaken by the Department of Health’s Medical Entomology team outlined in this Annual Report could not have been completed without significant assistance and collaboration from many partners and stakeholders. In particular, the Medical Entomology team wishes to thank the Department of Health for its ongoing support in regards to this important public health program including: o the Environmental Health Directorate; o the Communicable Disease Control Directorate; o Population Health Units/Area Health Services o PathWest; and o Communications Directorate. The Pathwest laboratory continued to have a significant involvement in the program through provision of laboratory services for key components of the surveillance program for detection of arboviruses of public health significance to the State. We also acknowledge and thank the Population Health Units and the Western Australian Country Health Service for their role in reporting and follow-up of human cases of disease, and especially the role of Local Governments in the management of mosquitoes and the diseases they transmit. These organisations play an active role in the provision of data, case follow up investigations, care and bleeding of chickens for the sentinel chicken program, trapping of mosquitoes, mosquito control treatments and advice to the Western Australian community about disease risk through the media. In particular we thank Environmental Health Officers from the 139 Local Governments across WA, especially those within Contiguous Local Authority Groups (CLAGs), who respond to public complaints, undertake larval and adult mosquito surveys, and undertake mosquito control activities as part of their complex, integrated programs to manage the risks to public health and amenity within their regions.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Genetic and Phylogenetic Characterization Of
    Article Genetic and Phylogenetic Characterization of Tataguine and Witwatersrand Viruses and Other Orthobunyaviruses of the Anopheles A, Capim, Guamá, Koongol, Mapputta, Tete, and Turlock Serogroups Alexey M. Shchetinin 1, Dmitry K. Lvov 1, Petr G. Deriabin 1, Andrey G. Botikov 1, Asya K. Gitelman 1, Jens H. Kuhn 2 and Sergey V. Alkhovsky 1,* Received: 2 September 2015; Accepted: 7 November 2015; Published: 23 November 2015 Academic Editors: Jane Tao and Pierre-Yves Lozach 1 D.I. Ivanovsky Institute of Virology, Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098, Moscow, Russia; [email protected] (A.M.S.); [email protected] (D.K.L.); [email protected] (P.G.D.); [email protected] (A.G.B.); [email protected] (A.K.G.) 2 Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA; [email protected] * Correspondence: [email protected]; Tel.: +7-499-190-3043; Fax: +7-499-190-2867 Abstract: The family Bunyaviridae has more than 530 members that are distributed among five genera or remain to be classified. The genus Orthobunyavirus is the most diverse bunyaviral genus with more than 220 viruses that have been assigned to more than 18 serogroups based on serological cross-reactions and limited molecular-biological characterization. Sequence information for all three orthobunyaviral genome segments is only available for viruses belonging to the Bunyamwera, Bwamba/Pongola, California encephalitis, Gamboa, Group C, Mapputta, Nyando, and Simbu serogroups. Here we present coding-complete sequences for all three genome segments of 15 orthobunyaviruses belonging to the Anopheles A, Capim, Guamá, Kongool, Tete, and Turlock serogroups, and of two unclassified bunyaviruses previously not known to be orthobunyaviruses (Tataguine and Witwatersrand viruses).
    [Show full text]
  • Mosquitoes in Jazan Region, Saudi Arabia, and Their Molecular Identification
    Hindawi International Journal of Zoology Volume 2021, Article ID 5563916, 12 pages https://doi.org/10.1155/2021/5563916 Research Article Culex (Diptera: Culicidae) Mosquitoes in Jazan Region, Saudi Arabia, and Their Molecular Identification Elsiddig Noureldin , Ommer Dafalla , Abdualziz Hakami, Mohammed Jubran, Ahmed Alzhrani, Muhannad Mujally, Othman Shajari, Ali Khardali, and Zaki Eisa Saudi Center for Disease Control and Prevention (SCDC), P.O. Box 716, Jazan 45142, Saudi Arabia Correspondence should be addressed to Elsiddig Noureldin; [email protected] Received 8 February 2021; Accepted 27 June 2021; Published 8 July 2021 Academic Editor: Marco Cucco Copyright © 2021 Elsiddig Noureldin et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Morphological characteristics have been the gold standard method to identify mosquito species. However, morphological identification has many limitations including lack of expertise and damaging of external characters due to improper specimen handling. &erefore, we used the polymerase chain reaction technique (PCR) as an integrated tool to identify Culex mosquito species to establish a more precise and reliable identification system related to their spatial distribution in Jazan region. We identified Culex mosquito species and subspecies using taxonomic keys, and then we used the polymerase chain reaction technique (PCR) as an integrated tool to confirm and refine the list of Culex mosquito species in the region. Phylogenetic trees were constructed for the identified species, and their distinctive clustering was compared with their reference’s species in the GenBank. We identified 7026 adult Culex mosquitoes belonging to 4 species.
    [Show full text]